Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"TrustProtocol.sol": {
"content": "// SPDX-License-Identifier: MIT\r
pragma solidity ^0.8.20;\r
\r
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";\r
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";\r
import "@openzeppelin/contracts/access/Ownable.sol";\r
import "@openzeppelin/contracts/utils/math/Math.sol";\r
\r
/**\r
* TrustProtocol - https://TrustProtocol.io\r
* On-Chain Digital Trusts - Automated • Secure • Transparent\r
*/\r
\r
contract TrustProtocol is ERC20, ReentrancyGuard, Ownable {\r
// Constants\r
uint256 public constant TOTAL_SUPPLY = 1_000_000_000 * 10**18;\r
uint256 public constant MAX_BENEFICIARIES_PER_GRANTOR = 10;\r
uint256 public constant MAX_TRUSTS_PER_CALL = 10;\r
uint256 public constant MIN_AMOUNT_PER_PERIOD = 10000000000000000;\r
uint256 public constant MINUTES_PER_DAY = 1440;\r
uint256 public constant MINUTES_PER_YEAR = 525600;\r
uint256 public constant MAX_DURATION_YEARS = 100;\r
uint256 public constant MAX_BACKDATE_SECONDS = 30 * 24 * 60 * 60;\r
uint256 public constant MAX_FUTURE_SECONDS = 100 * 365 * 24 * 60 * 60;\r
uint256 public constant MAX_FUTURE_MINUTES = 525600 * 100;\r
\r
// Structs\r
struct BeneficiaryParams {\r
uint256 beneficiaryNumber;\r
address beneficiary;\r
uint256 amountPerPeriod;\r
uint256 periodLengthInMinutes;\r
uint256 totalPeriods;\r
uint256 isIrrevocable;\r
uint256 startTime;\r
}\r
\r
struct BeneficiaryConfig {\r
address grantor;\r
address beneficiary;\r
uint256 amountPerPeriod;\r
uint256 totalAmount;\r
uint256 totalClaimed;\r
uint256 startTime;\r
uint256 endTime;\r
uint256 periodLengthInMinutes;\r
uint256 totalPeriods;\r
uint256 periodsClaimed;\r
bool isIrrevocable;\r
bool isActive;\r
}\r
\r
struct BeneficiaryInfo {\r
uint256 slot;\r
address grantor;\r
address beneficiary;\r
uint256 totalAmount;\r
uint256 amountPerPeriod;\r
uint256 totalAccrued;\r
uint256 totalClaimed;\r
uint256 claimableAmount;\r
uint256 startTime;\r
uint256 endTime;\r
uint256 periodLengthInMinutes;\r
uint256 totalPeriods;\r
uint256 periodsAccrued;\r
uint256 periodsClaimed;\r
uint256 periodsRemaining;\r
uint256 nextClaimTime;\r
bool isIrrevocable;\r
bool isCompleted;\r
bool isActive;\r
}\r
\r
struct TrustInfo {\r
address grantor;\r
uint256 beneficiaryNumber;\r
BeneficiaryInfo info;\r
}\r
\r
struct AccruedAmounts {\r
uint256 periodsElapsed;\r
uint256 totalAccrued;\r
uint256 claimableAmount;\r
}\r
\r
struct BeneficiaryIndex {\r
address[] grantors;\r
mapping(address => uint256) grantorIndex;\r
mapping(address => bool) grantorExists;\r
mapping(address => uint256[]) grantorSlots;\r
uint256 totalTrusts;\r
address[] allTrustsGrantors;\r
uint256[] allTrustsSlots;\r
mapping(bytes32 => uint256) trustIndex;\r
}\r
\r
// Mappings\r
mapping(address => BeneficiaryConfig[MAX_BENEFICIARIES_PER_GRANTOR]) private _grantorBeneficiaries;\r
mapping(address => BeneficiaryIndex) private _beneficiaryIndex;\r
\r
// Events\r
event BeneficiarySet(\r
address indexed grantor,\r
uint256 indexed beneficiaryNumber,\r
address indexed beneficiary,\r
uint256 amountPerPeriod,\r
uint256 periodLengthInMinutes,\r
uint256 totalPeriods,\r
uint256 startTime,\r
uint256 endTime,\r
bool isIrrevocable\r
);\r
\r
event BeneficiaryRemoved(\r
address indexed grantor,\r
uint256 indexed beneficiaryNumber,\r
address indexed beneficiary,\r
uint256 unlockedAmount,\r
bool tokensReturnedToGrantor\r
);\r
\r
event DistributionClaimed(\r
address indexed grantor,\r
uint256 indexed beneficiaryNumber,\r
address indexed beneficiary,\r
uint256 amount,\r
uint256 periodStart,\r
uint256 periodEnd,\r
uint256 timestamp\r
);\r
\r
event IrrevocableTrustPaidOut(\r
address indexed grantor,\r
uint256 indexed beneficiaryNumber,\r
address indexed beneficiary,\r
uint256 amount,\r
uint256 periodStart,\r
uint256 periodEnd,\r
uint256 timestamp\r
);\r
\r
// Modifiers\r
modifier validBeneficiaryNumber(uint256 beneficiaryNumber) {\r
require(beneficiaryNumber >= 1 && beneficiaryNumber <= MAX_BENEFICIARIES_PER_GRANTOR, "Invalid beneficiary number");\r
_;\r
}\r
\r
modifier validIrrevocableFlag(uint256 isIrrevocable) {\r
require(isIrrevocable == 0 || isIrrevocable == 1, "Invalid irrevocable flag");\r
_;\r
}\r
\r
modifier slotNotActive(address grantor, uint256 beneficiaryNumber) {\r
uint256 internalSlot = beneficiaryNumber - 1;\r
require(!_grantorBeneficiaries[grantor][internalSlot].isActive, "Slot already active");\r
_;\r
}\r
\r
constructor() ERC20("TrustProtocol", "XBEN") Ownable(msg.sender) {\r
_mint(msg.sender, TOTAL_SUPPLY);\r
}\r
\r
// ========== PUBLIC VIEW FUNCTIONS ==========\r
\r
function getMyTrustsCount() public view returns(uint256) {\r
return _beneficiaryIndex[msg.sender].totalTrusts;\r
}\r
\r
function getMyTrusts(uint256 startIndex, uint256 count) public view returns(TrustInfo[] memory) {\r
require(count > 0, "Count must be positive");\r
require(count <= MAX_TRUSTS_PER_CALL, "Max 10 trusts per call");\r
\r
BeneficiaryIndex storage index = _beneficiaryIndex[msg.sender];\r
uint256 totalTrusts = index.totalTrusts;\r
\r
if (totalTrusts == 0 || startIndex >= totalTrusts) {\r
return new TrustInfo[](0);\r
}\r
\r
uint256 resultCount = Math.min(count, totalTrusts - startIndex);\r
TrustInfo[] memory result = new TrustInfo[](resultCount);\r
\r
for (uint256 i = 0; i < resultCount; i++) {\r
uint256 trustNum = startIndex + i;\r
address grantor = index.allTrustsGrantors[trustNum];\r
uint256 slotNumber = index.allTrustsSlots[trustNum];\r
uint256 internalSlot = slotNumber - 1;\r
\r
bytes32 trustKey = keccak256(abi.encodePacked(grantor, slotNumber));\r
require(index.trustIndex[trustKey] == trustNum, "Trust index inconsistency");\r
\r
BeneficiaryConfig storage config = _grantorBeneficiaries[grantor][internalSlot];\r
if (!config.isActive) continue;\r
\r
AccruedAmounts memory accrued = _calculateAccruedAmounts(config);\r
uint256 periodsRemaining = config.totalPeriods - accrued.periodsElapsed;\r
uint256 nextClaimTime = _calculateNextClaimTime(config, accrued.periodsElapsed);\r
bool isCompleted = accrued.periodsElapsed >= config.totalPeriods;\r
\r
result[i] = TrustInfo({\r
grantor: grantor,\r
beneficiaryNumber: slotNumber,\r
info: _createBeneficiaryInfo(config, slotNumber, accrued, periodsRemaining, nextClaimTime, isCompleted)\r
});\r
}\r
\r
return result;\r
}\r
\r
function getMyTrusts() public view returns(TrustInfo[] memory) {\r
return getMyTrusts(0, MAX_TRUSTS_PER_CALL);\r
}\r
\r
function getMyBeneficiaries() public view returns(BeneficiaryInfo[] memory) {\r
BeneficiaryConfig[MAX_BENEFICIARIES_PER_GRANTOR] storage beneficiaries = _grantorBeneficiaries[msg.sender];\r
uint256 activeCount = 0;\r
\r
for(uint256 i = 0; i < MAX_BENEFICIARIES_PER_GRANTOR; i++) {\r
if (beneficiaries[i].isActive) {\r
activeCount++;\r
}\r
}\r
\r
BeneficiaryInfo[] memory result = new BeneficiaryInfo[](activeCount);\r
uint256 resultIndex = 0;\r
\r
for(uint256 i = 0; i < MAX_BENEFICIARIES_PER_GRANTOR; i++) {\r
BeneficiaryConfig storage config = beneficiaries[i];\r
if (!config.isActive) continue;\r
\r
AccruedAmounts memory accrued = _calculateAccruedAmounts(config);\r
uint256 periodsRemaining = config.totalPeriods - accrued.periodsElapsed;\r
uint256 nextClaimTime = _calculateNextClaimTime(config, accrued.periodsElapsed);\r
bool isCompleted = accrued.periodsElapsed >= config.totalPeriods;\r
\r
result[resultIndex] = _createBeneficiaryInfo(config, i + 1, accrued, periodsRemaining, nextClaimTime, isCompleted);\r
resultIndex++;\r
}\r
return result;\r
}\r
\r
function getAvailableBalance(address account) public view returns(uint256) {\r
uint256 totalObligation = _calculateTotalObligation(account);\r
uint256 currentBalance = balanceOf(account);\r
return currentBalance > totalObligation ? currentBalance - totalObligation : 0;\r
}\r
\r
function getFinancialStatus(address account) public view returns(uint256 totalBalance, uint256 lockedBalance, uint256 availableBalance) {\r
totalBalance = balanceOf(account);\r
lockedBalance = _calculateTotalObligation(account);\r
availableBalance = totalBalance > lockedBalance ? totalBalance - lockedBalance : 0;\r
}\r
\r
// ========== PUBLIC STATE-CHANGING FUNCTIONS ==========\r
\r
function setBeneficiary(\r
uint256 beneficiaryNumber,\r
address beneficiary,\r
uint256 amountPerPeriod,\r
uint256 periodLengthInMinutes,\r
uint256 totalPeriods,\r
uint256 isIrrevocable,\r
uint256 startTime\r
) external nonReentrant validBeneficiaryNumber(beneficiaryNumber) validIrrevocableFlag(isIrrevocable) \r
slotNotActive(msg.sender, beneficiaryNumber) {\r
\r
BeneficiaryParams memory params = BeneficiaryParams({\r
beneficiaryNumber: beneficiaryNumber,\r
beneficiary: beneficiary,\r
amountPerPeriod: amountPerPeriod,\r
periodLengthInMinutes: periodLengthInMinutes,\r
totalPeriods: totalPeriods,\r
isIrrevocable: isIrrevocable,\r
startTime: startTime\r
});\r
\r
_setBeneficiary(params);\r
}\r
\r
function removeBeneficiary(uint256 beneficiaryNumber) external nonReentrant validBeneficiaryNumber(beneficiaryNumber) {\r
uint256 internalSlot = beneficiaryNumber - 1;\r
BeneficiaryConfig storage config = _grantorBeneficiaries[msg.sender][internalSlot];\r
\r
require(config.isActive, "No beneficiary in this slot");\r
\r
address removedBeneficiary = config.beneficiary;\r
uint256 amountPerPeriod = config.amountPerPeriod;\r
uint256 totalPeriods = config.totalPeriods;\r
uint256 periodsClaimed = config.periodsClaimed;\r
bool isIrrevocable = config.isIrrevocable;\r
\r
uint256 remainingPeriods = totalPeriods - periodsClaimed;\r
uint256 unlockedAmount = remainingPeriods * amountPerPeriod;\r
bool tokensReturnedToGrantor = !isIrrevocable;\r
\r
config.isActive = false;\r
_removeBeneficiaryFromMappings(removedBeneficiary, msg.sender, beneficiaryNumber);\r
delete _grantorBeneficiaries[msg.sender][internalSlot];\r
\r
if (isIrrevocable && unlockedAmount > 0) {\r
emit IrrevocableTrustPaidOut(\r
msg.sender,\r
beneficiaryNumber,\r
removedBeneficiary,\r
unlockedAmount,\r
periodsClaimed + 1,\r
periodsClaimed + remainingPeriods,\r
block.timestamp\r
);\r
\r
_transfer(msg.sender, removedBeneficiary, unlockedAmount);\r
}\r
\r
emit BeneficiaryRemoved(msg.sender, beneficiaryNumber, removedBeneficiary, unlockedAmount, tokensReturnedToGrantor);\r
}\r
\r
function claim(address grantor) external nonReentrant {\r
BeneficiaryIndex storage index = _beneficiaryIndex[msg.sender];\r
uint256[] storage beneficiaryNumbers = index.grantorSlots[grantor];\r
require(beneficiaryNumbers.length > 0, "No trusts found");\r
\r
uint256 totalClaimAmount = 0;\r
uint256[] memory claimableNumbers = new uint256[](beneficiaryNumbers.length);\r
uint256[] memory claimableAmounts = new uint256[](beneficiaryNumbers.length);\r
uint256 claimablesCount = 0;\r
\r
for (uint256 i = 0; i < beneficiaryNumbers.length; i++) {\r
uint256 beneficiaryNumber = beneficiaryNumbers[i];\r
uint256 internalSlot = beneficiaryNumber - 1;\r
BeneficiaryConfig storage config = _grantorBeneficiaries[grantor][internalSlot];\r
\r
if (!config.isActive || config.beneficiary != msg.sender) continue;\r
\r
uint256 claimableAmount = _calculateClaimableAmountOnly(config);\r
if (claimableAmount == 0) continue;\r
\r
claimableNumbers[claimablesCount] = beneficiaryNumber;\r
claimableAmounts[claimablesCount] = claimableAmount;\r
claimablesCount++;\r
totalClaimAmount += claimableAmount;\r
}\r
\r
require(totalClaimAmount > 0, "No claimable tokens found");\r
require(totalClaimAmount <= getAvailableBalance(grantor), "Insufficient balance");\r
\r
for (uint256 i = 0; i < claimablesCount; i++) {\r
uint256 beneficiaryNumber = claimableNumbers[i];\r
uint256 claimableAmount = claimableAmounts[i];\r
uint256 internalSlot = beneficiaryNumber - 1;\r
BeneficiaryConfig storage config = _grantorBeneficiaries[grantor][internalSlot];\r
\r
_updateTrustAfterClaim(grantor, beneficiaryNumber, config, claimableAmount);\r
}\r
\r
_transfer(grantor, msg.sender, totalClaimAmount);\r
}\r
\r
// ========== INTERNAL FUNCTIONS ==========\r
\r
function _calculateClaimableAmountOnly(BeneficiaryConfig storage config) internal view returns (uint256 claimableAmount) {\r
if (block.timestamp < config.startTime) return 0;\r
\r
uint256 currentTime = block.timestamp;\r
uint256 minutesPassed;\r
\r
if (currentTime >= config.endTime) {\r
minutesPassed = config.periodLengthInMinutes * config.totalPeriods;\r
} else {\r
minutesPassed = (currentTime - config.startTime) / 60;\r
}\r
\r
uint256 periodsElapsed = minutesPassed / config.periodLengthInMinutes;\r
if (periodsElapsed > config.totalPeriods) periodsElapsed = config.totalPeriods;\r
\r
if (periodsElapsed <= config.periodsClaimed) return 0;\r
\r
uint256 claimablePeriods = periodsElapsed - config.periodsClaimed;\r
claimableAmount = claimablePeriods * config.amountPerPeriod;\r
\r
return claimableAmount;\r
}\r
\r
function _updateTrustAfterClaim(\r
address grantor,\r
uint256 beneficiaryNumber, \r
BeneficiaryConfig storage config,\r
uint256 claimAmount\r
) internal {\r
uint256 periodsClaimedInThisCall = claimAmount / config.amountPerPeriod;\r
config.totalClaimed += claimAmount;\r
config.periodsClaimed += periodsClaimedInThisCall;\r
\r
emit DistributionClaimed(\r
grantor,\r
beneficiaryNumber,\r
config.beneficiary,\r
claimAmount,\r
config.periodsClaimed - periodsClaimedInThisCall + 1,\r
config.periodsClaimed,\r
block.timestamp\r
);\r
}\r
\r
function _setBeneficiary(BeneficiaryParams memory params) internal {\r
if (params.startTime == 0) params.startTime = block.timestamp;\r
\r
_validateBeneficiaryParams(params);\r
uint256 endTime = _calculateEndTime(params);\r
_storeBeneficiaryConfig(params, endTime);\r
_addBeneficiaryToTrustList(params.beneficiary, msg.sender, params.beneficiaryNumber);\r
_emitBeneficiarySetEvent(params, endTime);\r
}\r
\r
function _addBeneficiaryToTrustList(address beneficiary, address grantor, uint256 beneficiaryNumber) internal {\r
BeneficiaryIndex storage index = _beneficiaryIndex[beneficiary];\r
\r
if (!index.grantorExists[grantor]) {\r
index.grantors.push(grantor);\r
index.grantorIndex[grantor] = index.grantors.length - 1;\r
index.grantorExists[grantor] = true;\r
}\r
\r
index.grantorSlots[grantor].push(beneficiaryNumber);\r
index.allTrustsGrantors.push(grantor);\r
index.allTrustsSlots.push(beneficiaryNumber);\r
\r
bytes32 trustKey = keccak256(abi.encodePacked(grantor, beneficiaryNumber));\r
index.trustIndex[trustKey] = index.allTrustsGrantors.length - 1;\r
index.totalTrusts++;\r
}\r
\r
function _removeBeneficiaryFromMappings(address beneficiary, address grantor, uint256 beneficiaryNumber) internal {\r
BeneficiaryIndex storage index = _beneficiaryIndex[beneficiary];\r
bytes32 trustKey = keccak256(abi.encodePacked(grantor, beneficiaryNumber));\r
uint256 trustPosition = index.trustIndex[trustKey];\r
\r
require(trustPosition < index.allTrustsGrantors.length, "Trust position out of bounds");\r
require(index.allTrustsGrantors[trustPosition] == grantor, "Grantor mismatch");\r
require(index.allTrustsSlots[trustPosition] == beneficiaryNumber, "Beneficiary number mismatch");\r
\r
uint256[] storage slots = index.grantorSlots[grantor];\r
uint256 slotPosition = _findSlotPosition(slots, beneficiaryNumber);\r
\r
if (slotPosition < slots.length - 1) {\r
uint256 lastSlot = slots[slots.length - 1];\r
slots[slotPosition] = lastSlot;\r
}\r
slots.pop();\r
\r
if (trustPosition < index.allTrustsGrantors.length - 1) {\r
address lastGrantor = index.allTrustsGrantors[index.allTrustsGrantors.length - 1];\r
uint256 lastSlotNumber = index.allTrustsSlots[index.allTrustsSlots.length - 1];\r
\r
index.allTrustsGrantors[trustPosition] = lastGrantor;\r
index.allTrustsSlots[trustPosition] = lastSlotNumber;\r
\r
bytes32 lastTrustKey = keccak256(abi.encodePacked(lastGrantor, lastSlotNumber));\r
index.trustIndex[lastTrustKey] = trustPosition;\r
}\r
\r
index.allTrustsGrantors.pop();\r
index.allTrustsSlots.pop();\r
delete index.trustIndex[trustKey];\r
index.totalTrusts--;\r
\r
if (slots.length == 0) {\r
uint256 grantorPosition = index.grantorIndex[grantor];\r
\r
if (grantorPosition < index.grantors.length - 1) {\r
address lastGrantor = index.grantors[index.grantors.length - 1];\r
index.grantors[grantorPosition] = lastGrantor;\r
index.grantorIndex[lastGrantor] = grantorPosition;\r
}\r
index.grantors.pop();\r
delete index.grantorIndex[grantor];\r
delete index.grantorExists[grantor];\r
delete index.grantorSlots[grantor];\r
}\r
}\r
\r
function _findSlotPosition(uint256[] storage slots, uint256 beneficiaryNumber) internal view returns (uint256) {\r
for (uint256 i = 0; i < slots.length; i++) {\r
if (slots[i] == beneficiaryNumber) return i;\r
}\r
revert("Slot not found");\r
}\r
\r
function _validateBeneficiaryParams(BeneficiaryParams memory params) internal view {\r
require(params.beneficiary != address(0), "Beneficiary cannot be zero address");\r
require(params.beneficiary != msg.sender, "Cannot set self as beneficiary");\r
\r
require(params.amountPerPeriod >= MIN_AMOUNT_PER_PERIOD, "Amount per period must be at least 0.01 XBEN");\r
require(params.amountPerPeriod <= TOTAL_SUPPLY, "Amount per period cannot exceed 1 billion XBEN");\r
\r
require(params.periodLengthInMinutes > 0, "Period length must be greater than zero");\r
require(params.periodLengthInMinutes <= MAX_FUTURE_MINUTES, "Period length cannot exceed 100 years");\r
\r
require(params.totalPeriods > 0, "Total periods must be greater than zero");\r
require(params.totalPeriods <= MAX_FUTURE_MINUTES, "Total periods cannot exceed 52,560,000");\r
\r
uint256 totalDurationMinutes = params.periodLengthInMinutes * params.totalPeriods;\r
require(totalDurationMinutes <= MAX_FUTURE_MINUTES, "Total duration cannot exceed 100 years");\r
\r
uint256 newTrustObligation = params.amountPerPeriod * params.totalPeriods;\r
uint256 availableBalance = getAvailableBalance(msg.sender);\r
require(availableBalance >= newTrustObligation, "Insufficient available XBEN balance");\r
\r
if (params.startTime != 0) {\r
require(params.startTime <= block.timestamp + MAX_FUTURE_SECONDS, "Start time cannot be more than 100 years in future");\r
if (params.startTime < block.timestamp) {\r
require(block.timestamp - params.startTime <= MAX_BACKDATE_SECONDS, "Start time cannot be more than 30 days in past");\r
}\r
}\r
}\r
\r
function _calculateEndTime(BeneficiaryParams memory params) internal pure returns (uint256) {\r
return params.startTime + (params.periodLengthInMinutes * 60 * params.totalPeriods);\r
}\r
\r
function _storeBeneficiaryConfig(BeneficiaryParams memory params, uint256 endTime) internal {\r
uint256 internalSlot = params.beneficiaryNumber - 1;\r
BeneficiaryConfig storage config = _grantorBeneficiaries[msg.sender][internalSlot];\r
uint256 totalObligation = params.amountPerPeriod * params.totalPeriods;\r
\r
config.grantor = msg.sender;\r
config.beneficiary = params.beneficiary;\r
config.amountPerPeriod = params.amountPerPeriod;\r
config.totalAmount = totalObligation;\r
config.totalClaimed = 0;\r
config.startTime = params.startTime;\r
config.endTime = endTime;\r
config.periodLengthInMinutes = params.periodLengthInMinutes;\r
config.totalPeriods = params.totalPeriods;\r
config.periodsClaimed = 0;\r
config.isIrrevocable = params.isIrrevocable == 1;\r
config.isActive = true;\r
}\r
\r
function _emitBeneficiarySetEvent(BeneficiaryParams memory params, uint256 endTime) internal {\r
emit BeneficiarySet(\r
msg.sender, \r
params.beneficiaryNumber, \r
params.beneficiary, \r
params.amountPerPeriod, \r
params.periodLengthInMinutes, \r
params.totalPeriods, \r
params.startTime, \r
endTime, \r
params.isIrrevocable == 1\r
);\r
}\r
\r
function _calculateAccruedAmounts(BeneficiaryConfig storage config) internal view returns (AccruedAmounts memory) {\r
AccruedAmounts memory accrued;\r
\r
if (block.timestamp < config.startTime) return accrued;\r
\r
uint256 currentTime = block.timestamp;\r
uint256 minutesPassed;\r
uint256 totalDurationMinutes = config.periodLengthInMinutes * config.totalPeriods;\r
\r
if (currentTime >= config.endTime) {\r
minutesPassed = totalDurationMinutes;\r
} else {\r
minutesPassed = (currentTime - config.startTime) / 60;\r
}\r
\r
accrued.totalAccrued = (config.amountPerPeriod * minutesPassed) / config.periodLengthInMinutes;\r
if (accrued.totalAccrued > config.totalAmount) accrued.totalAccrued = config.totalAmount;\r
\r
accrued.periodsElapsed = minutesPassed / config.periodLengthInMinutes;\r
if (accrued.periodsElapsed > config.totalPeriods) accrued.periodsElapsed = config.totalPeriods;\r
\r
accrued.claimableAmount = _calculateClaimableAmountOnly(config);\r
\r
return accrued;\r
}\r
\r
function _calculateNextClaimTime(BeneficiaryConfig storage config, uint256 periodsElapsed) internal view returns (uint256) {\r
if (periodsElapsed >= config.totalPeriods) return 0;\r
return config.startTime + ((config.periodsClaimed + 1) * config.periodLengthInMinutes * 60);\r
}\r
\r
function _calculateTotalObligation(address grantor) internal view returns(uint256 totalObligation) {\r
BeneficiaryConfig[MAX_BENEFICIARIES_PER_GRANTOR] storage beneficiaries = _grantorBeneficiaries[grantor];\r
\r
for(uint256 i = 0; i < MAX_BENEFICIARIES_PER_GRANTOR; i++) {\r
BeneficiaryConfig storage config = beneficiaries[i];\r
if(config.isActive) totalObligation += (config.totalAmount - config.totalClaimed);\r
}\r
}\r
\r
function _createBeneficiaryInfo(\r
BeneficiaryConfig storage config,\r
uint256 slot,\r
AccruedAmounts memory accrued,\r
uint256 periodsRemaining,\r
uint256 nextClaimTime,\r
bool isCompleted\r
) private view returns (BeneficiaryInfo memory) {\r
return BeneficiaryInfo({\r
slot: slot,\r
grantor: config.grantor,\r
beneficiary: config.beneficiary,\r
totalAmount: config.totalAmount,\r
amountPerPeriod: config.amountPerPeriod,\r
totalAccrued: accrued.totalAccrued,\r
totalClaimed: config.totalClaimed,\r
claimableAmount: accrued.claimableAmount,\r
startTime: config.startTime,\r
endTime: config.endTime,\r
periodLengthInMinutes: config.periodLengthInMinutes,\r
totalPeriods: config.totalPeriods,\r
periodsAccrued: accrued.periodsElapsed,\r
periodsClaimed: config.periodsClaimed,\r
periodsRemaining: periodsRemaining,\r
nextClaimTime: nextClaimTime,\r
isIrrevocable: config.isIrrevocable,\r
isCompleted: isCompleted,\r
isActive: config.isActive\r
});\r
}\r
\r
// ERC20 overrides\r
function transfer(address to, uint256 amount) public override returns (bool) {\r
require(amount <= getAvailableBalance(msg.sender), "Exceeds available balance");\r
return super.transfer(to, amount);\r
}\r
\r
function transferFrom(address from, address to, uint256 amount) public override returns (bool) {\r
require(amount <= getAvailableBalance(from), "Exceeds available balance");\r
return super.transferFrom(from, to, amount);\r
}\r
}"
},
"@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
"
},
"@openzeppelin/contracts/access/Ownable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
"
},
"@openzeppelin/contracts/security/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases
Submitted on: 2025-10-16 09:11:17
Comments
Log in to comment.
No comments yet.