MasterTaxHandler

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "@openzeppelin/contracts/access/AccessControl.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}
"
    },
    "@openzeppelin/contracts/access/IAccessControl.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}
"
    },
    "@openzeppelin/contracts/security/ReentrancyGuard.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}
"
    },
    "@openzeppelin/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
"
    },
    "@openzeppelin/contracts/utils/introspection/ERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
"
    },
    "@openzeppelin/contracts/utils/introspection/IERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/math/SignedMath.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/Strings.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
"
    },
    "contracts/interfaces/ISystemContext.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";

interface ISystemContext {
    function acl() external view returns (IAccessControl);
    function getContractByName(string calldata name) external view returns (address);
    function getContract(bytes32 id) external view returns (address);
    function setContract(bytes32 id, address adr) external;
    function setContractByName(string calldata name, address adr) external;
}
"
    },
    "contracts/LaunchRegistry.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import "./Roles.sol";
import "./SystemContext.sol";

interface ILaunchRegistry {
    struct AdminPhase {
        uint32 rateBps;   // Admin tax rate in basis points (e.g., 300 = 3%)
        uint32 duration;  // Duration in seconds (0 for Phase C means infinite)
    }

    struct TaxConfig {
        address creator;
        address creatorRecipient; // user1
        address user2Recipient;   // user2
        uint256 user2Share;       // in basis points (e.g., 1000 = 10%)
        uint256 flatBuyTaxRate;
        uint256 flatSellTaxRate;
        uint256 startBuyTaxRate;
        uint256 startSellTaxRate;
        uint256 liquidityAddedAt;
        bool liquidityTimestampSet;
        uint256 customBuyTaxRate;  // (0 = use default)
        uint256 customSellTaxRate; // (0 = use default)
        bool hasCustomRates;
        AdminPhase[3] adminPhases; // Added for Version 2
        bool adminPhasesSet;       // Tracks if admin phases are configured
    }

    struct LaunchInfo {
        address token;
        address owner;
        uint256 mintedAt;
        bool liquidityAdded;
        uint256 liquidityBackingETH;
        uint256 liquidityTokenPercent;
    }


    function registerLaunch(
        bytes32 guid,
        address token,
        address owner,
        uint256 backingETH,
        uint256 tokenPercent
    ) external;

    function markLiquidityAdded(bytes32 guid) external;

    function getLaunch(bytes32 guid) external view returns (LaunchInfo memory);

    function exists(bytes32 guid) external view returns (bool);

    function registerTaxConfig(
        bytes32 guid,
        address token,
        address creator,
        address recipient,
        uint256 flatBuyTax,
        uint256 flatSellTax,
        uint256 startBuyTax,
        uint256 startSellTax,
        address user2Recipient,
        uint256 user2Share,
        AdminPhase[3] calldata adminPhases
    ) external;

    function getTaxConfig(bytes32 guid) external view returns (TaxConfig memory);

    function updateTaxConfig(bytes32 guid, uint256 customBuyTaxRate, uint256 customSellTaxRate, bool hasCustomRates) external;

    function setLiquidityAddedAt(bytes32 guid, uint256 timestamp) external;

    function setUser2(bytes32 guid, address user2, uint256 share) external;

    function getGuidFromToken(address token) external view returns (bytes32);
}

contract LaunchRegistry is ILaunchRegistry {
    ISystemContext public systemContext;

    constructor(ISystemContext _systemContext) {
        require(address(_systemContext) != address(0), "SystemContext required");
        systemContext = _systemContext;
    }

    mapping(bytes32 => LaunchInfo) private launches;
    mapping(bytes32 => TaxConfig) private taxConfigs;
    mapping(address => bytes32) private tokenToGuid;

    modifier onlyTokenCreator() {
        require(
            systemContext.acl().hasRole(Roles.TOKEN_CREATOR_ROLE, msg.sender),
            "LaunchRegistry: not token creator"
        );
        _;
    }

    modifier onlyRouter() {
        require(
            systemContext.acl().hasRole(Roles.ROUTER_ROLE, msg.sender),
            "LaunchRegistry: not router"
        );
        _;
    }

    modifier onlyTaxHandler() {
        address taxHandler = systemContext.getContractByName("MasterTaxHandler");
        require(msg.sender == taxHandler, "LaunchRegistry: not tax handler");
        _;
    }

    function registerLaunch(
        bytes32 guid,
        address token,
        address owner,
        uint256 backingETH,
        uint256 tokenPercent
    ) external override onlyTokenCreator {
        require(guid != 0, "Invalid GUID");
        require(token != address(0), "Invalid token address");
        require(!exists(guid), "Already registered");

        launches[guid] = LaunchInfo({
            token: token,
            owner: owner,
            mintedAt: block.timestamp,
            liquidityAdded: false,
            liquidityBackingETH: backingETH,
            liquidityTokenPercent: tokenPercent
        });

        tokenToGuid[token] = guid;
    }

    function markLiquidityAdded(bytes32 guid) external override onlyRouter {
        require(exists(guid), "Not registered");
        launches[guid].liquidityAdded = true;
    }

    function getLaunch(bytes32 guid) external view override returns (LaunchInfo memory) {
        require(exists(guid), "Not registered");
        return launches[guid];
    }

    function exists(bytes32 guid) public view override returns (bool) {
        return launches[guid].token != address(0);
    }

    function registerTaxConfig(
        bytes32 guid,
        address token,
        address creator,
        address recipient,
        uint256 flatBuyTax,
        uint256 flatSellTax,
        uint256 startBuyTax,
        uint256 startSellTax,
        address user2Recipient,
        uint256 user2Share,
        AdminPhase[3] calldata adminPhases
    ) external override onlyTaxHandler {
        require(exists(guid), "Launch not registered");
        require(token != address(0), "Zero token address");
        require(creator != address(0), "Zero creator");
        require(recipient != address(0), "Zero recipient");
        require(taxConfigs[guid].creator == address(0), "Tax config already registered");

        taxConfigs[guid] = TaxConfig({
            creator: creator,
            creatorRecipient: recipient,
            user2Recipient: user2Recipient,
            user2Share: user2Share,
            flatBuyTaxRate: flatBuyTax,
            flatSellTaxRate: flatSellTax,
            startBuyTaxRate: startBuyTax,
            startSellTaxRate: startSellTax,
            liquidityAddedAt: 0,
            liquidityTimestampSet: false,
            customBuyTaxRate: 0,
            customSellTaxRate: 0,
            hasCustomRates: false,
            adminPhases: adminPhases,
            adminPhasesSet: true
        });
    }

    function getTaxConfig(bytes32 guid) external view override returns (TaxConfig memory) {
        require(exists(guid), "Launch not registered");
        require(taxConfigs[guid].creator != address(0), "Tax config not registered");
        return taxConfigs[guid];
    }

    function updateTaxConfig(
        bytes32 guid,
        uint256 customBuyTaxRate,
        uint256 customSellTaxRate,
        bool hasCustomRates
    ) external override onlyTaxHandler {
        require(exists(guid), "Launch not registered");
        require(taxConfigs[guid].creator != address(0), "Tax config not registered");

        taxConfigs[guid].customBuyTaxRate = customBuyTaxRate;
        taxConfigs[guid].customSellTaxRate = customSellTaxRate;
        taxConfigs[guid].hasCustomRates = hasCustomRates;
    }

    function setLiquidityAddedAt(bytes32 guid, uint256 timestamp) external override onlyTaxHandler {
        require(exists(guid), "Launch not registered");
        require(taxConfigs[guid].creator != address(0), "Tax config not registered");
        require(taxConfigs[guid].adminPhasesSet, "Admin phases not set");

        taxConfigs[guid].liquidityAddedAt = timestamp;
        taxConfigs[guid].liquidityTimestampSet = true;
    }

    function setUser2(bytes32 guid, address user2, uint256 share) external override onlyTaxHandler {
        require(exists(guid), "Launch not registered");
        require(taxConfigs[guid].creator != address(0), "Tax config not registered");
        require(user2 != address(0), "Zero user2");
        require(share <= 10_000, "Share too high");

        taxConfigs[guid].user2Recipient = user2;
        taxConfigs[guid].user2Share = share;
    }

    function getGuidFromToken(address token) external view override returns (bytes32) {
        bytes32 guid = tokenToGuid[token];
        require(guid != bytes32(0), "Token not registered");
        return guid;
    }
}"
    },
    "contracts/MasterTaxHandler.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import "./Roles.sol";
import "./SystemContext.sol";
import "./LaunchRegistry.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";

// Uniswap V2 Router interface for swapping
interface IUniswapV2Router02 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function getAmountsOut(uint amountIn, address[] calldata path)
        external view returns (uint[] memory amounts);
}

// Uniswap V2 Factory interface
interface IUniswapV2Factory {
    function getPair(address tokenA, address tokenB) external view returns (address pair);
}

// Uniswap V2 Pair interface
interface IUniswapV2Pair {
    function token0() external view returns (address);
    function token1() external view returns (address);
}

contract MasterTaxHandler is ReentrancyGuard {
    ISystemContext public immutable systemContext;
    address public adminWallet;
    IUniswapV2Router02 public uniswapV2Router;
    
    uint256 constant BASIS_POINTS = 10_000;
    uint256 constant MIN_TAX_RATE = 400;
    uint256 constant MAX_TAX_RATE = 700;
    uint256 constant THRESHOLD_DIVISOR = 1_000_000; // For precise threshold calculation
    uint256 constant DEFAULT_SWAP_THRESHOLD_PARTS = 625; // 0.0625% = 625 per million
    
    // SwapAndLiquify state management
    struct SwapAndLiquifyConfig {
        uint256 accumulatedTotalTokens;  // Total tokens accumulated (admin + creator shares)
        uint256 accumulatedAdminTokens;  // Admin portion of accumulated tokens
        uint256 accumulatedUser1Tokens;  // Creator (user1) portion of accumulated tokens
        uint256 accumulatedUser2Tokens;  // User2 portion of accumulated tokens (if applicable)
        uint256 swapThreshold;           // Threshold in tokens (0 = use default calculation)
        bool swapAndLiquifyEnabled;      // Enable/disable swapAndLiquify for this token
        address pairAddress;             // DEX pair address for this token
    }
    
    // Mapping from token address to SwapAndLiquify config
    mapping(address => SwapAndLiquifyConfig) public swapConfigs;
    
    // Global settings
    uint256 public defaultSwapThresholdParts = DEFAULT_SWAP_THRESHOLD_PARTS;
    bool public globalSwapAndLiquifyEnabled = true;
    
    // Reentrancy protection for swaps (per-token)
    // Maps token address => swap lock state (1 = not swapping, 2 = swapping)
    mapping(address => uint256) private _tokenSwapLock;

    event TaxConfigRegistered(
        bytes32 indexed guid,
        address indexed token,
        address indexed creator,
        address recipient,
        uint256 flatBuyTax,
        uint256 flatSellTax,
        uint256 startBuyTax,
        uint256 startSellTax,
        ILaunchRegistry.AdminPhase[3] adminPhases
    );
    event TaxesAdjusted(address indexed token, uint256 newBuyRate, uint256 newSellRate);
    event TaxesDisabled(address indexed token);
    event LiquidityTimestampSet(address indexed token, uint256 timestamp);
    event ConfigRegistered(address indexed token, address indexed creator);
    event User2Set(address indexed token, address indexed user2, uint256 share);
    event AdminWalletUpdated(address oldWallet, address newWallet);
    event AdminPhasesSet(address indexed token, uint256[3] rates, uint256[3] durations);
    event TaxPaid(
        bytes32 indexed guid,
        address indexed from,
        address indexed to,
        uint256 taxAmount,
        address adminRecipient,
        uint256 adminAmount,
        address user1Recipient,
        uint256 user1Amount,
        address user2Recipient,
        uint256 user2Amount
    );
    event SwapAndLiquify(
        address indexed token,
        uint256 tokensSwapped,
        uint256 ethReceived,
        uint256 adminAmount,
        uint256 user1Amount,
        uint256 user2Amount
    );
    event SwapThresholdUpdated(address indexed token, uint256 newThreshold);
    event DefaultSwapThresholdUpdated(uint256 newThresholdBps);
    event SwapAndLiquifyEnabledUpdated(address indexed token, bool enabled);
    event GlobalSwapAndLiquifyEnabledUpdated(bool enabled);
    event RouterUpdated(address oldRouter, address newRouter);
    event PairAddressSet(address indexed token, address indexed pair);

    modifier onlyTokenCreator(address token) {
        bytes32 guid = _getGuidFromToken(token);
        ILaunchRegistry registry = _getRegistry();
        ILaunchRegistry.TaxConfig memory config = registry.getTaxConfig(guid);
        require(msg.sender == config.creator, "Not creator");
        _;
    }

    modifier onlyFactory() {
        require(
            systemContext.acl().hasRole(Roles.TOKEN_CREATOR_ROLE, msg.sender),
            "MasterTaxHandler: not factory"
        );
        _;
    }

    modifier onlyRouter() {
        require(
            systemContext.acl().hasRole(Roles.ROUTER_ROLE, msg.sender),
            "MasterTaxHandler: not router"
        );
        _;
    }

    modifier onlyTaxAdmin() {
        require(
            systemContext.acl().hasRole(Roles.TAX_ADMIN_ROLE, msg.sender),
            "MasterTaxHandler: not tax admin"
        );
        _;
    }

    constructor(ISystemContext _systemContext, address _adminWallet, address _uniswapV2Router) {
        require(address(_systemContext) != address(0), "Invalid context");
        require(_adminWallet != address(0), "Invalid admin wallet");
        require(_uniswapV2Router != address(0), "Invalid router");
        systemContext = _systemContext;
        adminWallet = _adminWallet;
        uniswapV2Router = IUniswapV2Router02(_uniswapV2Router);
    }

    function _getRegistry() internal view returns (ILaunchRegistry) {
        address registryAddr = systemContext.getContractByName("LaunchRegistry");
        require(registryAddr != address(0), "Registry not found");
        return ILaunchRegistry(registryAddr);
    }

    function _getGuidFromToken(address token) internal view returns (bytes32) {
        ILaunchRegistry registry = _getRegistry();
        return registry.getGuidFromToken(token);
    }

    function registerTaxConfig(
        bytes32 guid,
        address token,
        address creator,
        address recipient,
        uint256 flatBuyTax,
        uint256 flatSellTax,
        uint256 startBuyTax,
        uint256 startSellTax,
        address user2Recipient,
        uint256 user2Share,
        uint256[3] calldata adminRatesBps,
        uint256[3] calldata adminDurations
    ) external onlyFactory {
        require(token != address(0), "Invalid token");
        require(creator != address(0), "Zero creator");
        require(recipient != address(0), "Zero recipient");
        require(flatBuyTax >= MIN_TAX_RATE && flatBuyTax <= MAX_TAX_RATE, "Buy tax out of bounds");
        require(flatSellTax >= MIN_TAX_RATE && flatSellTax <= MAX_TAX_RATE, "Sell tax out of bounds");
        require(startBuyTax >= flatBuyTax && startBuyTax <= BASIS_POINTS, "startBuy < flatBuy");
        require(startSellTax >= flatSellTax && startSellTax <= BASIS_POINTS, "startSell < flatSell");

        if (user2Recipient != address(0)) {
            require(user2Share <= BASIS_POINTS, "User2 share too high");
            require(user2Recipient != recipient, "User2 cannot be same as user1");
        } else {
            require(user2Share == 0, "User2 share must be 0 if no recipient");
        }

        // Validate admin phases - now allowing optional phases
        // Phase A & B can have duration = 0 (skipped) or > 0 (active)
        // Phase C duration must always be 0 (infinite), but rate can be 0 (disabled)
        require(adminDurations[2] == 0, "Phase C duration must be 0 (infinite)");
        require(adminRatesBps[0] <= BASIS_POINTS, "Phase A rate too high");
        require(adminRatesBps[1] <= BASIS_POINTS, "Phase B rate too high");
        require(adminRatesBps[2] <= BASIS_POINTS, "Phase C rate too high");
        
        // Prevent duration overflow only if both phases are active
        if (adminDurations[0] > 0 && adminDurations[1] > 0) {
            require(adminDurations[0] <= type(uint32).max - adminDurations[1], "Duration overflow");
        }

        // Cross-validate admin phases against creator tax rates
        // Only validate phases that are actually enabled (rate > 0)
        if (adminRatesBps[0] > 0) {
            // Phase A can be higher than flat rates since it's temporary
        }
        if (adminRatesBps[1] > 0) {
            // Phase B can be higher than flat rates since it's temporary
        }
        if (adminRatesBps[2] > 0) {
            // Phase C (permanent) must not exceed creator flat rates
            require(adminRatesBps[2] <= flatBuyTax, "Phase C admin rate exceeds creator buy tax");
            require(adminRatesBps[2] <= flatSellTax, "Phase C admin rate exceeds creator sell tax");
        }

        ILaunchRegistry registry = _getRegistry();
        ILaunchRegistry.AdminPhase[3] memory adminPhases;
        adminPhases[0] = ILaunchRegistry.AdminPhase(uint32(adminRatesBps[0]), uint32(adminDurations[0]));
        adminPhases[1] = ILaunchRegistry.AdminPhase(uint32(adminRatesBps[1]), uint32(adminDurations[1]));
        adminPhases[2] = ILaunchRegistry.AdminPhase(uint32(adminRatesBps[2]), uint32(adminDurations[2]));

        registry.registerTaxConfig(
            guid,
            token,
            creator,
            recipient,
            flatBuyTax,
            flatSellTax,
            startBuyTax,
            startSellTax,
            user2Recipient,
            user2Share,
            adminPhases
        );

        if (user2Recipient != address(0) && user2Share > 0) {
            emit User2Set(token, user2Recipient, user2Share);
        }

        // Initialize SwapAndLiquify config for this token
        _initializeSwapConfig(token);

        emit TaxConfigRegistered(
            guid,
            token,
            creator,
            recipient,
            flatBuyTax,
            flatSellTax,
            startBuyTax,
            startSellTax,
            adminPhases
        );
        emit ConfigRegistered(token, creator);
        emit AdminPhasesSet(token, adminRatesBps, adminDurations);
    }

    function setLiquidityAddedAt(address token, uint256 timestamp) external onlyRouter {
        bytes32 guid = _getGuidFromToken(token);
        ILaunchRegistry registry = _getRegistry();
        ILaunchRegistry.TaxConfig memory config = registry.getTaxConfig(guid);
        require(config.creator != address(0), "Token not registered");
        require(!config.liquidityTimestampSet, "Already set");
        require(timestamp > 0, "Invalid timestamp");
        require(config.adminPhasesSet, "Admin phases not set");
        // Allow any phase to be optional (duration = 0, rate = 0)
        // Phase C duration = 0 means infinite (permanent), but rate can be 0 to disable
        // Phases A and B with duration = 0 means they are skipped

        registry.setLiquidityAddedAt(guid, timestamp);
        emit LiquidityTimestampSet(token, timestamp);
    }

    function setUser2Recipient(address token, address user2, uint256 user2Share) external onlyTokenCreator(token) {
        require(user2 != address(0), "Zero user2");
        require(user2Share <= BASIS_POINTS, "Share too high");

        bytes32 guid = _getGuidFromToken(token);
        ILaunchRegistry registry = _getRegistry();
        registry.setUser2(guid, user2, user2Share);
        emit User2Set(token, user2, user2Share);
    }

    function decreaseTaxes(address token, uint256 newBuyRate, uint256 newSellRate) external onlyTokenCreator(token) {
        bytes32 guid = _getGuidFromToken(token);
        ILaunchRegistry registry = _getRegistry();
        ILaunchRegistry.TaxConfig memory config = registry.getTaxConfig(guid);
        require(config.liquidityTimestampSet, "Not launched");

        // Get current admin minimum (Version 2)
        uint256 adminMinimum = _getAdminMinimum(config);
        require(newBuyRate >= adminMinimum, "Buy rate below admin minimum");
        require(newSellRate >= adminMinimum, "Sell rate below admin minimum");

        // Ensure rates don't increase (Version 1)
        uint256 currentBuyRate = config.hasCustomRates ? config.customBuyTaxRate : _getApplicableTaxRate(config, true);
        uint256 currentSellRate = config.hasCustomRates ? config.customSellTaxRate : _getApplicableTaxRate(config, false);
        require(newBuyRate <= currentBuyRate, "Cannot increase buy rate");
        require(newSellRate <= currentSellRate, "Cannot increase sell rate");

        registry.updateTaxConfig(guid, newBuyRate, newSellRate, true);
        emit TaxesAdjusted(token, newBuyRate, newSellRate);
    }

    function disableTaxes(address token) external onlyTokenCreator(token) {
        bytes32 guid = _getGuidFromToken(token);
        ILaunchRegistry registry = _getRegistry();
        ILaunchRegistry.TaxConfig memory config = registry.getTaxConfig(guid);
        require(config.liquidityTimestampSet, "Not launched");
        require(block.timestamp >= config.liquidityAddedAt + 30 days, "Too early");

        // Allow disabling creator taxes, but admin taxes persist if non-zero (Version 2)
        registry.updateTaxConfig(guid, 0, 0, true);
        emit TaxesDisabled(token);
    }

    function setAdminWallet(address newWallet) external onlyTaxAdmin {
        require(newWallet != address(0), "Zero address");
        address oldWallet = adminWallet;
        adminWallet = newWallet;
        emit AdminWalletUpdated(oldWallet, newWallet);
    }

    /**
     * @dev Calculate tax amounts without modifying state (view function)
     * This is safe to call during token transfer
     */
    function calculateTaxAmounts(
        bytes32 guid,
        address from,
        address to,
        uint256 amount,
        address pairAddress
    )
        external
        view
        returns (
            uint256 taxAmount,
            uint256 adminAmount,
            uint256 user1Amount,
            uint256 user2Amount
        )
    {
        address token = msg.sender;
        
        // Skip if token is in swap lock state
        if (_tokenSwapLock[token] == 2) {
            return (0, 0, 0, 0);
        }
        
        require(_getGuidFromToken(token) == guid, "GUID mismatch");
        
        ILaunchRegistry.TaxConfig memory config = _getRegistry().getTaxConfig(guid);
        require(config.creator != address(0), "Unregistered token");

        // Only apply tax on DEX trades
        if (!config.liquidityTimestampSet || (from != pairAddress && to != pairAddress)) {
            return (0, 0, 0, 0);
        }

        bool isBuy = from == pairAddress;
        uint256 rate = config.hasCustomRates ? 
            (isBuy ? config.customBuyTaxRate : config.customSellTaxRate) : 
            _getApplicableTaxRate(config, isBuy);
        
        taxAmount = (amount * rate) / BASIS_POINTS;

        if (taxAmount > 0) {
            // Calculate admin cut
            uint256 adminCut = _getAdminMinimum(config);
            adminAmount = (amount * adminCut) / BASIS_POINTS;
            if (adminAmount > taxAmount) adminAmount = taxAmount;
            
            uint256 totalCreatorAmount = taxAmount - adminAmount;

            // Calculate user1 and user2 amounts
            if (config.user2Recipient != address(0) && config.user2Share > 0) {
                user2Amount = (totalCreatorAmount * config.user2Share) / BASIS_POINTS;
                user1Amount = totalCreatorAmount - user2Amount;
            } else {
                user1Amount = totalCreatorAmount;
                user2Amount = 0;
            }
        }
    }

    /**
     * @dev Record tax collection and potentially trigger swap
     * Called AFTER token transfer completes
     */
    function recordTaxAndSwap(
        bytes32 guid,
        address from,
        address to,
        uint256 adminAmount,
        uint256 user1Amount,
        uint256 user2Amount,
        bool isBuy
    ) external {
        address token = msg.sender;
        
        require(_getGuidFromToken(token) == guid, "GUID mismatch");
        
        SwapAndLiquifyConfig storage swapConfig = swapConfigs[token];
        
        // Update accumulated amounts
        if (adminAmount > 0) {
            swapConfig.accumulatedAdminTokens += adminAmount;
        }
        if (user1Amount > 0) {
            swapConfig.accumulatedUser1Tokens += user1Amount;
        }
        if (user2Amount > 0) {
            swapConfig.accumulatedUser2Tokens += user2Amount;
        }
        
        uint256 totalTax = adminAmount + user1Amount + user2Amount;
        swapConfig.accumulatedTotalTokens += totalTax;
        
        // Emit event
        ILaunchRegistry registry = _getRegistry();
        ILaunchRegistry.TaxConfig memory config = registry.getTaxConfig(guid);
        
        emit TaxPaid(
            guid,
            from,
            to,
            totalTax,
            address(this),
            adminAmount,
            config.creatorRecipient,
            user1Amount,
            config.user2Recipient,
            user2Amount
        );
        
        // Only trigger swap on sells
        if (!isBuy) {
            _checkAndExecuteSwap(token, config);
        }
    }

    // OLD FUNCTIONS REMOVED - Using new ca

Tags:
ERC20, ERC165, Multisig, Swap, Liquidity, Upgradeable, Multi-Signature, Factory|addr:0x749284ab46a43c85d2fc91b2a7a6216504675199|verified:true|block:23590745|tx:0xb52273038fbadafac3085a9f2cec814c0ee623fe7864ff08bc47e81a12361f06|first_check:1760689482

Submitted on: 2025-10-17 10:24:43

Comments

Log in to comment.

No comments yet.