Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"@openzeppelin/contracts/access/AccessControl.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
"
},
"@openzeppelin/contracts/access/IAccessControl.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
"
},
"@openzeppelin/contracts/security/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
"
},
"@openzeppelin/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
"
},
"@openzeppelin/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
"
},
"@openzeppelin/contracts/utils/introspection/ERC165.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
"
},
"@openzeppelin/contracts/utils/introspection/IERC165.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
},
"@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
"
},
"@openzeppelin/contracts/utils/math/SignedMath.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
"
},
"@openzeppelin/contracts/utils/Strings.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
"
},
"contracts/interfaces/ISystemContext.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
interface ISystemContext {
function acl() external view returns (IAccessControl);
function getContractByName(string calldata name) external view returns (address);
function getContract(bytes32 id) external view returns (address);
function setContract(bytes32 id, address adr) external;
function setContractByName(string calldata name, address adr) external;
}
"
},
"contracts/LaunchRegistry.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "./Roles.sol";
import "./SystemContext.sol";
interface ILaunchRegistry {
struct AdminPhase {
uint32 rateBps; // Admin tax rate in basis points (e.g., 300 = 3%)
uint32 duration; // Duration in seconds (0 for Phase C means infinite)
}
struct TaxConfig {
address creator;
address creatorRecipient; // user1
address user2Recipient; // user2
uint256 user2Share; // in basis points (e.g., 1000 = 10%)
uint256 flatBuyTaxRate;
uint256 flatSellTaxRate;
uint256 startBuyTaxRate;
uint256 startSellTaxRate;
uint256 liquidityAddedAt;
bool liquidityTimestampSet;
uint256 customBuyTaxRate; // (0 = use default)
uint256 customSellTaxRate; // (0 = use default)
bool hasCustomRates;
AdminPhase[3] adminPhases; // Added for Version 2
bool adminPhasesSet; // Tracks if admin phases are configured
}
struct LaunchInfo {
address token;
address owner;
uint256 mintedAt;
bool liquidityAdded;
uint256 liquidityBackingETH;
uint256 liquidityTokenPercent;
}
function registerLaunch(
bytes32 guid,
address token,
address owner,
uint256 backingETH,
uint256 tokenPercent
) external;
function markLiquidityAdded(bytes32 guid) external;
function getLaunch(bytes32 guid) external view returns (LaunchInfo memory);
function exists(bytes32 guid) external view returns (bool);
function registerTaxConfig(
bytes32 guid,
address token,
address creator,
address recipient,
uint256 flatBuyTax,
uint256 flatSellTax,
uint256 startBuyTax,
uint256 startSellTax,
address user2Recipient,
uint256 user2Share,
AdminPhase[3] calldata adminPhases
) external;
function getTaxConfig(bytes32 guid) external view returns (TaxConfig memory);
function updateTaxConfig(bytes32 guid, uint256 customBuyTaxRate, uint256 customSellTaxRate, bool hasCustomRates) external;
function setLiquidityAddedAt(bytes32 guid, uint256 timestamp) external;
function setUser2(bytes32 guid, address user2, uint256 share) external;
function getGuidFromToken(address token) external view returns (bytes32);
}
contract LaunchRegistry is ILaunchRegistry {
ISystemContext public systemContext;
constructor(ISystemContext _systemContext) {
require(address(_systemContext) != address(0), "SystemContext required");
systemContext = _systemContext;
}
mapping(bytes32 => LaunchInfo) private launches;
mapping(bytes32 => TaxConfig) private taxConfigs;
mapping(address => bytes32) private tokenToGuid;
modifier onlyTokenCreator() {
require(
systemContext.acl().hasRole(Roles.TOKEN_CREATOR_ROLE, msg.sender),
"LaunchRegistry: not token creator"
);
_;
}
modifier onlyRouter() {
require(
systemContext.acl().hasRole(Roles.ROUTER_ROLE, msg.sender),
"LaunchRegistry: not router"
);
_;
}
modifier onlyTaxHandler() {
address taxHandler = systemContext.getContractByName("MasterTaxHandler");
require(msg.sender == taxHandler, "LaunchRegistry: not tax handler");
_;
}
function registerLaunch(
bytes32 guid,
address token,
address owner,
uint256 backingETH,
uint256 tokenPercent
) external override onlyTokenCreator {
require(guid != 0, "Invalid GUID");
require(token != address(0), "Invalid token address");
require(!exists(guid), "Already registered");
launches[guid] = LaunchInfo({
token: token,
owner: owner,
mintedAt: block.timestamp,
liquidityAdded: false,
liquidityBackingETH: backingETH,
liquidityTokenPercent: tokenPercent
});
tokenToGuid[token] = guid;
}
function markLiquidityAdded(bytes32 guid) external override onlyRouter {
require(exists(guid), "Not registered");
launches[guid].liquidityAdded = true;
}
function getLaunch(bytes32 guid) external view override returns (LaunchInfo memory) {
require(exists(guid), "Not registered");
return launches[guid];
}
function exists(bytes32 guid) public view override returns (bool) {
return launches[guid].token != address(0);
}
function registerTaxConfig(
bytes32 guid,
address token,
address creator,
address recipient,
uint256 flatBuyTax,
uint256 flatSellTax,
uint256 startBuyTax,
uint256 startSellTax,
address user2Recipient,
uint256 user2Share,
AdminPhase[3] calldata adminPhases
) external override onlyTaxHandler {
require(exists(guid), "Launch not registered");
require(token != address(0), "Zero token address");
require(creator != address(0), "Zero creator");
require(recipient != address(0), "Zero recipient");
require(taxConfigs[guid].creator == address(0), "Tax config already registered");
taxConfigs[guid] = TaxConfig({
creator: creator,
creatorRecipient: recipient,
user2Recipient: user2Recipient,
user2Share: user2Share,
flatBuyTaxRate: flatBuyTax,
flatSellTaxRate: flatSellTax,
startBuyTaxRate: startBuyTax,
startSellTaxRate: startSellTax,
liquidityAddedAt: 0,
liquidityTimestampSet: false,
customBuyTaxRate: 0,
customSellTaxRate: 0,
hasCustomRates: false,
adminPhases: adminPhases,
adminPhasesSet: true
});
}
function getTaxConfig(bytes32 guid) external view override returns (TaxConfig memory) {
require(exists(guid), "Launch not registered");
require(taxConfigs[guid].creator != address(0), "Tax config not registered");
return taxConfigs[guid];
}
function updateTaxConfig(
bytes32 guid,
uint256 customBuyTaxRate,
uint256 customSellTaxRate,
bool hasCustomRates
) external override onlyTaxHandler {
require(exists(guid), "Launch not registered");
require(taxConfigs[guid].creator != address(0), "Tax config not registered");
taxConfigs[guid].customBuyTaxRate = customBuyTaxRate;
taxConfigs[guid].customSellTaxRate = customSellTaxRate;
taxConfigs[guid].hasCustomRates = hasCustomRates;
}
function setLiquidityAddedAt(bytes32 guid, uint256 timestamp) external override onlyTaxHandler {
require(exists(guid), "Launch not registered");
require(taxConfigs[guid].creator != address(0), "Tax config not registered");
require(taxConfigs[guid].adminPhasesSet, "Admin phases not set");
taxConfigs[guid].liquidityAddedAt = timestamp;
taxConfigs[guid].liquidityTimestampSet = true;
}
function setUser2(bytes32 guid, address user2, uint256 share) external override onlyTaxHandler {
require(exists(guid), "Launch not registered");
require(taxConfigs[guid].creator != address(0), "Tax config not registered");
require(user2 != address(0), "Zero user2");
require(share <= 10_000, "Share too high");
taxConfigs[guid].user2Recipient = user2;
taxConfigs[guid].user2Share = share;
}
function getGuidFromToken(address token) external view override returns (bytes32) {
bytes32 guid = tokenToGuid[token];
require(guid != bytes32(0), "Token not registered");
return guid;
}
}"
},
"contracts/MasterTaxHandler.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "./Roles.sol";
import "./SystemContext.sol";
import "./LaunchRegistry.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
// Uniswap V2 Router interface for swapping
interface IUniswapV2Router02 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function getAmountsOut(uint amountIn, address[] calldata path)
external view returns (uint[] memory amounts);
}
// Uniswap V2 Factory interface
interface IUniswapV2Factory {
function getPair(address tokenA, address tokenB) external view returns (address pair);
}
// Uniswap V2 Pair interface
interface IUniswapV2Pair {
function token0() external view returns (address);
function token1() external view returns (address);
}
contract MasterTaxHandler is ReentrancyGuard {
ISystemContext public immutable systemContext;
address public adminWallet;
IUniswapV2Router02 public uniswapV2Router;
uint256 constant BASIS_POINTS = 10_000;
uint256 constant MIN_TAX_RATE = 400;
uint256 constant MAX_TAX_RATE = 700;
uint256 constant THRESHOLD_DIVISOR = 1_000_000; // For precise threshold calculation
uint256 constant DEFAULT_SWAP_THRESHOLD_PARTS = 625; // 0.0625% = 625 per million
// SwapAndLiquify state management
struct SwapAndLiquifyConfig {
uint256 accumulatedTotalTokens; // Total tokens accumulated (admin + creator shares)
uint256 accumulatedAdminTokens; // Admin portion of accumulated tokens
uint256 accumulatedUser1Tokens; // Creator (user1) portion of accumulated tokens
uint256 accumulatedUser2Tokens; // User2 portion of accumulated tokens (if applicable)
uint256 swapThreshold; // Threshold in tokens (0 = use default calculation)
bool swapAndLiquifyEnabled; // Enable/disable swapAndLiquify for this token
address pairAddress; // DEX pair address for this token
}
// Mapping from token address to SwapAndLiquify config
mapping(address => SwapAndLiquifyConfig) public swapConfigs;
// Global settings
uint256 public defaultSwapThresholdParts = DEFAULT_SWAP_THRESHOLD_PARTS;
bool public globalSwapAndLiquifyEnabled = true;
// Reentrancy protection for swaps (per-token)
// Maps token address => swap lock state (1 = not swapping, 2 = swapping)
mapping(address => uint256) private _tokenSwapLock;
event TaxConfigRegistered(
bytes32 indexed guid,
address indexed token,
address indexed creator,
address recipient,
uint256 flatBuyTax,
uint256 flatSellTax,
uint256 startBuyTax,
uint256 startSellTax,
ILaunchRegistry.AdminPhase[3] adminPhases
);
event TaxesAdjusted(address indexed token, uint256 newBuyRate, uint256 newSellRate);
event TaxesDisabled(address indexed token);
event LiquidityTimestampSet(address indexed token, uint256 timestamp);
event ConfigRegistered(address indexed token, address indexed creator);
event User2Set(address indexed token, address indexed user2, uint256 share);
event AdminWalletUpdated(address oldWallet, address newWallet);
event AdminPhasesSet(address indexed token, uint256[3] rates, uint256[3] durations);
event TaxPaid(
bytes32 indexed guid,
address indexed from,
address indexed to,
uint256 taxAmount,
address adminRecipient,
uint256 adminAmount,
address user1Recipient,
uint256 user1Amount,
address user2Recipient,
uint256 user2Amount
);
event SwapAndLiquify(
address indexed token,
uint256 tokensSwapped,
uint256 ethReceived,
uint256 adminAmount,
uint256 user1Amount,
uint256 user2Amount
);
event SwapThresholdUpdated(address indexed token, uint256 newThreshold);
event DefaultSwapThresholdUpdated(uint256 newThresholdBps);
event SwapAndLiquifyEnabledUpdated(address indexed token, bool enabled);
event GlobalSwapAndLiquifyEnabledUpdated(bool enabled);
event RouterUpdated(address oldRouter, address newRouter);
event PairAddressSet(address indexed token, address indexed pair);
modifier onlyTokenCreator(address token) {
bytes32 guid = _getGuidFromToken(token);
ILaunchRegistry registry = _getRegistry();
ILaunchRegistry.TaxConfig memory config = registry.getTaxConfig(guid);
require(msg.sender == config.creator, "Not creator");
_;
}
modifier onlyFactory() {
require(
systemContext.acl().hasRole(Roles.TOKEN_CREATOR_ROLE, msg.sender),
"MasterTaxHandler: not factory"
);
_;
}
modifier onlyRouter() {
require(
systemContext.acl().hasRole(Roles.ROUTER_ROLE, msg.sender),
"MasterTaxHandler: not router"
);
_;
}
modifier onlyTaxAdmin() {
require(
systemContext.acl().hasRole(Roles.TAX_ADMIN_ROLE, msg.sender),
"MasterTaxHandler: not tax admin"
);
_;
}
constructor(ISystemContext _systemContext, address _adminWallet, address _uniswapV2Router) {
require(address(_systemContext) != address(0), "Invalid context");
require(_adminWallet != address(0), "Invalid admin wallet");
require(_uniswapV2Router != address(0), "Invalid router");
systemContext = _systemContext;
adminWallet = _adminWallet;
uniswapV2Router = IUniswapV2Router02(_uniswapV2Router);
}
function _getRegistry() internal view returns (ILaunchRegistry) {
address registryAddr = systemContext.getContractByName("LaunchRegistry");
require(registryAddr != address(0), "Registry not found");
return ILaunchRegistry(registryAddr);
}
function _getGuidFromToken(address token) internal view returns (bytes32) {
ILaunchRegistry registry = _getRegistry();
return registry.getGuidFromToken(token);
}
function registerTaxConfig(
bytes32 guid,
address token,
address creator,
address recipient,
uint256 flatBuyTax,
uint256 flatSellTax,
uint256 startBuyTax,
uint256 startSellTax,
address user2Recipient,
uint256 user2Share,
uint256[3] calldata adminRatesBps,
uint256[3] calldata adminDurations
) external onlyFactory {
require(token != address(0), "Invalid token");
require(creator != address(0), "Zero creator");
require(recipient != address(0), "Zero recipient");
require(flatBuyTax >= MIN_TAX_RATE && flatBuyTax <= MAX_TAX_RATE, "Buy tax out of bounds");
require(flatSellTax >= MIN_TAX_RATE && flatSellTax <= MAX_TAX_RATE, "Sell tax out of bounds");
require(startBuyTax >= flatBuyTax && startBuyTax <= BASIS_POINTS, "startBuy < flatBuy");
require(startSellTax >= flatSellTax && startSellTax <= BASIS_POINTS, "startSell < flatSell");
if (user2Recipient != address(0)) {
require(user2Share <= BASIS_POINTS, "User2 share too high");
require(user2Recipient != recipient, "User2 cannot be same as user1");
} else {
require(user2Share == 0, "User2 share must be 0 if no recipient");
}
// Validate admin phases - now allowing optional phases
// Phase A & B can have duration = 0 (skipped) or > 0 (active)
// Phase C duration must always be 0 (infinite), but rate can be 0 (disabled)
require(adminDurations[2] == 0, "Phase C duration must be 0 (infinite)");
require(adminRatesBps[0] <= BASIS_POINTS, "Phase A rate too high");
require(adminRatesBps[1] <= BASIS_POINTS, "Phase B rate too high");
require(adminRatesBps[2] <= BASIS_POINTS, "Phase C rate too high");
// Prevent duration overflow only if both phases are active
if (adminDurations[0] > 0 && adminDurations[1] > 0) {
require(adminDurations[0] <= type(uint32).max - adminDurations[1], "Duration overflow");
}
// Cross-validate admin phases against creator tax rates
// Only validate phases that are actually enabled (rate > 0)
if (adminRatesBps[0] > 0) {
// Phase A can be higher than flat rates since it's temporary
}
if (adminRatesBps[1] > 0) {
// Phase B can be higher than flat rates since it's temporary
}
if (adminRatesBps[2] > 0) {
// Phase C (permanent) must not exceed creator flat rates
require(adminRatesBps[2] <= flatBuyTax, "Phase C admin rate exceeds creator buy tax");
require(adminRatesBps[2] <= flatSellTax, "Phase C admin rate exceeds creator sell tax");
}
ILaunchRegistry registry = _getRegistry();
ILaunchRegistry.AdminPhase[3] memory adminPhases;
adminPhases[0] = ILaunchRegistry.AdminPhase(uint32(adminRatesBps[0]), uint32(adminDurations[0]));
adminPhases[1] = ILaunchRegistry.AdminPhase(uint32(adminRatesBps[1]), uint32(adminDurations[1]));
adminPhases[2] = ILaunchRegistry.AdminPhase(uint32(adminRatesBps[2]), uint32(adminDurations[2]));
registry.registerTaxConfig(
guid,
token,
creator,
recipient,
flatBuyTax,
flatSellTax,
startBuyTax,
startSellTax,
user2Recipient,
user2Share,
adminPhases
);
if (user2Recipient != address(0) && user2Share > 0) {
emit User2Set(token, user2Recipient, user2Share);
}
// Initialize SwapAndLiquify config for this token
_initializeSwapConfig(token);
emit TaxConfigRegistered(
guid,
token,
creator,
recipient,
flatBuyTax,
flatSellTax,
startBuyTax,
startSellTax,
adminPhases
);
emit ConfigRegistered(token, creator);
emit AdminPhasesSet(token, adminRatesBps, adminDurations);
}
function setLiquidityAddedAt(address token, uint256 timestamp) external onlyRouter {
bytes32 guid = _getGuidFromToken(token);
ILaunchRegistry registry = _getRegistry();
ILaunchRegistry.TaxConfig memory config = registry.getTaxConfig(guid);
require(config.creator != address(0), "Token not registered");
require(!config.liquidityTimestampSet, "Already set");
require(timestamp > 0, "Invalid timestamp");
require(config.adminPhasesSet, "Admin phases not set");
// Allow any phase to be optional (duration = 0, rate = 0)
// Phase C duration = 0 means infinite (permanent), but rate can be 0 to disable
// Phases A and B with duration = 0 means they are skipped
registry.setLiquidityAddedAt(guid, timestamp);
emit LiquidityTimestampSet(token, timestamp);
}
function setUser2Recipient(address token, address user2, uint256 user2Share) external onlyTokenCreator(token) {
require(user2 != address(0), "Zero user2");
require(user2Share <= BASIS_POINTS, "Share too high");
bytes32 guid = _getGuidFromToken(token);
ILaunchRegistry registry = _getRegistry();
registry.setUser2(guid, user2, user2Share);
emit User2Set(token, user2, user2Share);
}
function decreaseTaxes(address token, uint256 newBuyRate, uint256 newSellRate) external onlyTokenCreator(token) {
bytes32 guid = _getGuidFromToken(token);
ILaunchRegistry registry = _getRegistry();
ILaunchRegistry.TaxConfig memory config = registry.getTaxConfig(guid);
require(config.liquidityTimestampSet, "Not launched");
// Get current admin minimum (Version 2)
uint256 adminMinimum = _getAdminMinimum(config);
require(newBuyRate >= adminMinimum, "Buy rate below admin minimum");
require(newSellRate >= adminMinimum, "Sell rate below admin minimum");
// Ensure rates don't increase (Version 1)
uint256 currentBuyRate = config.hasCustomRates ? config.customBuyTaxRate : _getApplicableTaxRate(config, true);
uint256 currentSellRate = config.hasCustomRates ? config.customSellTaxRate : _getApplicableTaxRate(config, false);
require(newBuyRate <= currentBuyRate, "Cannot increase buy rate");
require(newSellRate <= currentSellRate, "Cannot increase sell rate");
registry.updateTaxConfig(guid, newBuyRate, newSellRate, true);
emit TaxesAdjusted(token, newBuyRate, newSellRate);
}
function disableTaxes(address token) external onlyTokenCreator(token) {
bytes32 guid = _getGuidFromToken(token);
ILaunchRegistry registry = _getRegistry();
ILaunchRegistry.TaxConfig memory config = registry.getTaxConfig(guid);
require(config.liquidityTimestampSet, "Not launched");
require(block.timestamp >= config.liquidityAddedAt + 30 days, "Too early");
// Allow disabling creator taxes, but admin taxes persist if non-zero (Version 2)
registry.updateTaxConfig(guid, 0, 0, true);
emit TaxesDisabled(token);
}
function setAdminWallet(address newWallet) external onlyTaxAdmin {
require(newWallet != address(0), "Zero address");
address oldWallet = adminWallet;
adminWallet = newWallet;
emit AdminWalletUpdated(oldWallet, newWallet);
}
/**
* @dev Calculate tax amounts without modifying state (view function)
* This is safe to call during token transfer
*/
function calculateTaxAmounts(
bytes32 guid,
address from,
address to,
uint256 amount,
address pairAddress
)
external
view
returns (
uint256 taxAmount,
uint256 adminAmount,
uint256 user1Amount,
uint256 user2Amount
)
{
address token = msg.sender;
// Skip if token is in swap lock state
if (_tokenSwapLock[token] == 2) {
return (0, 0, 0, 0);
}
require(_getGuidFromToken(token) == guid, "GUID mismatch");
ILaunchRegistry.TaxConfig memory config = _getRegistry().getTaxConfig(guid);
require(config.creator != address(0), "Unregistered token");
// Only apply tax on DEX trades
if (!config.liquidityTimestampSet || (from != pairAddress && to != pairAddress)) {
return (0, 0, 0, 0);
}
bool isBuy = from == pairAddress;
uint256 rate = config.hasCustomRates ?
(isBuy ? config.customBuyTaxRate : config.customSellTaxRate) :
_getApplicableTaxRate(config, isBuy);
taxAmount = (amount * rate) / BASIS_POINTS;
if (taxAmount > 0) {
// Calculate admin cut
uint256 adminCut = _getAdminMinimum(config);
adminAmount = (amount * adminCut) / BASIS_POINTS;
if (adminAmount > taxAmount) adminAmount = taxAmount;
uint256 totalCreatorAmount = taxAmount - adminAmount;
// Calculate user1 and user2 amounts
if (config.user2Recipient != address(0) && config.user2Share > 0) {
user2Amount = (totalCreatorAmount * config.user2Share) / BASIS_POINTS;
user1Amount = totalCreatorAmount - user2Amount;
} else {
user1Amount = totalCreatorAmount;
user2Amount = 0;
}
}
}
/**
* @dev Record tax collection and potentially trigger swap
* Called AFTER token transfer completes
*/
function recordTaxAndSwap(
bytes32 guid,
address from,
address to,
uint256 adminAmount,
uint256 user1Amount,
uint256 user2Amount,
bool isBuy
) external {
address token = msg.sender;
require(_getGuidFromToken(token) == guid, "GUID mismatch");
SwapAndLiquifyConfig storage swapConfig = swapConfigs[token];
// Update accumulated amounts
if (adminAmount > 0) {
swapConfig.accumulatedAdminTokens += adminAmount;
}
if (user1Amount > 0) {
swapConfig.accumulatedUser1Tokens += user1Amount;
}
if (user2Amount > 0) {
swapConfig.accumulatedUser2Tokens += user2Amount;
}
uint256 totalTax = adminAmount + user1Amount + user2Amount;
swapConfig.accumulatedTotalTokens += totalTax;
// Emit event
ILaunchRegistry registry = _getRegistry();
ILaunchRegistry.TaxConfig memory config = registry.getTaxConfig(guid);
emit TaxPaid(
guid,
from,
to,
totalTax,
address(this),
adminAmount,
config.creatorRecipient,
user1Amount,
config.user2Recipient,
user2Amount
);
// Only trigger swap on sells
if (!isBuy) {
_checkAndExecuteSwap(token, config);
}
}
// OLD FUNCTIONS REMOVED - Using new ca
Submitted on: 2025-10-17 10:24:43
Comments
Log in to comment.
No comments yet.