Description:
Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"@openzeppelin/contracts/access/AccessControl.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
"
},
"@openzeppelin/contracts/access/IAccessControl.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
"
},
"@openzeppelin/contracts/security/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
"
},
"@openzeppelin/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
"
},
"@openzeppelin/contracts/utils/introspection/ERC165.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
"
},
"@openzeppelin/contracts/utils/introspection/IERC165.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
},
"@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
"
},
"@openzeppelin/contracts/utils/math/SignedMath.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
"
},
"@openzeppelin/contracts/utils/Strings.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
"
},
"contracts/interfaces/ISystemContext.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
interface ISystemContext {
function acl() external view returns (IAccessControl);
function getContractByName(string calldata name) external view returns (address);
function getContract(bytes32 id) external view returns (address);
function setContract(bytes32 id, address adr) external;
function setContractByName(string calldata name, address adr) external;
}
"
},
"contracts/LaunchRegistry.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "./Roles.sol";
import "./SystemContext.sol";
interface ILaunchRegistry {
struct AdminPhase {
uint32 rateBps; // Admin tax rate in basis points (e.g., 300 = 3%)
uint32 duration; // Duration in seconds (0 for Phase C means infinite)
}
struct TaxConfig {
address creator;
address creatorRecipient; // user1
address user2Recipient; // user2
uint256 user2Share; // in basis points (e.g., 1000 = 10%)
uint256 flatBuyTaxRate;
uint256 flatSellTaxRate;
uint256 startBuyTaxRate;
uint256 startSellTaxRate;
uint256 liquidityAddedAt;
bool liquidityTimestampSet;
uint256 customBuyTaxRate; // (0 = use default)
uint256 customSellTaxRate; // (0 = use default)
bool hasCustomRates;
AdminPhase[3] adminPhases; // Added for Version 2
bool adminPhasesSet; // Tracks if admin phases are configured
}
struct LaunchInfo {
address token;
address owner;
uint256 mintedAt;
bool liquidityAdded;
uint256 liquidityBackingETH;
uint256 liquidityTokenPercent;
}
function registerLaunch(
bytes32 guid,
address token,
address owner,
uint256 backingETH,
uint256 tokenPercent
) external;
function markLiquidityAdded(bytes32 guid) external;
function getLaunch(bytes32 guid) external view returns (LaunchInfo memory);
function exists(bytes32 guid) external view returns (bool);
function registerTaxConfig(
bytes32 guid,
address token,
address creator,
address recipient,
uint256 flatBuyTax,
uint256 flatSellTax,
uint256 startBuyTax,
uint256 startSellTax,
address user2Recipient,
uint256 user2Share,
AdminPhase[3] calldata adminPhases
) external;
function getTaxConfig(bytes32 guid) external view returns (TaxConfig memory);
function updateTaxConfig(bytes32 guid, uint256 customBuyTaxRate, uint256 customSellTaxRate, bool hasCustomRates) external;
function setLiquidityAddedAt(bytes32 guid, uint256 timestamp) external;
function setUser2(bytes32 guid, address user2, uint256 share) external;
function getGuidFromToken(address token) external view returns (bytes32);
}
contract LaunchRegistry is ILaunchRegistry {
ISystemContext public systemContext;
constructor(ISystemContext _systemContext) {
require(address(_systemContext) != address(0), "SystemContext required");
systemContext = _systemContext;
}
mapping(bytes32 => LaunchInfo) private launches;
mapping(bytes32 => TaxConfig) private taxConfigs;
mapping(address => bytes32) private tokenToGuid;
modifier onlyTokenCreator() {
require(
systemContext.acl().hasRole(Roles.TOKEN_CREATOR_ROLE, msg.sender),
"LaunchRegistry: not token creator"
);
_;
}
modifier onlyRouter() {
require(
systemContext.acl().hasRole(Roles.ROUTER_ROLE, msg.sender),
"LaunchRegistry: not router"
);
_;
}
modifier onlyTaxHandler() {
address taxHandler = systemContext.getContractByName("MasterTaxHandler");
require(msg.sender == taxHandler, "LaunchRegistry: not tax handler");
_;
}
function registerLaunch(
bytes32 guid,
address token,
address owner,
uint256 backingETH,
uint256 tokenPercent
) external override onlyTokenCreator {
require(guid != 0, "Invalid GUID");
require(token != address(0), "Invalid token address");
require(!exists(guid), "Already registered");
launches[guid] = LaunchInfo({
token: token,
owner: owner,
mintedAt: block.timestamp,
liquidityAdded: false,
liquidityBackingETH: backingETH,
liquidityTokenPercent: tokenPercent
});
tokenToGuid[token] = guid;
}
function markLiquidityAdded(bytes32 guid) external override onlyRouter {
require(exists(guid), "Not registered");
launches[guid].liquidityAdded = true;
}
function getLaunch(bytes32 guid) external view override returns (LaunchInfo memory) {
require(exists(guid), "Not registered");
return launches[guid];
}
function exists(bytes32 guid) public view override returns (bool) {
return launches[guid].token != address(0);
}
function registerTaxConfig(
bytes32 guid,
address token,
address creator,
address recipient,
uint256 flatBuyTax,
uint256 flatSellTax,
uint256 startBuyTax,
uint256 startSellTax,
address user2Recipient,
uint256 user2Share,
AdminPhase[3] calldata adminPhases
) external override onlyTaxHandler {
require(exists(guid), "Launch not registered");
require(token != address(0), "Zero token address");
require(creator != address(0), "Zero creator");
require(recipient != address(0), "Zero recipient");
require(taxConfigs[guid].creator == address(0), "Tax config already registered");
taxConfigs[guid] = TaxConfig({
creator: creator,
creatorRecipient: recipient,
user2Recipient: user2Recipient,
user2Share: user2Share,
flatBuyTaxRate: flatBuyTax,
flatSellTaxRate: flatSellTax,
startBuyTaxRate: startBuyTax,
startSellTaxRate: startSellTax,
liquidityAddedAt: 0,
liquidityTimestampSet: false,
customBuyTaxRate: 0,
customSellTaxRate: 0,
hasCustomRates: false,
adminPhases: adminPhases,
adminPhasesSet: true
});
}
function getTaxConfig(bytes32 guid) external view override returns (TaxConfig memory) {
require(exists(guid), "Launch not registered");
require(taxConfigs[guid].creator != address(0), "Tax config not registered");
return taxConfigs[guid];
}
function updateTaxConfig(
bytes32 guid,
uint256 customBuyTaxRate,
uint256 customSellTaxRate,
bool hasCustomRates
) external override onlyTaxHandler {
require(exists(guid), "Launch not registered");
require(taxConfigs[guid].creator != address(0), "Tax config not registered");
taxConfigs[guid].customBuyTaxRate = customBuyTaxRate;
taxConfigs[guid].customSellTaxRate = customSellTaxRate;
taxConfigs[guid].hasCustomRates = hasCustomRates;
}
function setLiquidityAddedAt(bytes32 guid, uint256 timestamp) external override onlyTaxHandler {
require(exists(guid), "Launch not registered");
require(taxConfigs[guid].creator != address(0), "Tax config not registered");
require(taxConfigs[guid].adminPhasesSet, "Admin phases not set");
taxConfigs[guid].liquidityAddedAt = timestamp;
taxConfigs[guid].liquidityTimestampSet = true;
}
function setUser2(bytes32 guid, address user2, uint256 share) external override onlyTaxHandler {
require(exists(guid), "Launch not registered");
require(taxConfigs[guid].creator != address(0), "Tax config not registered");
require(user2 != address(0), "Zero user2");
require(share <= 10_000, "Share too high");
taxConfigs[guid].user2Recipient = user2;
taxConfigs[guid].user2Share = share;
}
function getGuidFromToken(address token) external view override returns (bytes32) {
bytes32 guid = tokenToGuid[token];
require(guid != bytes32(0), "Token not registered");
return guid;
}
}"
},
"contracts/MasterLaunchWhitelist.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "./SystemContext.sol";
import "./LaunchRegistry.sol";
import "./Roles.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
contract MasterLaunchWhitelist is ReentrancyGuard {
ISystemContext public immutable systemContext;
// Token GUID => user => whitelisted
mapping(bytes32 => mapping(address => bool)) public whitelists;
// Token GUID => user => amount bought during whitelist
mapping(bytes32 => mapping(address => uint256)) public boughtAmount;
// Token GUID => user => fixed allowance (e.g., 0.1% of supply)
mapping(bytes32 => mapping(address => uint256)) public allowancePerUser;
// Track whether a whitelist is finalized for cleanup
mapping(bytes32 => bool) public whitelistFinalized;
event WhitelistEntryAdded(bytes32 indexed guid, address indexed user, uint256 allowance);
event WhitelistEntryRemoved(bytes32 indexed guid, address indexed user);
event WhitelistFinalized(bytes32 indexed guid);
event WhitelistBuyRecorded(bytes32 indexed guid, address indexed user, uint256 amount);
constructor(ISystemContext _systemContext) {
require(address(_systemContext) != address(0), "Invalid system context");
systemContext = _systemContext;
}
modifier onlyWhitelistAdmin() {
require(
systemContext.acl().hasRole(Roles.WHITELIST_ADMIN_ROLE, msg.sender),
"Not whitelist admin"
);
_;
}
modifier onlyIfFinalized(bytes32 guid) {
require(whitelistFinalized[guid], "Whitelist not finalized");
_;
}
struct WhitelistEntry {
address user;
uint256 allowance;
}
function _ensureLiquidityNotAdded(bytes32 guid) internal view {
address registryAddr = systemContext.getContractByName("LaunchRegistry");
ILaunchRegistry registry = ILaunchRegistry(registryAddr);
ILaunchRegistry.LaunchInfo memory launch = registry.getLaunch(guid);
require(!launch.liquidityAdded, "Whitelist locked: liquidity already added");
}
function addToWhitelist(bytes32 guid, address user, uint256 allowance) external onlyWhitelistAdmin {
_ensureLiquidityNotAdded(guid);
whitelists[guid][user] = true;
if (allowance > 0) {
allowancePerUser[guid][user] = allowance + 1;
}
emit WhitelistEntryAdded(guid, user, allowance);
}
function addManyToWhitelist(bytes32 guid, WhitelistEntry[] calldata entries) external onlyWhitelistAdmin {
_ensureLiquidityNotAdded(guid);
for (uint256 i = 0; i < entries.length; i++) {
whitelists[guid][entries[i].user] = true;
if (entries[i].allowance > 0) {
allowancePerUser[guid][entries[i].user] = entries[i].allowance + 1;
}
emit WhitelistEntryAdded(guid, entries[i].user, entries[i].allowance + 1);
}
}
function removeFromWhitelist(bytes32 guid, address user) external onlyWhitelistAdmin {
_ensureLiquidityNotAdded(guid);
whitelists[guid][user] = false;
emit WhitelistEntryRemoved(guid, user);
}
function isWhitelisted(bytes32 guid, address user) external view returns (bool) {
return whitelists[guid][user];
}
function remainingAllowance(bytes32 guid, address user) external view returns (uint256) {
uint256 allowed = allowancePerUser[guid][user];
uint256 bought = boughtAmount[guid][user];
return allowed > bought ? allowed - bought : 0;
}
function recordBuy(bytes32 guid, address user, uint256 amount) external nonReentrant {
address registryAddr = systemContext.getContractByName("LaunchRegistry");
address expectedToken = ILaunchRegistry(registryAddr).getLaunch(guid).token;
require(msg.sender == expectedToken, "Caller is not the token for this GUID");
boughtAmount[guid][user] += amount;
emit WhitelistBuyRecorded(guid, user, amount);
}
function finalizeWhitelist(bytes32 guid) external onlyWhitelistAdmin {
whitelistFinalized[guid] = true;
emit WhitelistFinalized(guid);
}
function clearWhitelist(bytes32 guid, address[] calldata users)
external
onlyWhitelistAdmin
onlyIfFinalized(guid)
{
for (uint256 i = 0; i < users.length; i++) {
whitelists[guid][users[i]] = false;
allowancePerUser[guid][users[i]] = 0;
boughtAmount[guid][users[i]] = 0;
}
}
}
"
},
"contracts/Roles.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
library Roles {
bytes32 public constant SYSTEM_CONTEXT_ADMIN_ROLE = keccak256("SYSTEM_CONTEXT_ADMIN_ROLE");
bytes32 public constant TOKEN_CREATOR_ROLE = keccak256("TOKEN_CREATOR_ROLE");
bytes32 public constant WHITELIST_ADMIN_ROLE = keccak256("WHITELIST_ADMIN_ROLE");
bytes32 public constant ROUTER_ROLE = keccak256("ROUTER_ROLE");
bytes32 public constant BACKEND_SIGNER_ROLE = keccak256("BACKEND_SIGNER_ROLE");
bytes32 public constant TAX_ADMIN_ROLE = keccak256("TAX_ADMIN_ROLE");
}
"
},
"contracts/SystemContext.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "./Roles.sol";
import {IAccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {ISystemContext} from "./interfaces/ISystemContext.sol";
contract SystemContext is ISystemContext {
error OnlySystemContextAdmin();
error ZeroAddress();
error ZeroId();
error ContractNotRegistered();
IAccessControl public immutable override acl;
mapping(bytes32 => address) private _contracts;
constructor(IAccessControl acl_) {
if (address(acl_) == address(0)) {
revert ZeroAddress();
}
acl = acl_;
}
modifier onlySystemContextAdmin() {
if (!acl.hasRole(Roles.SYSTEM_CONTEXT_ADMIN_ROLE, msg.sender)) {
revert OnlySystemContextAdmin();
}
_;
}
modifier validAddress(address adr) {
if (adr == address(0)) {
revert ZeroAddress();
}
_;
}
modifier validId(bytes32 id) {
if (id == bytes32(0)) {
revert ZeroId();
}
_;
}
function setContract(bytes32 id, address adr)
external
override
onlySystemContextAdmin
validAddress(adr)
validId(id)
{
_contracts[id] = adr;
}
function setContractByName(string calldata name, address adr)
external
override
onlySystemContextAdmin
validAddress(adr)
{
bytes32 id = keccak256(abi.encodePacked(name));
_contracts[id] = adr;
}
function getContractByName(string calldata name)
external
view
override
returns (address)
{
return _getContract(keccak256(abi.encodePacked(name)));
}
function getContract(bytes32 id)
external
view
override
returns (address)
{
return _getContract(id);
}
function _getContract(bytes32 id) internal view returns (address adr) {
adr = _contracts[id];
if (adr == address(0)) revert ContractNotRegistered();
}
}
"
}
},
"settings": {
"optimizer": {
"enabled": true,
"runs": 1000
},
"viaIR": true,
"evmVersion": "paris",
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
}
}
}}
Submitted on: 2025-10-17 10:24:44
Comments
Log in to comment.
No comments yet.