StakePadV1

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/StakePadV1.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.22;

import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "./utils/StakePadUtils.sol";
import "./interfaces/IRewardReceiver.sol";
import "./interfaces/IDepositContract.sol";
import "./interfaces/IStakePad.sol";

//........................................................................................................
//....SSSSSS....TTTTTTTTT.....AAA.......K......KKK...EEEEEEEE.........PPPPP.........AA.......AADDD........
//...SSSSSSSS..STTTTTTTTTT...AAAAA.....KKK...KKKKKK.EEEEEEEEEE....... PPPPPPPP....AAAAA.....AAADDDDDDD....
//..SSSSSSSSSS.STTTTTTTTTT...AAAAA.....KKK..KKKKKK..EEEEEEEEEE....... PPPPPPPPP...AAAAAA....AAADDDDDDDD...
//..SSSSSSSSSS.STTTTTTTTTT..AAAAAAA....KKK.KKKKKK...EEEEEEEEEE....... PPPPPPPPP...AAAAAA....AAADDDDDDDD...
//.SSSS...SSSSS....TTTT.....AAAAAAA....KKKKKKKKK....EEE.............. PP...PPPPP.PAAAAAA....AAAD...DDDDD..
//.SSSSSS..........TTTT....AAAAAAAA....KKKKKKKK.....EEEEEEEEEE....... PP....PPPP.PAAAAAAA...AAAD....DDDD..
//..SSSSSSSSS......TTTT....AAAAAAAAA...KKKKKKK......EEEEEEEEEE....... PPPPPPPPPP.PAAAAAAA...AAAD....DDDD..
//..SSSSSSSSSS.....TTTT....AAAA.AAAA...KKKKKKKK.....EEEEEEEEEE....... PPPPPPPPP.PPAA.AAAA...AAAD....DDDD..
//....SSSSSSSSS....TTTT...TAAAAAAAAA...KKKKKKKKK....EEEEEEEEEE....... PPPPPPPPP.PPAAAAAAAA..AAAD....DDDD..
//.SSSS..SSSSSS....TTTT...TAAAAAAAAAA..KKKKKKKKK....EEE.............. PPPPPPP...PPAAAAAAAA..AAAD....DDDD..
//.SSSS....SSSS....TTTT...TAAAAAAAAAA..KKK..KKKKK...EEE.............. PP.......PPPAAAAAAAAA.AAAD...DDDDD..
//.SSSSSSSSSSSS....TTTT..TTAAAAAAAAAA..KKK..KKKKKK..EEEEEEEEEEE...... PP.......PPPAAAAAAAAA.AAADDDDDDDD...
//..SSSSSSSSSS.....TTTT..TTAA....AAAAA.KKK...KKKKKK.EEEEEEEEEEE...... PP......PPPPA....AAAA.AAADDDDDDDD...
//...SSSSSSSSS.....TTTT..TTAA.....AAAA.KKK....KKKKK.EEEEEEEEEEE...... PP......PPPP.....AAAAAAAADDDDDDD....
//....SSSSSS..............................................................................................
//........................................................................................................

/**
 * @title StakePadV1
 * @author Quantum3 Labs <contact@quantum3labs.com>
 * @notice V1 of StakePad contracts
 */
contract StakePadV1 is IStakePad, Initializable, UUPSUpgradeable, OwnableUpgradeable {
    using EnumerableSet for EnumerableSet.AddressSet;

    IDepositContract public immutable beaconDeposit;
    address internal _rewardReceiverImpl;
    EnumerableSet.AddressSet internal _rewardReceivers;

    constructor(address _beaconDeposit) {
        // no checks on zero address
        beaconDeposit = IDepositContract(_beaconDeposit);
    }

    /**
     * @notice initilizes the owner and the implementation of the rewardReceiverContract
     * @param newRewardReceiverImpl the implementation of the rewardReceiverContract
     */
    function initialize(address newRewardReceiverImpl) external initializer {
        _updateRewardReceiverImpl(newRewardReceiverImpl);
        __Ownable_init(msg.sender);
    }

    /**
     * @notice creates a contract that will receive the rewards
     * @param client Beneficiary of the rewards
     * @param provider Account on behalf of this contract
     * @param commission percentage of the rewards that will be sent to the provider
     */
    function deployNewRewardReceiver(address client, address provider, uint96 commission) external override {
        address newRewardReceiver = Clones.clone(rewardReceiverImpl());
        IRewardReceiver(newRewardReceiver).initialize(client, provider, commission, address(this));
        IRewardReceiver(newRewardReceiver).transferOwnership(owner());
        _rewardReceivers.add(newRewardReceiver);
        emit NewRewardReceiver(_rewardReceivers.length(), newRewardReceiver, client, provider, commission);
    }

    /**
     * @notice funds a set of validators with specified ETH amounts (32-2048 ETH each)
     * @param DepositDataArray Array of DepositData. See StakePadUtils.sol
     */
    function fundValidators(StakePadUtils.BeaconDepositParams[] calldata DepositDataArray) external payable override {
        uint256 totalRequiredETH = 0;
        for (uint256 i = 0; i < DepositDataArray.length; ++i) {
            uint256 depositValue = DepositDataArray[i].depositValue;
            require(depositValue >= 32 ether && depositValue <= 2048 ether, "StakePadV1: deposit must be between 32 and 2048 ETH");
            totalRequiredETH += depositValue;
        }
        require(msg.value == totalRequiredETH, "StakePadV1: incorrect amount of ETH");

        for (uint256 i = 0; i < DepositDataArray.length; ++i) {
            StakePadUtils.BeaconDepositParams calldata DepositData = DepositDataArray[i];
            _validateWithdrawalCredentials(DepositData.withdrawal_credentials);
            _addValidatorPubKey(DepositData.pubkey, DepositData.withdrawal_credentials);
            beaconDeposit.deposit{value: DepositData.depositValue}(
                DepositData.pubkey,
                DepositData.withdrawal_credentials,
                DepositData.signature,
                DepositData.deposit_data_root
            );
        }
    }

    /**
     * @dev Updates the implementation of the Reward Receiver Contract
     * @param newRewardReceiverImpl the implementation of the Reward Receiver Contract
     */
    function updateRewardReceiverImpl(address newRewardReceiverImpl) external onlyOwner {
        _updateRewardReceiverImpl(newRewardReceiverImpl);
    }

    /**
     * @dev Retrieve any mistakenly sent funds to this contract
     */
    function retrieveETH() external onlyOwner {
        (bool success,) = owner().call{value: address(this).balance}("");
        require(success, "StakePadV1: retrieveETH failed");
    }

    function owner() public view override(OwnableUpgradeable, IStakePad) returns (address) {
        return super.owner();
    }

    /**
     * @param rewardReceiver withdrawal address
     * @dev helper function users can call to check anytime before calling fundValidators()
     */
    function isRegisteredRewardReceiver(address rewardReceiver) external view returns (bool) {
        return _isRegisteredRewardReceiver(rewardReceiver);
    }

    function transferOwnership(address newOwner) public override(OwnableUpgradeable, IStakePad) onlyOwner {
        super.transferOwnership(newOwner);
    }

    /**
     * @dev Renouncing ownership is not allowed
     */
    function renounceOwnership() public view override onlyOwner {
        revert("StakePadV1: cannot renounce ownership");
    }

    /**
     * @dev Returns the implementation of the Reward Receiver Contract.
     */
    function rewardReceiverImpl() public view returns (address) {
        return _rewardReceiverImpl;
    }

    /**
     * @param withdrawalCredentials formatted reward receiver address
     * @dev helper function to validate the withdrawal credentials format and address
     */
    function _validateWithdrawalCredentials(bytes calldata withdrawalCredentials) internal view {
        require(withdrawalCredentials.length == 32, "StakePadV1: invalid withdrawal_credentials length");

        address withdrawalCredentialsAddress = address(bytes20(withdrawalCredentials[12:]));

        require(
            _isRegisteredRewardReceiver(withdrawalCredentialsAddress) && uint8(bytes1(withdrawalCredentials[:1])) == 2,
            "StakePadV1: invalid withdrawal_credentials"
        );
    }

    function _isRegisteredRewardReceiver(address rewardReceiver) internal view returns (bool) {
        return _rewardReceivers.contains(rewardReceiver);
    }

    /**
     * @dev perform some address checks
     */
    function _updateRewardReceiverImpl(address newRewardReceiverImpl) internal {
        require(newRewardReceiverImpl != address(0), "StakePadV1: new implementation is the zero address");
        _rewardReceiverImpl = newRewardReceiverImpl;
    }

    function _addValidatorPubKey(bytes calldata pubkey, bytes calldata withdrawal_credentials) internal {
        require(pubkey.length == 48, "StakePadV1: invalid pubkey length");
        IRewardReceiver(address(bytes20(withdrawal_credentials[12:]))).addValidator(pubkey);
    }

    /**
     * @dev Upgrade the implementation of the proxy
     * @param newImplementation address of the new implementation
     * @notice only the ADMIN ( owner ) can upgrade this contract
     */
    function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}

    uint256[50] private __gap; // gap for upgrade safety
}
"
    },
    "lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.22;

import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 */
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable __self = address(this);

    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
     * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
     * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev The call is from an unauthorized context.
     */
    error UUPSUnauthorizedCallContext();

    /**
     * @dev The storage `slot` is unsupported as a UUID.
     */
    error UUPSUnsupportedProxiableUUID(bytes32 slot);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        _checkProxy();
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        _checkNotDelegated();
        _;
    }

    function __UUPSUpgradeable_init() internal onlyInitializing {
    }

    function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual notDelegated returns (bytes32) {
        return ERC1967Utils.IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data);
    }

    /**
     * @dev Reverts if the execution is not performed via delegatecall or the execution
     * context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
     */
    function _checkProxy() internal view virtual {
        if (
            address(this) == __self || // Must be called through delegatecall
            ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
        ) {
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Reverts if the execution is performed via delegatecall.
     * See {notDelegated}.
     */
    function _checkNotDelegated() internal view virtual {
        if (address(this) != __self) {
            // Must not be called through delegatecall
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
     *
     * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
     * is expected to be the implementation slot in ERC-1967.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
        try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
            if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                revert UUPSUnsupportedProxiableUUID(slot);
            }
            ERC1967Utils.upgradeToAndCall(newImplementation, data);
        } catch {
            // The implementation is not UUPS
            revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
        }
    }
}
"
    },
    "lib/openzeppelin-contracts-upgradeable/contracts/access/OwnableUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
"
    },
    "lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/Initializable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reinitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
     *
     * NOTE: Consider following the ERC-7201 formula to derive storage locations.
     */
    function _initializableStorageSlot() internal pure virtual returns (bytes32) {
        return INITIALIZABLE_STORAGE;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        bytes32 slot = _initializableStorageSlot();
        assembly {
            $.slot := slot
        }
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/structs/EnumerableSet.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

import {Arrays} from "../Arrays.sol";
import {Math} from "../math/Math.sol";

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 * - Set can be cleared (all elements removed) in O(n).
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * The following types are supported:
 *
 * - `bytes32` (`Bytes32Set`) since v3.3.0
 * - `address` (`AddressSet`) since v3.3.0
 * - `uint256` (`UintSet`) since v3.3.0
 * - `string` (`StringSet`) since v5.4.0
 * - `bytes` (`BytesSet`) since v5.4.0
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: This function has an unbounded cost that scales with set size. Developers should keep in mind that
     * using it may render the function uncallable if the set grows to the point where clearing it consumes too much
     * gas to fit in a block.
     */
    function _clear(Set storage set) private {
        uint256 len = _length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set, uint256 start, uint256 end) private view returns (bytes32[] memory) {
        unchecked {
            end = Math.min(end, _length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            bytes32[] memory result = new bytes32[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(Bytes32Set storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set, uint256 start, uint256 end) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(AddressSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set, uint256 start, uint256 end) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(UintSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set, uint256 start, uint256 end) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    struct StringSet {
        // Storage of set values
        string[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(string value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(StringSet storage set, string memory value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(StringSet storage set, string memory value) internal returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                string memory lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(StringSet storage set) internal {
        uint256 len = length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(StringSet storage set, string memory value) internal view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(StringSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(StringSet storage set, uint256 index) internal view returns (string memory) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(StringSet storage set) internal view returns (string[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(StringSet storage set, uint256 start, uint256 end) internal view returns (string[] memory) {
        unchecked {
            end = Math.min(end, length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            string[] memory result = new string[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }

    struct BytesSet {
        // Storage of set values
        bytes[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(BytesSet storage set, bytes memory value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(BytesSet storage set, bytes memory value) internal returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes memory lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(BytesSet storage set) internal {
        uint256 len = length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(BytesSet storage set, bytes memory value) internal view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(BytesSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(BytesSet storage set, uint256 index) internal view returns (bytes memory) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(BytesSet storage set) internal view returns (bytes[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(BytesSet storage set, uint256 start, uint256 end) internal view returns (bytes[] memory) {
        unchecked {
            end = Math.min(end, length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            bytes[] memory result = new bytes[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/proxy/Clones.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    error CloneArgumentsTooLong();

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple times will revert, since
     * the clones cannot be deployed twice at the same address.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 valu

Tags:
Multisig, Swap, Voting, Upgradeable, Multi-Signature, Factory|addr:0x5b611199453e11fdfe8a176352a29b9951929751|verified:true|block:23584712|tx:0x13e3df705b96b4dd468e8a7378cf396d319a5ade35b433ea7ff0e806acf1e2cc|first_check:1760554571

Submitted on: 2025-10-15 20:56:13

Comments

Log in to comment.

No comments yet.