Pool

Description:

Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "rainlink-contract-main/token/Pool.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;

import "@openzeppelin/contracts@5.0.0/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts@5.0.0/utils/Address.sol";
import "@openzeppelin/contracts@5.0.0/utils/math/Math.sol";
import {Types} from "../comn/Types.sol";
import {IToken} from "../comn/IToken.sol";
import {ComFunUtil} from "../comn/ComFunUtil.sol";
import {SafeERC20} from "../comn/SafeERC20.sol";
import {Comn} from "./Comn.sol";

/**
 * @title Pool
 * @dev This contract manages a pool of tokens. It allows users to stake tokens, withdraw tokens,
 * earn bonuses, and provides functions for pool management and fee handling.
 */
contract Pool is Comn {
    // Constant representing the pool fee rate. The value is divided by 1000000 to get the actual rate.
    uint constant POOL_FEE = 3000;

    using EnumerableSet for EnumerableSet.AddressSet;
    // Mapping from user address to the prepaid amount of native tokens (ticket).
    // It won't record how many tokens the user has; other places will handle that.
    mapping(address => uint) private _userPayTicket; // native token prepay amount ticket

    // Mapping from token address to the total remaining amount of the token in the pool.
    // The remaining token is the locked amount, and users can withdraw it.
    mapping(address => uint) private _tokenTotalRemainAmount;

    // Mapping from user address to a set of token addresses that the user has staked.
    mapping(address => EnumerableSet.AddressSet) private userStakeTokenSet;

    // Total prepaid amount of native tokens (all tickets).
    uint private allPayTicket;

    // Mapping from token address to the pool information of that token.
    mapping(address => Types.PoolInfo) public poolMap;

    // Array of token addresses representing all the pools.
    address[] public poolArr;

    // Mapping from user address to another mapping from token address to the user's staked amount information.
    mapping(address => mapping(address => Types.UserAmountInfo))
        public userStakeAmountMap;

    // Mapping from user address to another mapping from token address to the user's locked amount information.
    mapping(address => mapping(address => Types.UserAmountInfo))
        public userLockAmountMap;

    // Mapping from token address to the platform fee amount for that token.
    mapping(address => uint) public feeAmountMap;

    // Mapping from token address to the pool fee rate. The value is divided by 1000000 to get the actual rate.
    mapping(address => uint) public poolFeeMap;

    /**
     * @dev Modifier that restricts a function to be called only by the executor.
     * Throws an error if the caller is not the executor.
     */
    modifier onlyExecutor() {
        require(ExecutorAddr == msg.sender, "Must executor");
        _;
    }

    /**
     * @dev Creates a new pool for a given token.
     * Only the administrator can call this function.
     * @param token The address of the token for which the pool is to be created.
     */
    function createPool(address token) public onlyAdmin {
        // Create an instance of the IToken interface for the given token.
        IToken tokenOp = IToken(token);
        // Try to get the decimals of the token to check if it is a valid token.
        tokenOp.decimals();

        // Check if the pool for the given token already exists.
        if (poolMap[token].token != address(0)) {
            revert("already created");
        }

        // Create a new PoolInfo struct for the token.
        Types.PoolInfo memory p;
        p.token = token;
        // Add the pool information to the poolMap.
        poolMap[token] = p;

        // Add the token address to the poolArr.
        poolArr.push(token);
    }

    /**
     * @dev Removes a pool for a given token.
     * Only the administrator can call this function.
     * @param token The address of the token for which the pool is to be removed.
     */
    function removePool(address token) public onlyAdmin {
        // Check if the pool for the given token exists.
        if (poolMap[token].token == address(0)) {
            revert("Pool does not exist");
        }

        // Check if the pool has any staked tokens or locked tokens.
        if (poolMap[token].inAmount != 0 || poolMap[token].acc != 0) {
            revert("Cannot remove pool: inAmount or acc is not zero");
        }

        // Remove the token from the poolArr.
        for (uint256 i = 0; i < poolArr.length; i++) {
            if (poolArr[i] == token) {
                // Copy the last element to the current index.
                poolArr[i] = poolArr[poolArr.length - 1];
                // Remove the last element from the array.
                poolArr.pop();
                break;
            }
        }

        // Delete the pool information from the poolMap.
        delete poolMap[token];
    }

    /**
     * @dev Sets the pool fee for a given token.
     * Only the administrator can call this function.
     * @param token The address of the token for which the pool fee is to be set.
     * @param feeRate The pool fee rate. this value is divided by 1000000 to get the actual rate.
     */
    function setPoolFeeRate(address token, uint feeRate) public onlyAdmin {
        require(feeRate <= 1000000, "fee rate too high");
        poolFeeMap[token] = feeRate;
    }

    /**
     * @dev Allows a user to stake tokens into a pool.
     * @param stakeToken The address of the token to be staked.
     * @param amount The amount of tokens to be staked.
     */
    function stakeIntoPool(address stakeToken, uint amount) public payable {
        // Check if the pool for the given token exists.
        if (poolMap[stakeToken].token == address(0)) {
            revert("pool not found");
        }

        // Ensure the staked amount is greater than zero.
        require(amount > 0, "amount is zero");

        // If the token is a wrapped token (WTOKEN_ADDRESS), check if the user sent enough Ether.
        if (isWToken(stakeToken)) {
            require(
                msg.value >= amount,
                "please send enough gas, or adjust amount"
            );
        } else {
            // Transfer the tokens from the user to the contract.
            SafeERC20.safeTransferFrom(
                IToken(stakeToken),
                msg.sender,
                address(this),
                amount
            );
        }

        // Add the token to the user's staked token set.
        userStakeTokenSet[msg.sender].add(stakeToken);
        // Add the staked amount to the pool.
        _addStakeAmount(stakeToken, amount);
    }

    /**
     * @dev Allows a user to withdraw tokens from a pool.
     * @param stakeToken The address of the token to be withdrawn.
     * @param amount The amount of tokens to be withdrawn.
     */
    function withdrawFromPool(address stakeToken, uint amount) public payable {
        // Check if the pool for the given token exists.
        if (poolMap[stakeToken].token == address(0)) {
            revert("pool not found");
        }

        // Ensure the withdrawn amount is greater than zero.
        require(amount > 0, "amount is zero");

        // Remove the staked amount from the pool.
        _removeStakeAmount(stakeToken, amount);

        // If the token is a wrapped token (WTOKEN_ADDRESS), send Ether to the user.
        if (isWToken(stakeToken)) {
            Address.sendValue(payable(msg.sender), amount);
        } else {
            // Transfer the tokens from the contract to the user.
            SafeERC20.safeTransfer(IToken(stakeToken), msg.sender, amount);
        }
    }

    /**
     * @dev Allows a user to withdraw the bonus from a pool.
     * @param stakeToken The address of the token from which the bonus is to be withdrawn.
     * @param amount The amount of bonus to be withdrawn.
     */
    function withdrawBonusFromPool(address stakeToken, uint amount) public {
        // Check if the pool for the given token exists.
        if (poolMap[stakeToken].token == address(0)) {
            revert("pool not found");
        }

        require(amount > 0, "amount is zero");
        address user = msg.sender;

        // Calculate the bonus amount.
        uint bonus = calBonusFromPool(user, stakeToken);
        require(bonus > 0, "bonus is zero");

        // If there is a bonus, proceed with the withdrawal.
        emit Types.Log("wd bonus", bonus);
        // Reset the bonus information.
        _resetBonus(stakeToken, amount);

        // Decrease the total amount in the pool.
        poolMap[stakeToken].inAmount -= amount;

        // If the token is a wrapped token (WTOKEN_ADDRESS), send Ether to the user.
        if (isWToken(stakeToken)) {
            Address.sendValue(payable(user), amount);
        } else {
            // Transfer the tokens from the contract to the user.
            SafeERC20.safeTransfer(IToken(stakeToken), user, amount);
        }
    }

    /**
     * @dev Allows the executor to transfer tokens from the pool to a destination address.
     * @param destToken The address of the token to be transferred.
     * @param toWho The address of the recipient.
     * @param allAmount The total amount of tokens to be transferred.
     */
    function transferFromPool(
        address destToken,
        address toWho,
        uint allAmount
    ) public payable onlyExecutor {
        // Calculate the LP fee.
        uint lp_fee = getLpFee(destToken, allAmount);
        // Calculate the actual amount to be transferred after deducting the fee.
        uint amount = allAmount - lp_fee;
        if (isWToken(destToken)) {
            Address.sendValue(payable(toWho), amount);
        } else {
            SafeERC20.safeTransfer(IToken(destToken), toWho, amount);
        }

        // Calculate the pool fee.
        uint pool_fee = Math.mulDiv(
            lp_fee,
            poolMap[destToken].amount,
            poolMap[destToken].inAmount
        );

        // Calculate the decrease in the staked amount.
        uint stakedDecrease = (allAmount * poolMap[destToken].amount) /
            poolMap[destToken].inAmount;
        require(
            stakedDecrease <= poolMap[destToken].amount,
            "pool amount insufficient for transfer"
        );

        // Decrease the staked amount in the pool.
        poolMap[destToken].amount -= stakedDecrease;
        // Decrease the total amount in the pool.
        poolMap[destToken].inAmount -= allAmount;
        // Return the remaining pool fee
        poolMap[destToken].inAmount += (lp_fee - pool_fee);

        // Get a reference to the pool information.
        Types.PoolInfo storage poolInfo = poolMap[destToken];
        // If there is a staked amount in the pool, update the reward amount and APY.
        if (poolInfo.stakeAmount > 0) {
            poolInfo.rewardAmount += pool_fee;
            if (pool_fee > 0 && poolInfo.stakeAmount > 0) {
                uint acc_percentage = (pool_fee * (1 << 64)) /
                    poolInfo.stakeAmount;
                emit Types.Log("acc_percentage", acc_percentage);
                poolInfo.acc += acc_percentage;
                // cal the apy
                if (poolInfo.last_receive_rewards_time == 0) {
                    poolInfo.last_apy = acc_percentage;
                    poolInfo.last_receive_rewards_time = ComFunUtil
                        .currentTimestamp();
                } else {
                    uint now_secs = ComFunUtil.currentTimestamp();
                    uint delta = now_secs - poolInfo.last_receive_rewards_time;
                    if (delta > 0) {
                        poolInfo.last_apy =
                            (acc_percentage * 365 * 24 * 60 * 60) /
                            delta;
                        poolInfo.last_receive_rewards_time = now_secs;
                    }
                }
            }
        }
    }

    /**
     * @dev Calculates the bonus amount for a user in a given pool.
     * @param user The address of the user.
     * @param stakeToken The address of the token in the pool.
     * @return The calculated bonus amount.
     */
    function calBonusFromPool(
        address user,
        address stakeToken
    ) public view returns (uint) {
        // Get the user's staked amount information.
        Types.UserAmountInfo memory uInfo = userStakeAmountMap[user][
            stakeToken
        ];
        // Calculate the new reward.
        uint newReward = (uInfo.amount * poolMap[stakeToken].acc) >> 64;
        // Calculate the total bonus.
        return newReward + uInfo.remainReward - uInfo.debt;
    }

    /**
     * @dev Calculates the LP fee for a given token and amount.
     * @param token The address of the token.
     * @param amount The amount of tokens.
     * @return The calculated LP fee.
     */
    function getLpFee(address token, uint amount) public view returns (uint) {
        uint feeRate = poolFeeMap[token];
        uint pool_fee_all = Math.mulDiv(amount, feeRate, 1000000);
        return pool_fee_all;
    }

    /**
     * @dev Retrieves the pool information for a given token.
     * @param stakeToken The address of the token.
     * @return The pool information struct.
     */
    function getPoolInfo(
        address stakeToken
    ) public view returns (Types.PoolInfo memory) {
        return poolMap[stakeToken];
    }

    /**
     * @dev Retrieves the information of all pools.
     * @return rs An array of pool information structs.
     */
    function getAllPoolsInfo()
        public
        view
        returns (Types.PoolInfo[] memory rs)
    {
        rs = new Types.PoolInfo[](poolArr.length);
        for (uint i = 0; i < poolArr.length; i++) {
            rs[i] = poolMap[poolArr[i]];
        }
    }

    /**
     * @dev Retrieves the staked information of all tokens for a given user.
     * @param user The address of the user.
     * @return An array of user staked amount information structs for view.
     */
    function getAllUserStakeInfo(
        address user
    ) public view returns (Types.UserAmountInfoForViewV2[] memory) {
        // Get the user's staked token set.
        EnumerableSet.AddressSet storage stakeSet = userStakeTokenSet[user];
        // Get the number of staked tokens.
        uint len = stakeSet.length();
        // Create an array to store the user staked amount information for view.
        Types.UserAmountInfoForViewV2[]
            memory uai = new Types.UserAmountInfoForViewV2[](len);
        // Get the array of staked token addresses.
        address[] memory values = stakeSet.values();
        for (uint i = 0; i < len; i++) {
            // Get the address of the staked token.
            address stakeToken = values[i];
            // Calculate the bonus amount.
            uint bonus = calBonusFromPool(user, stakeToken);
            // Get the user's staked amount information.
            Types.UserAmountInfo memory userStakeInfo = userStakeAmountMap[
                user
            ][stakeToken];
            // Populate the array with the user staked amount information for view.
            uai[i] = Types.UserAmountInfoForViewV2({
                token: userStakeInfo.token,
                amountType: userStakeInfo.amountType,
                amount: userStakeInfo.amount,
                debt: userStakeInfo.debt,
                remainReward: userStakeInfo.remainReward,
                acc: poolMap[stakeToken].acc,
                bonus: bonus,
                earns: bonus
            });
        }

        return uai;
    }

    /**
     * @dev Checks if a given token is a wrapped token (WTOKEN_ADDRESS).
     * @param token The address of the token.
     * @return A boolean indicating whether the token is a wrapped token.
     */
    function isWToken(address token) public pure returns (bool) {
        return token == WTOKEN_ADDRESS;
    }

    /**
     * @dev Allows a user to send Ether as a fee for a given token.
     * @param stakeToken The address of the token.
     */
    function sendEthFee(address stakeToken) public payable {
        // Get the amount of Ether sent.
        uint amount = msg.value;
        // Add the locked amount to the pool.
        _addLockAmount(stakeToken, amount);
    }

    /**
     * @dev Allows a user to send tokens as a fee.
     * @param token The address of the token.
     * @param amount The amount of tokens to be sent.
     */
    function sendTokenFee(address token, uint amount) public {
        // Check if the pool for the given token exists.
        require(poolMap[token].token != address(0), "pool not found");

        // Transfer the tokens from the user to the contract.
        SafeERC20.safeTransferFrom(
            IToken(token),
            msg.sender,
            address(this),
            amount
        );
        // Add the locked amount to the pool.
        _addLockAmount(token, amount);
    }

    /**
     * @dev Allows the executor to transfer the fee to a relay address.
     * @param token The address of the token.
     * @param relay The address of the relay.
     * @param amount The amount of tokens to be transferred.
     */
    function transferFeeToRelay(
        address token,
        address relay,
        uint amount
    ) public onlyExecutor {
        // Decrease the total amount in the pool.
        poolMap[token].inAmount -= amount;
        // Decrease the locked amount in the pool.
        poolMap[token].lockAmount -= amount;
        // Transfer the tokens from the contract to the relay.
        SafeERC20.safeTransfer(IToken(token), relay, amount);
    }

    /**
     * @dev Adds the staked amount to the pool and updates the user's staked amount information.
     * @param token The address of the token.
     * @param amount The amount of tokens to be staked.
     */
    function _addStakeAmount(address token, uint amount) private {
        poolMap[token].amount += amount;
        poolMap[token].inAmount += amount;
        poolMap[token].stakeAmount += amount;
        address user = msg.sender;

        // Check if this is the first time the user stakes this token.
        if (userStakeAmountMap[user][token].token == address(0)) {
            // If it's the first time, initialize the token and set the amount type to 1 (stake value).
            userStakeAmountMap[user][token].token = token;
            userStakeAmountMap[user][token].amountType = 1;
        }

        // Increase the user's staked amount.
        userStakeAmountMap[user][token].amount += amount;
        // Calculate the new debt based on the staked amount and the current accumulated value.
        uint newDebt = (amount * poolMap[token].acc) >> 64;
        // Increase the user's debt.
        userStakeAmountMap[user][token].debt += newDebt;
    }

    /**
     * @dev Removes the staked amount from the pool and updates the user's staked amount information.
     * Also calculates and updates the user's remaining reward.
     * @param token The address of the token.
     * @param amount The amount of tokens to be removed from the stake.
     */
    function _removeStakeAmount(address token, uint amount) private {
        address user = msg.sender;
        uint userAllAmount = userStakeAmountMap[user][token].amount;
        require(amount <= userAllAmount, "not enough user assets");
        userStakeAmountMap[user][token].amount -= amount;

        require(amount <= poolMap[token].inAmount, "not enough pool assets");
        require(
            amount <= poolMap[token].stakeAmount,
            "not enough pool stakeAmount assets"
        );

        uint userStakeRatio = (userAllAmount * 1e18) /
            poolMap[token].stakeAmount;
        uint withdrawRatio = (amount * 1e18) / userAllAmount;
        uint stakedDecrease = (poolMap[token].amount * userStakeRatio) / 1e18;
        stakedDecrease = (stakedDecrease * withdrawRatio) / 1e18;
        require(
            stakedDecrease <= poolMap[token].amount,
            "pool amount insufficient for withdrawal"
        );

        poolMap[token].amount -= stakedDecrease;
        poolMap[token].inAmount -= amount;
        poolMap[token].stakeAmount -= amount;

        // Calculate the new reward based on the withdrawn amount and the current accumulated value.
        uint newReward = (amount * poolMap[token].acc) >> 64;
        uint partDebt = (userStakeAmountMap[user][token].debt * amount) /
            userAllAmount;
        if (newReward > partDebt) {
            userStakeAmountMap[user][token].remainReward +=
                newReward -
                partDebt;
        }

        // Decrease the user's debt.
        userStakeAmountMap[user][token].debt -= partDebt;
    }

    /**
     * @dev Adds the locked amount to the pool and updates the fee amount map.
     * @param token The address of the token.
     * @param amount The amount of tokens to be locked.
     */
    function _addLockAmount(address token, uint amount) private {
        // Increase the total amount in the pool.
        poolMap[token].inAmount += amount;
        // Increase the locked amount in the pool.
        poolMap[token].lockAmount += amount;
        // Increase the platform fee amount for the token.
        feeAmountMap[token] += amount;
    }

    /**
     * @dev Resets the user's bonus information after a bonus withdrawal.
     * @param token The address of the token.
     * @param amount_ The amount of bonus to be withdrawn.
     */
    function _resetBonus(address token, uint amount_) private {
        address user = msg.sender;
        uint amount = userStakeAmountMap[user][token].amount;
        uint newDebt = (amount * poolMap[token].acc) >> 64;

        // Calculate the total reward the user has earned.
        uint totalReward = newDebt -
            userStakeAmountMap[user][token].debt +
            userStakeAmountMap[user][token].remainReward;
        // Check if the user has enough reward.
        require(totalReward >= amount_, "not enough reward");
        uint newReward = totalReward - amount_;

        // Update the user's remaining reward and debt.
        userStakeAmountMap[user][token].remainReward = newReward;
        userStakeAmountMap[user][token].debt = newDebt;
    }
}
"
    },
    "rainlink-contract-main/token/Comn.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;

import "../BaseComn.sol";

/**
 * @title all sol extends from this
 * @dev Extends BaseComn with additional address constants
 */
abstract contract Comn is BaseComn {
    // xone
    address constant WTOKEN_ADDRESS = address(0x912A11C41d0D79c8466574d4C03cE68990dB713B);
    address constant PoolAddr = address(0x52D4C1A6A69274afEe28C1A85e083357a9a1ffb2);
    address constant ExecutorAddr = address(0x0D193a0B5f6Dc2f7c579219067DcD00df67241a1);
    address constant MessagerAddr = address(0x46CE5d59b7aFfd84f97D4868814AF2cb7c9133d1);

    // tbsc
    // address constant WTOKEN_ADDRESS = address(0xae13d989daC2f0dEbFf460aC112a837C89BAa7cd);
    // address constant PoolAddr = address(0x38f9c465128F3139Ca70707eA7232568aC89C42B);
    // address constant ExecutorAddr = address(0xc8C4087c56B47e4658F54b925aF607118D461798);
    // address constant MessagerAddr = address(0xF2B99D50bdb83110aBf94cA7cD98057E95302D83);

    // sepolia
    // address constant WTOKEN_ADDRESS = address(0xfFf9976782d46CC05630D1f6eBAb18b2324d6B14);
    // address constant PoolAddr = address(0x5Dab805f174FA4e66aeE1947978e055C61e16AB2);
    // address constant ExecutorAddr = address(0x3B43c5B5c83b683ecE682e4ed8a75ec81BB55248);
    // address constant MessagerAddr = address(0xb2E08E9840Cd02dE0002189BBd2Bc24333a7c9D2);

    // nile
    // address constant WTOKEN_ADDRESS = address(0xfb3b3134F13CcD2C81F4012E53024e8135d58FeE); //TYsbWxNnyTgsZaTFaue9hqpxkU3Fkco94a
    // address constant PoolAddr = address(0x273Ea2807918A51D7e4D0E47779365391105eFa4); //TDYiPUqKWvFSu3qpgTP4ctNXPQqaxPnJXp
    // address constant ExecutorAddr = address(0x7b6229abeE4D531D7ae82b00f5b8F52D0a5764EB); //TMDbi88CTghZj88NbGKn4NPnzWptrH453B
    // address constant MessagerAddr = address(0x181Ff0aEd1d4a5829936322363D992D570c8f0c3); //TCAmUuRamPsA5m862JQUpDaJkDTGznpV6y
}
"
    },
    "rainlink-contract-main/comn/SafeERC20.sol": {
      "content": "// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.20;
import "@openzeppelin/contracts@5.0.0/token/ERC20/IERC20.sol";

library SafeERC20 {
    // mainnet:0xa614f803B6FD780986A42c78Ec9c7f77e6DeD13C
    address constant USDTAddr = 0xa614f803B6FD780986A42c78Ec9c7f77e6DeD13C;
    
    function safeIncreaseAllowance(IERC20 token, address to, uint value) internal {
        uint newAllowance = token.allowance(address(this), to) + value;
        safeApprove(token, to, newAllowance);
    }
    
    function safeApprove(IERC20 token, address to, uint value) internal {
        // bytes4(keccak256(bytes('approve(address,uint256)')));
        (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(0x095ea7b3, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: APPROVE_FAILED');
    }

    function safeTransfer(IERC20 token, address to, uint value) internal {
        // bytes4(keccak256(bytes('transfer(address,uint256)')));
        (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(0xa9059cbb, to, value));
        if (address(token) == USDTAddr && success) {
            return;
        }
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FAILED');
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint value) internal {
        // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
        (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(0x23b872dd, from, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FROM_FAILED');
    }
}
"
    },
    "rainlink-contract-main/comn/ComFunUtil.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;

import {Types} from "./Types.sol";

library ComFunUtil {
    function isNotEmpty(address ad, string memory msgs) private pure {
        require(ad != address(0), msgs);
    }

    function isNotEmpty(uint ad, string memory msgs) private pure {
        require(ad != 0, msgs);
    }

    function combainChain(
        Types.Chain memory chain_
    ) internal pure returns (uint72) {
        uint72 c = chain_.chain_id;
        // must use uint72 to avoid u8 overflow
        uint72 chain_type = chain_.chain_type;
        c += chain_type << 64;
        return c;
    }

    function splitChain(uint a1) internal pure returns (Types.Chain memory c) {
        c.chain_id = uint64(a1);
        c.chain_type = uint8(a1 >> 64);
    }

    function addressToBytes32(address a) internal pure returns (bytes32 b) {
        return bytes32(uint(uint160(a)));
    }

    function bytes32ToAddress(bytes32 a) internal pure returns (address b) {
        return address(uint160(uint(a)));
    }

    function hexStr2bytes32(string memory data) internal pure returns (bytes32) {
        return bytes2bytes32(hexStr2bytes(data));
    }

    function bytes2bytes32(bytes memory data) internal pure returns (bytes32) {
        uint len = data.length;
        if (len > 32) {
            revert("data len is overflow 32");
        }

        uint rs = 0;
        for (uint i = 0; i < len; i++) {
            rs = rs << 8;
            rs += uint8(data[i]);
        }

        return bytes32(rs);
    }

    // convert hex string to bytes
    function hexStr2bytes(
        string memory data
    ) internal pure returns (bytes memory) {
        bytes memory a = bytes(data);
        if (a.length % 2 != 0) {
            revert("hex string len is invalid");
        }
        uint8[] memory b = new uint8[](a.length);

        for (uint i = 0; i < a.length; i++) {
            uint8 _a = uint8(a[i]);

            if (_a > 96) {
                b[i] = _a - 97 + 10;
            } else if (_a > 66) {
                b[i] = _a - 65 + 10;
            } else {
                b[i] = _a - 48;
            }
        }

        bytes memory c = new bytes(b.length / 2);
        for (uint _i = 0; _i < b.length; _i += 2) {
            c[_i / 2] = bytes1(b[_i] * 16 + b[_i + 1]);
        }

        return c;
    }

    function stringConcat(
        string memory a,
        string memory b,
        bytes memory d
    ) internal pure returns (string memory) {
        bytes memory a1 = bytes(a);
        bytes memory a2 = bytes(b);
        bytes memory a3;
        a3 = new bytes(a1.length + a2.length + d.length);
        uint k = 0;
        for (uint i = 0; i < a1.length; i++) {
            a3[k++] = a1[i];
        }

        for (uint i = 0; i < d.length; i++) {
            a3[k++] = d[i];
        }

        for (uint i = 0; i < a2.length; i++) {
            a3[k++] = a2[i];
        }

        return string(a3);
    }

    function currentTimestamp() internal view returns (uint256) {
        return block.timestamp;
    }
}
"
    },
    "rainlink-contract-main/comn/IToken.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;

import "@openzeppelin/contracts@5.0.0/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts@5.0.0/token/ERC20/extensions/IERC20Metadata.sol";

interface IToken is IERC20, IERC20Metadata {
    function isMinter(address addr) external pure returns (bool);
    function mintFor(address account, uint256 amount) external;
    function burnFor(address account, uint256 amount) external;
}"
    },
    "rainlink-contract-main/comn/Types.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;

// all data in this file we should remain static.
// as this file may be used when create empty StoreHouse. to avoid any data not being initialized. we should keet it static.

library Types {
    event Log(string);
    event Log(string, bytes);
    event Log(uint);
    event Log(string, uint);
    event Log(string, bytes32);
    event Log(string, bytes32, uint);
    event Log(string, address);

    struct PoolInfo {
        address token;
        uint amount; // actual remain amount.
        uint inAmount; // all in token = all in lock amount + all in stake amount.
        uint lockAmount; // actual locked by contract
        uint stakeAmount; // actual user stake into contract.
        uint rewardAmount; // reward for staker, will used in future. now all reward will added to stake amount.
        uint acc; // Q64.64
        uint last_apy; // Q64.64
        uint last_receive_rewards_time;
    }

    enum AmountType {
        locked,
        staked
    }

    enum TokenType {
        pool,
        mint
    }

    struct UserAmountInfo {
        address token;
        uint8 amountType; // 0 locked value. 1 staked value.
        uint amount;
        uint debt;
        uint remainReward;
        // for locked user. all amount = amount
        // for stake user all amount = amount*acc - debt + amount + remainReward
    }

    // for front end.
    struct UserAmountInfoForView {
        address token;
        uint8 amountType; // 0 locked value. 1 staked value.
        uint amount;
        uint debt;
        uint remainReward;
        uint acc;
        uint bonus;
        // for locked user. all amount = amount
        // for stake user all amount = amount*acc - debt + amount + remainReward
    }

    // for front end.
    struct UserAmountInfoForViewV2 {
        address token;
        uint8 amountType; // 0 locked value. 1 staked value.
        uint amount;
        uint debt;
        uint remainReward;
        uint acc;
        uint bonus;
        // for locked user. all amount = amount
        // for stake user all amount = amount*acc - debt + amount + remainReward
        uint earns;
    }

    struct FromSource {
        uint source_chain_id;
        bytes32 source_token;
    }

    struct RelationShipInfo {
        address dest_token;
        uint8 dest_token_type; // 0 for pool, 1 for new mint
    }

    struct SourceTokenInfo {
        uint8 initialized;
        uint8 decimals; // record the decimals for source token
    }

    struct CrossRelation {
        uint source_chain_id;
        bytes32 source_token;
        uint8 source_token_decimals;
        address dest_token;
        uint8 dest_token_type;
    }

    struct MessageMeta {
        // BridgeMessage bridgeMsg;
        // // other fields
        uint8 status; //
        uint[4] reserves;
    }

    struct Chain {
        uint8 chain_type;
        uint64 chain_id;
    }

    enum ChainType {
        ETH,
        TRX,
        SOL
    }

    struct Message {
        MessageHeader msg_header;
        bytes msg_body;
    }

    struct MessageHeader {
        uint8 msg_type; // 0 means bridge message
        uint64 nonce;
        Chain from_chain; //
        bytes32 sender;
        // address messager;
        Chain to_chain; //
        bytes32 receiver;
        uint128 upload_gas_fee;
    }

    struct BridgeMessageBody {
        // body
        bytes32 source_token;
        uint128 all_amount;
        // uint amount;
        // uint platform_fee;

        // uint upload_fee_price; // all amount = amount + platform_fee + upload_gas_fee * upload_fee_price
        bytes32 from_who;
        bytes32 to_who;
        bytes biz_data;
        // uint slipage;
    }

    struct ERC20Permit {
        address owner;
        address spender;
        uint256 value;
        uint256 deadline;
        uint8 v;
        bytes32 r;
        bytes32 s;
    }

    struct UserWithdrawData {
        address token;
        uint amount; // uni decimal.
        // string symbol;
    }

    struct UserWithdrawDataDetail {
        address token;
        string symbol;
        string name;
        uint8 decimal;
        uint amount;
    }

    struct ErrorObj {
        uint key;
        uint error_type;
        string sMsg;
        uint cMsg;
        bytes bMsg;
        string desc; // description
    }
}
"
    },
    "@openzeppelin/contracts@5.0.0/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "@openzeppelin/contracts@5.0.0/utils/Address.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}
"
    },
    "@openzeppelin/contracts@5.0.0/utils/structs/EnumerableSet.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32S

Tags:
ERC20, Proxy, Swap, Upgradeable, Factory|addr:0xa31c1a091f43b645a639e17ae8f42cbd822314bd|verified:true|block:23396464|tx:0x1aeced387c4783d8d5ff166b96e847693fe75b3bb982cef6a4e9e6063ccc3f3e|first_check:1758280142

Submitted on: 2025-09-19 13:09:04

Comments

Log in to comment.

No comments yet.