MCV2_BondPeriphery

Description:

ERC20 token contract with Mintable, Factory capabilities. Standard implementation for fungible tokens on Ethereum.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "@openzeppelin/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "contracts/interfaces/IMCV2_Bond.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.20;

interface IMCV2_Bond {
    function exists(address token) external view returns (bool);

    function tokenBond(
        address token
    )
        external
        view
        returns (
            address creator,
            uint16 mintRoyalty,
            uint16 burnRoyalty,
            uint40 createdAt,
            address reserveToken,
            uint256 reserveBalance
        );

    struct BondStep {
        uint128 rangeTo;
        uint128 price;
    }

    function getSteps(address token) external view returns (BondStep[] memory);

    function mint(
        address token,
        uint256 tokensToMint,
        uint256 maxReserveAmount,
        address receiver
    ) external returns (uint256);

    function creationFee() external view returns (uint256);

    function getReserveForToken(
        address token,
        uint256 tokensToMint
    ) external view returns (uint256 reserveAmount, uint256 royalty);

    struct MultiTokenParams {
        string name;
        string symbol;
        string uri;
    }

    struct BondParams {
        uint16 mintRoyalty;
        uint16 burnRoyalty;
        address reserveToken;
        uint128 maxSupply;
        uint128[] stepRanges;
        uint128[] stepPrices;
    }

    function createMultiToken(
        MultiTokenParams calldata tp,
        BondParams calldata bp
    ) external payable returns (address);

    function updateBondCreator(address token, address creator) external;
}
"
    },
    "contracts/interfaces/MCV2_ICommonToken.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.20;

interface MCV2_ICommonToken {
    function totalSupply() external view returns (uint256);

    function mintByBond(address to, uint256 amount) external;

    function burnByBond(address account, uint256 amount) external;

    function decimals() external pure returns (uint8);

    function name() external view returns (string memory);

    function symbol() external view returns (string memory);
}
"
    },
    "contracts/MCV2_BondPeriphery.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1

pragma solidity =0.8.20;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IMCV2_Bond} from "./interfaces/IMCV2_Bond.sol";
import {MCV2_ICommonToken} from "./interfaces/MCV2_ICommonToken.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title Mint Club V2 Bond Periphery
 */
contract MCV2_BondPeriphery {
    error MCV2_BondPeriphery__InvalidParams(string name);
    error MCV2_BondPeriphery__ExceedMaxSupply();
    error MCV2_BondPeriphery__InvalidCurrentSupply();
    error MCV2_BondPeriphery__InvalidTokenAmount();
    error MCV2_BondPeriphery__SlippageLimitExceeded();

    IMCV2_Bond public immutable BOND;

    constructor(address bond_) {
        BOND = IMCV2_Bond(bond_);
    }

    function mintWithReserveAmount(
        address token,
        uint256 reserveAmount,
        uint256 minTokensToMint,
        address receiver
    ) external returns (uint256 tokensMinted) {
        (uint256 tokensToMint, address reserveAddress) = getTokensForReserve(
            token,
            reserveAmount,
            true // Use ceiling division to minimize leftover reserves
        );
        if (tokensToMint < minTokensToMint)
            revert MCV2_BondPeriphery__SlippageLimitExceeded();

        IERC20 reserveToken = IERC20(reserveAddress);
        reserveToken.transferFrom(msg.sender, address(this), reserveAmount);
        reserveToken.approve(address(BOND), reserveAmount);

        // Try minting with ceiling division result first
        try BOND.mint(token, tokensToMint, reserveAmount, receiver) {
            // Success - send any leftover reserve tokens to receiver
            uint256 reserveBalance = reserveToken.balanceOf(address(this));
            if (reserveBalance > 0) {
                reserveToken.transfer(receiver, reserveBalance);
            }
            return tokensToMint;
        } catch {
            // If minting fails, try reducing by 1 token
            tokensToMint -= 1;
            if (tokensToMint < minTokensToMint) {
                revert MCV2_BondPeriphery__SlippageLimitExceeded();
            }

            // Try minting with reduced amount
            BOND.mint(token, tokensToMint, reserveAmount, receiver);
            uint256 reserveBalance = reserveToken.balanceOf(address(this));
            if (reserveBalance > 0) {
                reserveToken.transfer(receiver, reserveBalance);
            }

            return tokensToMint;
        }
    }

    /**
     * @dev Calculates the number of tokens that can be minted with a given amount of reserve tokens.
     * @notice This wasn't implemented in the original Bond contract, due to *rounding errors*
     *         and it is impossible to calculate the exact number of tokens that can be minted
     *         without using binary search (too expensive, often reverts due to gas limit).
     *         Use this function just for estimating the number of tokens that can be minted.
     * @param tokenAddress The address of the token.
     * @param reserveAmount The amount of reserve tokens to pay.
     * @param useCeilDivision Whether to use ceiling division (true) or floor division (false).
     * @return tokensToMint The number of tokens that can be minted.
     * @return reserveAddress The address of the reserve token.
     */
    function getTokensForReserve(
        address tokenAddress,
        uint256 reserveAmount,
        bool useCeilDivision
    ) public view returns (uint256 tokensToMint, address reserveAddress) {
        if (!BOND.exists(tokenAddress))
            revert MCV2_BondPeriphery__InvalidParams("token");
        if (reserveAmount == 0)
            revert MCV2_BondPeriphery__InvalidParams("reserveAmount");

        // Cache external calls to avoid repeated storage reads
        (, uint16 mintRoyalty, , , address reserveTokenAddr, ) = BOND.tokenBond(
            tokenAddress
        );
        reserveAddress = reserveTokenAddr;
        IMCV2_Bond.BondStep[] memory steps = BOND.getSteps(tokenAddress);
        MCV2_ICommonToken t = MCV2_ICommonToken(tokenAddress);

        uint256 currentSupply = t.totalSupply();
        uint256 stepsLength = steps.length;
        uint256 maxTokenSupply = steps[stepsLength - 1].rangeTo;

        if (currentSupply >= maxTokenSupply)
            revert MCV2_BondPeriphery__ExceedMaxSupply();

        uint256 multiFactor = 10 ** t.decimals(); // 1 (ERC1155) or 18 (ERC20)

        // reserveAmount = reserveToBond + royalty
        // reserveAmount = reserveToBond + (reserveToBond * mintRoyalty) / 10000
        // reserveToBond = reserveAmount / (1 + (mintRoyalty) / 10000)
        uint256 reserveLeft = (reserveAmount * 10000) / (10000 + mintRoyalty);

        // Find starting step index
        uint256 i = _getCurrentStep(steps, currentSupply);

        // Unchecked arithmetic for loop increment to save gas
        unchecked {
            for (; i < stepsLength; ++i) {
                // Early termination if no reserve left
                if (reserveLeft == 0) break;

                IMCV2_Bond.BondStep memory step = steps[i];
                if (step.price == 0) continue; // Skip free minting ranges

                uint256 supplyLeft = step.rangeTo - currentSupply;
                if (supplyLeft == 0) continue;

                // Calculate how many tokens can be minted with the available reserve at this step
                uint256 tokensAtStep = useCeilDivision
                    ? Math.ceilDiv(reserveLeft * multiFactor, step.price)
                    : (reserveLeft * multiFactor) / step.price;

                if (tokensAtStep > supplyLeft) {
                    // Can mint all tokens in this step and have reserve left
                    tokensToMint += supplyLeft;

                    // Calculate how much reserve is used for this step (with ceiling division)
                    uint256 reserveRequired = Math.ceilDiv(
                        supplyLeft * step.price,
                        multiFactor
                    );
                    reserveLeft -= reserveRequired;
                    currentSupply += supplyLeft;
                } else {
                    // Can mint only a portion of this step
                    tokensToMint += tokensAtStep;
                    // Don't need to calculate reserveRequired as we're using all available reserve
                    break;
                }

                if (currentSupply >= maxTokenSupply) break;
            }
        }

        if (tokensToMint == 0) revert MCV2_BondPeriphery__InvalidTokenAmount();

        return (tokensToMint, reserveAddress);
    }

    function _getCurrentStep(
        IMCV2_Bond.BondStep[] memory steps,
        uint256 currentSupply
    ) internal pure returns (uint256) {
        uint256 left = 0;
        uint256 right = steps.length;

        unchecked {
            while (left < right) {
                uint256 mid = (left + right) / 2;
                if (steps[mid].rangeTo < currentSupply) {
                    left = mid + 1;
                } else {
                    right = mid;
                }
            }
        }

        if (left >= steps.length)
            revert MCV2_BondPeriphery__InvalidCurrentSupply();
        return left;
    }
}
"
    }
  },
  "settings": {
    "evmVersion": "paris",
    "optimizer": {
      "enabled": true,
      "runs": 50000
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    }
  }
}}

Tags:
ERC20, Token, Mintable, Factory|addr:0x7b09b728ee8c6a714dc3f10367b5df9b217fe633|verified:true|block:23582657|tx:0x02ee4b742e8604ee4c5643b5380e0feadd2b9e1a0b571af2c15e8ed0c1a33647|first_check:1760529718

Submitted on: 2025-10-15 14:02:03

Comments

Log in to comment.

No comments yet.