DelegateFactory

Description:

Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "contracts/DelegateFactory.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "./Delegate_n.sol";
import "./IDelegate_n.sol";

// The Delegate Factory creates delegates (i.e. smart contracts) 
// It takes commands from the AI passes them through to each delegate 
// Its functions can only be called by the 2/3-MultiSig or a designated EOA
//      Note: The designated EOA starts as the deployer address, but this can be changed by the 2/3-MultiSig

contract DelegateFactory {
    address public initialAuthorizedSigner;
    address public multisigTwothird;
    address public deployer;
    address[] public allDelegates;

    event DelegateDeployed(address indexed delegateAddress);
    event DeployerChanged(address indexed oldDeployer, address indexed newDeployer);

    constructor(address _multisigTwothird, address _initialAuthorizedSigner) {
        require(_multisigTwothird != address(0), "Invalid multisig");
        multisigTwothird = _multisigTwothird;
        initialAuthorizedSigner = _initialAuthorizedSigner;
        deployer = msg.sender;
    }

    // Both the 2/3-MultiSig and (designated) admin EOA can call these functions
    modifier onlyOwner() {
        require(
            msg.sender == multisigTwothird || msg.sender == deployer,
            "Only deployer or multisig"
        );
        _;
    }

    // Only the 2/3-MultiSig can designate a new admin EOA
    function changeDeployer(address newDeployer) external {
        require(msg.sender == multisigTwothird, "Only multisig can change deployer");
        require(newDeployer != address(0), "Invalid deployer");
        address oldDeployer = deployer;
        deployer = newDeployer;
        emit DeployerChanged(oldDeployer, newDeployer);
    }

    // Creates new delegates (i.e. smart contracts) as defined by Delegate_n.sol
    function createDelegate() external returns (address) {
        Delegate_n delegate = new Delegate_n(address(this), multisigTwothird, initialAuthorizedSigner);
        allDelegates.push(address(delegate));
        emit DelegateDeployed(address(delegate));
        return address(delegate);
    }

    // Etherscan viewable function showing the addresses of all delegates
    // under control by the Delegate Factory
    function getAllDelegates() external view returns (address[] memory) {
        return allDelegates;
    }

    // ================== BATCH VOTING ==================

    // This enum helps our functions easily know which DAO we are commanding our 
    // delegates to cast votes on. This is more efficient and error-resistant than
    // string or address comparisons
    enum DaoType { Uniswap, Sky, OZ, Optimism, Gnosis }

    // Whenever we have a batch of votes we want different delegates to cast on 
    // different DAOs, we organize these voting instructions into the following struct
    struct VoteInstruction {
        address delegate;
        DaoType daoType;
        address target; // governor/Chief
        uint256 proposalId; // for Uniswap/OZ/OP
        uint8 support; // for Uniswap/OZ/OP
        string reason; // optional for Uniswap/OZ
        address[] yays; // for Sky only
    }

    // Whenever the AI (or our 2/3-MultiSig) wants to execute voting decisions, we organize
    // them all into a batch so that they can all fit in one transaction (and save gas costs)
    function batchVote(VoteInstruction[] calldata instructions) external onlyOwner {
        for (uint256 i = 0; i < instructions.length; i++) {
            VoteInstruction calldata v = instructions[i];
            IDelegate_n delegate = IDelegate_n(v.delegate);

            if (v.daoType == DaoType.Uniswap) {
                if (bytes(v.reason).length > 0) {
                    delegate.castVoteWithReasonUniswap(v.target, v.proposalId, v.support, v.reason);
                } else {
                    delegate.castVoteUniswap(v.target, v.proposalId, v.support);
                }
            } else if (v.daoType == DaoType.OZ) {
                if (bytes(v.reason).length > 0) {
                    delegate.castVoteWithReasonOZ(v.target, v.proposalId, v.support, v.reason);
                } else {
                    delegate.castVoteOZ(v.target, v.proposalId, v.support);
                }
            } else if (v.daoType == DaoType.Sky) {
                delegate.voteSky(v.target, v.yays);
            } else if (v.daoType == DaoType.Optimism) {
                // We might need to add voting logic here in the future for OP-based DAOs (rare)
            } else if (v.daoType == DaoType.Gnosis) {
                if (bytes(v.reason).length > 0) {
                    delegate.castVoteWithReasonGnosis(v.target, v.proposalId, v.support, v.reason);
                } else {
                    delegate.castVoteGnosis(v.target, v.proposalId, v.support);
                }
            } else {
                revert("Unknown DAO type");
            }
        }
    }
}
"
    },
    "contracts/Delegate_n.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "../lib/openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol";
import "../lib/openzeppelin-contracts/contracts/interfaces/IERC1271.sol";
import "../lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol";

// ========== INTERFACES ==========
// Interfaces are meant to hold the functions that are defined by the rsp. Governor contracts
// We split up the interfaces by DAO (incl. Governor contract and Token contract)
// The token contract defines how the delegation functions are syntaxed 
// The governor contract defines how the vote-casting functions are syntaxed

// --- Uniswap ---
interface IUniswapGovernorBravo {
    function castVote(uint256 proposalId, uint8 support) external returns (uint256);
    function castVoteWithReason(uint256 proposalId, uint8 support, string calldata reason) external returns (uint256);
    function castVoteBySig(uint256 proposalId, uint8 support, uint8 v, bytes32 r, bytes32 s) external returns (uint256);
}
interface IUniToken {
    function delegate(address delegatee) external;
    function transfer(address to, uint256 amount) external returns (bool);
}

// --- Sky DAO ---
interface ISkyChief {
    function vote(address[] calldata yays) external;
}
interface ISkyToken {
    function delegate(address delegatee) external;
    function transfer(address to, uint256 amount) external returns (bool);
}

// --- OpenZeppelin Governor (This is our SimulatorDAO on Sepolia) ---
interface IOpenZeppelinGovernor {
    function castVote(uint256 proposalId, uint8 support) external returns (uint256);
    function castVoteWithReason(uint256 proposalId, uint8 support, string calldata reason) external returns (uint256);
}
interface IOZToken {
    function delegate(address delegatee) external;
    function transfer(address to, uint256 amount) external returns (bool);
}

// --- Gnosis DAO ---
interface IGnosisGovernor {
    function castVote(uint256 proposalId, uint8 support) external returns (uint256);
    function castVoteWithReason(uint256 proposalId, uint8 support, string calldata reason) external returns (uint256);
}
interface IGnosisToken {
    function delegate(address delegatee) external;
    function transfer(address to, uint256 amount) external returns (bool);
}

// ========== MAIN CONTRACT ==========
// This delegate contract should only have its functions called by:
//      - 2/3-MultiSig (Master)
//      - DelegateFactory.sol (Master unless blocked by 2/3-MultiSig)

contract Delegate_n is IERC1271, ReentrancyGuard {
    mapping(address => bool) public isAuthorizedSigner;
    address public immutable factory;
    address public immutable multisigTwothird;
    bool public factoryBlocked;

    // Both the Delegate Factory and 2/3-MultiSig can call the functions with this modifier
    // unless the 2/3-MultiSig has blocked the Delegate Factory (and thereby blocked the AI)
    modifier onlyFactoryOrMultisig() {
        if (factoryBlocked) {
            require(msg.sender == multisigTwothird, "Blocked: Only multisig");
        } else {
            require(msg.sender == factory || msg.sender == multisigTwothird, "Only factory or multisig");
        }
        _;
    }

    // Used only for the block/unblocking function, which should only be callable by
    // the Delegate Factory (which receives commands by the AI)
    modifier onlyMultisig() {
        require(msg.sender == multisigTwothird, "Only multisig");
        _;
    }

    constructor(address _factory, address _multisigTwothird, address _initialAuthorizedSigner) {
        require(_factory != address(0), "Invalid factory");
        require(_factory.code.length > 0, "Factory must be contract");
        require(_multisigTwothird != address(0), "Invalid multisig");
        require(_initialAuthorizedSigner != address(0), "Invalid signer");

        factory = _factory;
        multisigTwothird = _multisigTwothird;
        // Authorize the initial signer
        isAuthorizedSigner[_initialAuthorizedSigner] = true;
    }

    // ========== Change the authorized signer for Offchain Voting ==========
    event AuthorizedSignerAdded(address signer);
    event AuthorizedSignerRemoved(address signer);
    event FactoryBlocked();
    event FactoryUnblocked();
    event VoteCast(address indexed governor, uint256 proposalId, uint8 support, string reason);
    event BatchExecuted(uint256 callsExecuted);

    function addAuthorizedSigner(address signer) external onlyMultisig {
        require(signer != address(0), "Zero address");
        isAuthorizedSigner[signer] = true;
        emit AuthorizedSignerAdded(signer);
    }
    function removeAuthorizedSigner(address signer) external onlyMultisig {
        isAuthorizedSigner[signer] = false;
        emit AuthorizedSignerRemoved(signer);
    }


    // ========== BLOCK/UNBLOCK FACTORY ==========
    // Both the 2/3-MultiSig and Delegate Factory have access to the delegation/vote casting functions
    // Unless the Delegate Factory is blocked by the 2/3-MultiSig
    // This can happen if we do not want the AI to engage in unilateral vote casting decision making

    function blockFactory() external onlyMultisig {
        factoryBlocked = true;
        emit FactoryBlocked();
    }
    function unblockFactory() external onlyMultisig {
        factoryBlocked = false;
        emit FactoryUnblocked();
    }

    // ========== VOTE CASTING / DELEGATION ===========
    // Now we use the interfaces to connect the vote-casting commands by the 
    // AI to the correct syntax used by the Governor contract of the respective DAO

    // ========== UNISWAP ==========

    function castVoteUniswap(address governor, uint256 proposalId, uint8 support) external onlyFactoryOrMultisig {
        IUniswapGovernorBravo(governor).castVote(proposalId, support);
        emit VoteCast(governor, proposalId, support, "");
    }

    function castVoteWithReasonUniswap(address governor, uint256 proposalId, uint8 support, string calldata reason) external onlyFactoryOrMultisig {
        IUniswapGovernorBravo(governor).castVoteWithReason(proposalId, support, reason);
        emit VoteCast(governor, proposalId, support, reason);
    }

    function castVoteBySigUniswap(address governor, uint256 proposalId, uint8 support, uint8 v, bytes32 r, bytes32 s) external onlyFactoryOrMultisig {
        IUniswapGovernorBravo(governor).castVoteBySig(proposalId, support, v, r, s);
    }

    function delegateUni(address uniToken, address delegatee) external onlyFactoryOrMultisig {
        IUniToken(uniToken).delegate(delegatee);
    }

    // ========== SKY DAO ==========

    function voteSky(address chief, address[] calldata yays) external onlyFactoryOrMultisig {
        ISkyChief(chief).vote(yays);
    }

    function delegateSky(address skyToken, address delegatee) external onlyFactoryOrMultisig {
        ISkyToken(skyToken).delegate(delegatee);
    }

    // ========== OPENZEPPELIN GOVERNOR ==========

    function castVoteOZ(address governor, uint256 proposalId, uint8 support) external onlyFactoryOrMultisig {
        IOpenZeppelinGovernor(governor).castVote(proposalId, support);
        emit VoteCast(governor, proposalId, support, "");
    }

    function castVoteWithReasonOZ(address governor, uint256 proposalId, uint8 support, string calldata reason) external onlyFactoryOrMultisig {
        IOpenZeppelinGovernor(governor).castVoteWithReason(proposalId, support, reason);
        emit VoteCast(governor, proposalId, support, reason);
    }

    function delegateOZ(address ozToken, address delegatee) external onlyFactoryOrMultisig {
        IOZToken(ozToken).delegate(delegatee);
    }

    // ========== GNOSIS DAO ==========

    function castVoteGnosis(address governor, uint256 proposalId, uint8 support) external onlyFactoryOrMultisig {
        IGnosisGovernor(governor).castVote(proposalId, support);
        emit VoteCast(governor, proposalId, support, "");
    }

    function castVoteWithReasonGnosis(address governor, uint256 proposalId, uint8 support, string calldata reason) external onlyFactoryOrMultisig {
        IGnosisGovernor(governor).castVoteWithReason(proposalId, support, reason);
        emit VoteCast(governor, proposalId, support, reason);
    }

    function delegateGnosis(address gnosisToken, address delegatee) external onlyFactoryOrMultisig {
        IGnosisToken(gnosisToken).delegate(delegatee);
    }

    // ========== OFF-CHAIN VOTING ========================
    // This function needs to be present because e.g. Snapshot will call this function 
    // on our smart contract to verify the signature, so we need to have it here
    function isValidSignature(
        bytes32 hash,
        bytes memory signature
    ) public view override returns (bytes4) {
        address signer = ECDSA.recover(hash, signature);
        if (isAuthorizedSigner[signer]) {
            return 0x1626ba7e;
        } else {
            return 0x00000000;
        }
    }

    // ========== SINGLE TOKEN TRANSFER FUNCTION ==========
    // In case this delegate receives tokens, it can later transfer them to someone else

    function transferToken(address token, address to, uint256 amount) external onlyFactoryOrMultisig {
        require(token != address(0) && to != address(0), "Zero address");
        // Works for any ERC20, revert if fails
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(
            bytes4(keccak256("transfer(address,uint256)")),
            to, amount
        ));
        require(success && (data.length == 0 || abi.decode(data, (bool))), "Transfer failed");
    }

    // ========== ARBITRARY EXECUTION FUNCTION ==========

    /**
    * @notice Execute multiple arbitrary function calls on target contracts, with optional ETH for each
    * @dev Only callable by factory or multisig. All calls are made in order and revert if any fail.
    * @param targets The contracts to call
    * @param data The calldata (function selector + arguments) for each call
    * @param values Amounts of ETH to send with each call
    * @return results Return data from each call
    */
    function manageBatch(
        address[] calldata targets,
        bytes[] calldata data,
        uint256[] calldata values
    )
        external
        onlyFactoryOrMultisig
        nonReentrant
        returns (bytes[] memory results)
    {
        require(
            targets.length == data.length && targets.length == values.length,
            "Array length mismatch"
        );
        results = new bytes[](targets.length);
        for (uint256 i = 0; i < targets.length; i++) {
            require(targets[i] != address(0), "Target cannot be zero address");
            (bool success, bytes memory returndata) = targets[i].call{value: values[i]}(data[i]);
            require(success, "Delegate_n: batch call failed");
            results[i] = returndata;
        }
        emit BatchExecuted(targets.length);
    }

    // ========== ALLOW RECEIVING ETHER ==========

    /**
    * @notice Allow contract to receive ETH
    */
    receive() external payable {}
}
"
    },
    "contracts/IDelegate_n.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

// This interface specifies the functions which the Factory may need to call.
// The other functions within Delegate_n.sol are not called by the factory.
// If this were to change, e.g. we want delegates to receive tokens and delegate them
// then those other functions (e.g. ISkyToken.delegate()) which are not present here, must be added.

interface IDelegate_n {
    function castVoteWithReasonUniswap(address governor, uint256 proposalId, uint8 support, string calldata reason) external;
    function castVoteUniswap(address governor, uint256 proposalId, uint8 support) external;
    function castVoteWithReasonOZ(address governor, uint256 proposalId, uint8 support, string calldata reason) external;
    function castVoteOZ(address governor, uint256 proposalId, uint8 support) external;
    function voteSky(address chief, address[] calldata yays) external;
    function castVoteWithReasonGnosis(address governor, uint256 proposalId, uint8 support, string calldata reason) external;
    function castVoteGnosis(address governor, uint256 proposalId, uint8 support) external;
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/interfaces/IERC1271.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1271.sol)

pragma solidity >=0.5.0;

/**
 * @dev Interface of the ERC-1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with `hash`
     */
    function isValidSignature(bytes32 hash, bytes calldata signature) external view returns (bytes4 magicValue);
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}
"
    }
  },
  "settings": {
    "remappings": [
      "forge-std/=lib/forge-std/src/",
      "@openzeppelin/=lib/openzeppelin-contracts/",
      "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
      "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
      "openzeppelin-contracts/=lib/openzeppelin-contracts/"
    ],
    "optimizer": {
      "enabled": true,
      "runs": 200
    },
    "metadata": {
      "useLiteralContent": false,
      "bytecodeHash": "ipfs",
      "appendCBOR": true
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    },
    "evmVersion": "cancun",
    "viaIR": false
  }
}}

Tags:
Proxy, Voting, Upgradeable, Factory|addr:0x8e860fb2b35af40ffdcf591c86001bba2ac23106|verified:true|block:23396506|tx:0x87036a36a6eb3362d33394cfeda7b0c868a1f8675a0af53145b2b90722187e51|first_check:1758280165

Submitted on: 2025-09-19 13:09:25

Comments

Log in to comment.

No comments yet.