ProcessAccountingGuardHook

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/hooks/ProcessAccountingGuardHook.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.24;

import {IHooks} from "lib/yieldnest-vault/src/interface/IHooks.sol";
import {IVault} from "lib/yieldnest-vault/src/interface/IVault.sol";
import {Math} from "lib/openzeppelin-contracts/contracts/utils/math/Math.sol";

/**
 * @title ProcessAccountingGuardHook
 * @notice This hook is used to check for excessive totalAssets changes
 *         when calling the processAccounting function for the vault.
 * It checks if the total assets decreased too much or increased too much.
 * It is used to prevent the vault from being exposed to anomalous totalAssets fluctuations.
 * which can be a result of oracle manipulation or 3rd party protocol failures.
 * the processAccounting call reverts if the totalAssets changed too much.
 */
contract ProcessAccountingGuardHook is IHooks {
    using Math for uint256;

    string public constant VERSION = "0.1.1";

    error TotalAssetsDecreasedTooMuch(
        uint256 totalAssetsBefore, uint256 totalAssetsAfter, uint256 maxTotalAssetsDecreaseRatio
    );
    error TotalAssetsIncreasedTooMuch(
        uint256 totalAssetsBefore, uint256 totalAssetsAfter, uint256 maxTotalAssetsIncreaseRatio
    );
    error OnlyOwner();
    error NotSupported();
    error OnlyVault();
    error TotalSupplyDecreased();
    error TotalSupplyIncreasedForLoss();
    error TotalSupplyIncreasedTooMuch(uint256 totalSupplyBefore, uint256 totalSupplyAfter);
    error AlwaysComputeTotalAssetsIsEnabled();

    event MaxTotalAssetsDecreaseRatioSet(uint256 oldRatio, uint256 newRatio);
    event MaxTotalAssetsIncreaseRatioSet(uint256 oldRatio, uint256 newRatio);
    event MaxTotalSupplyIncreaseRatioSet(uint256 oldRatio, uint256 newRatio);
    event ExpectedPerformanceFeeSet(uint256 oldFee, uint256 newFee);

    uint256 public constant RATIO_DENOMINATOR = 1e18;
    uint256 public constant FEE_DENOMINATOR = 1e18;

    IVault public immutable VAULT;

    /// @notice The owner controls configuration settings
    address public immutable owner;
    /// @notice The maximum total assets decrease ratio during processAccounting()
    uint256 public maxTotalAssetsDecreaseRatio; // as a ratio with RATIO_DENOMINATOR (1e18 = 100%)
    /// @notice The maximum total assets increase ratio during processAccounting()
    uint256 public maxTotalAssetsIncreaseRatio; // as a ratio with RATIO_DENOMINATOR (1e18 = 100%)
    /// @notice The maximum total supply increase ratio during processAccounting()
    uint256 public maxTotalSupplyIncreaseRatio; // as a ratio with RATIO_DENOMINATOR (1e18 = 100%)

    uint256 public expectedPerformanceFee;

    modifier onlyOwner() {
        if (msg.sender != owner) revert OnlyOwner();
        _;
    }

    modifier onlyVault() {
        if (msg.sender != address(VAULT)) revert OnlyVault();
        _;
    }

    /**
     * @notice Constructor
     * @param _vault The address of the vault
     * @param _owner The address of the owner
     * @param _maxTotalAssetsDecreaseRatio The maximum total assets decrease ratio
     * @param _maxTotalAssetsIncreaseRatio The maximum total assets increase ratio
     * @param _maxTotalSupplyIncreaseRatio The maximum total supply increase ratio
     * @param _expectedPerformanceFee The expected performance fee
     */
    constructor(
        address _vault,
        address _owner,
        uint256 _maxTotalAssetsDecreaseRatio,
        uint256 _maxTotalAssetsIncreaseRatio,
        uint256 _maxTotalSupplyIncreaseRatio,
        uint256 _expectedPerformanceFee
    ) {
        VAULT = IVault(_vault);
        owner = _owner;
        maxTotalAssetsDecreaseRatio = _maxTotalAssetsDecreaseRatio;
        maxTotalAssetsIncreaseRatio = _maxTotalAssetsIncreaseRatio;
        maxTotalSupplyIncreaseRatio = _maxTotalSupplyIncreaseRatio;

        expectedPerformanceFee = _expectedPerformanceFee;
    }

    /// @inheritdoc IHooks
    function name() external pure returns (string memory) {
        return "ProcessAccountingGuardHook";
    }

    /**
     * @notice Set the maximum totalAssets decrease ratio
     * @param _maxTotalAssetsDecreaseRatio The maximum totalAssets decrease ratio
     */
    function setMaxTotalAssetsDecreaseRatio(uint256 _maxTotalAssetsDecreaseRatio) external onlyOwner {
        uint256 old = maxTotalAssetsDecreaseRatio;
        maxTotalAssetsDecreaseRatio = _maxTotalAssetsDecreaseRatio;
        emit MaxTotalAssetsDecreaseRatioSet(old, _maxTotalAssetsDecreaseRatio);
    }

    /**
     * @notice Set the maximum totalAssets increase ratio
     * @param _maxTotalAssetsIncreaseRatio The maximum totalAssets increase ratio
     */
    function setMaxTotalAssetsIncreaseRatio(uint256 _maxTotalAssetsIncreaseRatio) external onlyOwner {
        uint256 old = maxTotalAssetsIncreaseRatio;
        maxTotalAssetsIncreaseRatio = _maxTotalAssetsIncreaseRatio;
        emit MaxTotalAssetsIncreaseRatioSet(old, _maxTotalAssetsIncreaseRatio);
    }

    /**
     * @notice Set the maximum totalSupply increase ratio
     * @param _maxTotalSupplyIncreaseRatio The maximum totalSupply increase ratio
     */
    function setMaxTotalSupplyIncreaseRatio(uint256 _maxTotalSupplyIncreaseRatio) external onlyOwner {
        uint256 old = maxTotalSupplyIncreaseRatio;
        maxTotalSupplyIncreaseRatio = _maxTotalSupplyIncreaseRatio;
        emit MaxTotalSupplyIncreaseRatioSet(old, _maxTotalSupplyIncreaseRatio);
    }

    /**
     * @notice Set the expected performance fee
     * @param _expectedPerformanceFee The expected performance fee
     */
    function setExpectedPerformanceFee(uint256 _expectedPerformanceFee) external onlyOwner {
        uint256 old = expectedPerformanceFee;
        expectedPerformanceFee = _expectedPerformanceFee;
        emit ExpectedPerformanceFeeSet(old, _expectedPerformanceFee);
    }

    function getConfig() external pure override returns (Config memory) {
        return Config({
            beforeDeposit: false,
            afterDeposit: false,
            beforeMint: false,
            afterMint: false,
            beforeRedeem: false,
            afterRedeem: false,
            beforeWithdraw: false,
            afterWithdraw: false,
            beforeProcessAccounting: false,
            afterProcessAccounting: true
        });
    }

    /// @inheritdoc IHooks
    function setConfig(Config memory) external pure override {
        revert NotSupported();
    }

    /**
     * @notice Check if the total assets decreased too much or increased too much
     */
    function afterProcessAccounting(AfterProcessAccountingParams memory params) external view override onlyVault {
        if (VAULT.alwaysComputeTotalAssets()) {
            revert AlwaysComputeTotalAssetsIsEnabled();
        }

        if (params.totalAssetsBeforeAccounting == 0) return; // Skip check if starting from zero

        checkTotalAssetsChange(params);
        checkTotalSupplyChange(params);
    }

    /**
     * @notice Check if the total assets changed too much to the downside or upside
     * @dev This check protects against anomalous rate changes for the vault.
     * @dev Prevents processAccounting from running if totalAssets change falls outside bounds.
     * @param params The parameters for the afterProcessAccounting function
     */
    function checkTotalAssetsChange(AfterProcessAccountingParams memory params) public view {
        if (params.totalAssetsAfterAccounting < params.totalAssetsBeforeAccounting) {
            // Check for excessive decrease
            uint256 decrease = params.totalAssetsBeforeAccounting - params.totalAssetsAfterAccounting;
            uint256 decreaseRatio = (decrease * RATIO_DENOMINATOR) / params.totalAssetsBeforeAccounting;
            if (decreaseRatio > maxTotalAssetsDecreaseRatio) {
                revert TotalAssetsDecreasedTooMuch(
                    params.totalAssetsBeforeAccounting, params.totalAssetsAfterAccounting, maxTotalAssetsDecreaseRatio
                );
            }
        } else if (params.totalAssetsAfterAccounting > params.totalAssetsBeforeAccounting) {
            // Check for excessive increase
            uint256 increase = params.totalAssetsAfterAccounting - params.totalAssetsBeforeAccounting;
            uint256 increaseRatio = (increase * RATIO_DENOMINATOR) / params.totalAssetsBeforeAccounting;

            if (increaseRatio > maxTotalAssetsIncreaseRatio) {
                revert TotalAssetsIncreasedTooMuch(
                    params.totalAssetsBeforeAccounting, params.totalAssetsAfterAccounting, maxTotalAssetsIncreaseRatio
                );
            }
        }
    }

    /**
     * @notice Check if the total supply changed too much to the upside (decrease not permitted.)
     * @dev This check protects against anomalous supply changes for the vault.
     * @dev Prevents processAccounting from running if totalSupply change falls outside bounds.
     * @param params The parameters for the afterProcessAccounting function
     */
    function checkTotalSupplyChange(AfterProcessAccountingParams memory params) public view {
        uint256 totalSupplyAfterAccounting = VAULT.totalSupply();

        if (totalSupplyAfterAccounting < params.totalSupplyBeforeAccounting) {
            // total supply must not decrease
            revert TotalSupplyDecreased();
        }

        checkTotalSupplyIncreaseRatio(params.totalSupplyBeforeAccounting, totalSupplyAfterAccounting);
        checkTotalSupplyIncreaseGivenPerformanceFee(
            params.totalSupplyBeforeAccounting,
            totalSupplyAfterAccounting,
            params.totalBaseAssetsBeforeAccounting,
            params.totalBaseAssetsAfterAccounting,
            params.totalAssetsAfterAccounting
        );
    }

    /**
     * @notice Check if the total supply increased too much with respect to a max ratio change
     * @dev This check protects against anomalous supply changes for the vault.
     * @dev Prevents processAccounting from running if totalSupply increase falls outside bounds.
     * @param totalSupplyBeforeAccounting The total supply before accounting
     * @param totalSupplyAfterAccounting The total supply after accounting
     */
    function checkTotalSupplyIncreaseRatio(uint256 totalSupplyBeforeAccounting, uint256 totalSupplyAfterAccounting)
        public
        view
    {
        uint256 totalSupplyIncrease = totalSupplyAfterAccounting - totalSupplyBeforeAccounting;
        uint256 _maxTotalSupplyIncreaseRatio = maxTotalSupplyIncreaseRatio;
        uint256 totalSupplyIncreaseRatio = (totalSupplyIncrease * RATIO_DENOMINATOR) / totalSupplyBeforeAccounting;

        if (totalSupplyIncreaseRatio > _maxTotalSupplyIncreaseRatio) {
            revert TotalSupplyIncreasedTooMuch(totalSupplyBeforeAccounting, totalSupplyAfterAccounting);
        }
    }

    /**
     * @notice Check if the total supply increased too much with respect to the expected performance fee
     * @dev This check protects against anomalous supply changes for the vault.
     * @dev Prevents processAccounting from running if totalSupply increases more than what the fee predicts.
     * @param totalSupplyBeforeAccounting The total supply before accounting
     * @param totalSupplyAfterAccounting The total supply after accounting
     */
    function checkTotalSupplyIncreaseGivenPerformanceFee(
        uint256 totalSupplyBeforeAccounting,
        uint256 totalSupplyAfterAccounting,
        uint256 totalBaseAssetsBeforeAccounting,
        uint256 totalBaseAssetsAfterAccounting,
        uint256 /* totalAssetsAfterAccounting */
    ) public view {
        uint256 totalSupplyIncrease = totalSupplyAfterAccounting - totalSupplyBeforeAccounting;
        if (totalSupplyIncrease > 0) {
            if (totalBaseAssetsAfterAccounting <= totalBaseAssetsBeforeAccounting) {
                // no shares should be minted for loss
                revert TotalSupplyIncreasedForLoss();
            }

            uint256 totalBaseAssetsIncrease = totalBaseAssetsAfterAccounting - totalBaseAssetsBeforeAccounting;

            uint256 maxFeeInBaseAssets =
                totalBaseAssetsIncrease.mulDiv(expectedPerformanceFee, FEE_DENOMINATOR, Math.Rounding.Floor);

            // maxShares is a looser bound that ensures the fee asset amount converted to vault shares at rate post mint
            // is less than or equal to the total supply increase
            uint256 maxShares = convertToShares(
                maxFeeInBaseAssets, totalSupplyAfterAccounting, totalBaseAssetsAfterAccounting, Math.Rounding.Floor
            );

            if (totalSupplyIncrease > maxShares) {
                revert TotalSupplyIncreasedTooMuch(totalSupplyBeforeAccounting, totalSupplyAfterAccounting);
            }
        }
    }

    /**
     * @notice Internal function to convert assets to shares
     * @dev This function replicates BaseVault functionality for internal use
     * @param assets The assets to convert
     * @param totalSupply The total supply
     * @param totalAssets The total assets
     * @param rounding The rounding mode
     * @return The shares
     */
    function convertToShares(uint256 assets, uint256 totalSupply, uint256 totalAssets, Math.Rounding rounding)
        internal
        pure
        returns (uint256)
    {
        return assets.mulDiv(totalSupply + 1, totalAssets + 1, rounding);
    }

    /// UNUSED HOOKS ///

    /// @inheritdoc IHooks
    function beforeDeposit(DepositParams memory) external pure override {
        // Not implemented
    }

    /// @inheritdoc IHooks
    function afterDeposit(DepositParams memory) external pure override {
        // Not implemented
    }

    /// @inheritdoc IHooks
    function beforeMint(MintParams memory) external pure override {
        // Not implemented
    }

    /// @inheritdoc IHooks
    function afterMint(MintParams memory) external pure override {
        // Not implemented
    }

    /// @inheritdoc IHooks
    function beforeRedeem(RedeemParams memory) external pure override {
        // Not implemented
    }

    /// @inheritdoc IHooks
    function afterRedeem(RedeemParams memory) external pure override {
        // Not implemented
    }

    /// @inheritdoc IHooks
    function beforeWithdraw(WithdrawParams memory) external pure override {
        // Not implemented
    }

    /// @inheritdoc IHooks
    function afterWithdraw(WithdrawParams memory) external pure override {
        // Not implemented
    }

    /// @inheritdoc IHooks
    function beforeProcessAccounting(BeforeProcessAccountingParams memory) external pure override {
        // Not implemented
    }
}
"
    },
    "lib/yieldnest-vault/src/interface/IHooks.sol": {
      "content": "// SPDX-License-Identifier: BSD-3-Clause
pragma solidity ^0.8.24;

import {IVault} from "src/interface/IVault.sol";

interface IHooks {
    /**
     * @notice Parameters for deposit operations
     */
    struct DepositParams {
        address asset;
        uint256 assets;
        address caller;
        address receiver;
        uint256 shares;
        uint256 baseAssets;
    }

    /**
     * @notice Parameters for mint operations
     */
    struct MintParams {
        address asset;
        uint256 shares;
        address caller;
        address receiver;
        uint256 assets;
        uint256 baseAssets;
    }

    /**
     * @notice Parameters for redeem operations
     */
    struct RedeemParams {
        address asset;
        uint256 shares;
        address caller;
        address receiver;
        address owner;
        uint256 assets;
    }

    /**
     * @notice Parameters for withdraw operations
     */
    struct WithdrawParams {
        address asset;
        uint256 assets;
        address caller;
        address receiver;
        address owner;
        uint256 shares;
    }

    /**
     * @notice Parameters for before process accounting operations
     */
    struct BeforeProcessAccountingParams {
        uint256 totalAssetsBeforeAccounting;
        uint256 totalSupplyBeforeAccounting;
        uint256 totalBaseAssetsBeforeAccounting;
    }

    /**
     * @notice Parameters for after process accounting operations
     */
    struct AfterProcessAccountingParams {
        uint256 totalAssetsBeforeAccounting;
        uint256 totalAssetsAfterAccounting;
        uint256 totalSupplyBeforeAccounting;
        uint256 totalSupplyAfterAccounting;
        uint256 totalBaseAssetsBeforeAccounting;
        uint256 totalBaseAssetsAfterAccounting;
    }

    /**
     * @notice Config struct for the hooks
     * @dev Each flag is a boolean value that indicates if the corresponding hook function is enabled for the vault
     * if the flag is true, the hook function must be called by the vault.
     * if the flag is false, the hook function is expected to be a no-op.
     */
    struct Config {
        bool beforeDeposit;
        bool afterDeposit;
        bool beforeMint;
        bool afterMint;
        bool beforeRedeem;
        bool afterRedeem;
        bool beforeWithdraw;
        bool afterWithdraw;
        bool beforeProcessAccounting;
        bool afterProcessAccounting;
    }

    error CallerNotVault();

    /**
     * @notice Returns the name of the hooks module
     * @return The name of the hooks module
     */
    function name() external view returns (string memory);

    /**
     * @notice Returns the vault that the hooks are attached to
     * @return The vault contract interface
     */
    function VAULT() external view returns (IVault);

    /**
     * @notice Sets the hooks configuration
     * @param config_ The configuration struct containing hook permissions
     */
    function setConfig(Config memory config_) external;

    /**
     * @notice Gets the current hooks configuration
     * @return The configuration struct containing hook permissions
     */
    function getConfig() external view returns (Config memory);

    /**
     * @notice Hook called before deposit is processed
     * @param params The deposit parameters
     */
    function beforeDeposit(DepositParams memory params) external;

    /**
     * @notice Hook called after deposit is processed
     * @param params The deposit parameters
     */
    function afterDeposit(DepositParams memory params) external;

    /**
     * @notice Hook called before mint is processed
     * @param params The mint parameters
     */
    function beforeMint(MintParams memory params) external;

    /**
     * @notice Hook called after mint is processed
     * @param params The mint parameters
     */
    function afterMint(MintParams memory params) external;

    /**
     * @notice Hook called before redeem is processed
     * @param params The redeem parameters
     */
    function beforeRedeem(RedeemParams memory params) external;

    /**
     * @notice Hook called after redeem is processed
     * @param params The redeem parameters
     */
    function afterRedeem(RedeemParams memory params) external;

    /**
     * @notice Hook called before withdraw is processed
     * @param params The withdraw parameters
     */
    function beforeWithdraw(WithdrawParams memory params) external;

    /**
     * @notice Hook called after withdraw is processed
     * @param params The withdraw parameters
     */
    function afterWithdraw(WithdrawParams memory params) external;

    /**
     * @notice Hook called before process accounting is executed
     * @param params The before process accounting parameters
     */
    function beforeProcessAccounting(BeforeProcessAccountingParams memory params) external;

    /**
     * @notice Hook called after process accounting is executed
     * @param params The after process accounting parameters
     */
    function afterProcessAccounting(AfterProcessAccountingParams memory params) external;
}
"
    },
    "lib/yieldnest-vault/src/interface/IVault.sol": {
      "content": "// SPDX-License-Identifier: BSD-3-Clause
pragma solidity ^0.8.24;

import {IERC4626} from "src/Common.sol";
import {IValidator} from "src/interface/IValidator.sol";
import {IHooks} from "src/interface/IHooks.sol";

interface IVault is IERC4626 {
    struct VaultStorage {
        uint256 totalAssets;
        address provider;
        address buffer;
        bool paused;
        uint8 decimals;
        bool countNativeAsset;
        bool alwaysComputeTotalAssets;
        /// @notice The index of the default asset.
        /// The default asset is vault.asset(), used for deposit, withdraw, redeem, mint as default.
        /// If defaultAssetIndex is 0, the vault will use the base asset as default asset.
        uint256 defaultAssetIndex;
    }

    struct AssetParams {
        uint256 index;
        bool active;
        uint8 decimals;
    }

    struct AssetUpdateFields {
        bool active;
    }

    struct AssetStorage {
        mapping(address => AssetParams) assets;
        address[] list;
    }

    struct OverriddenBaseWithdrawalFeeFields {
        /// @notice The base withdrawal fee in basis points (1e8 = 100%) for the user to override
        uint64 baseWithdrawalFee;
        /// @notice Whether the fee is overridden for the user
        bool isOverridden;
    }

    struct FeeStorage {
        /// @notice The base withdrawal fee in basis points (1e8 = 100%)
        uint64 baseWithdrawalFee;
        mapping(address user => OverriddenBaseWithdrawalFeeFields fields) overriddenBaseWithdrawalFee;
    }

    struct HooksStorage {
        IHooks hooks;
    }

    enum ParamType {
        UINT256,
        ADDRESS
    }

    struct ParamRule {
        ParamType paramType;
        bool isArray;
        address[] allowList;
    }

    struct FunctionRule {
        bool isActive;
        ParamRule[] paramRules;
        IValidator validator;
    }

    struct ProcessorStorage {
        uint256 lastProcessed;
        uint256 lastAccounting;
        mapping(address => mapping(bytes4 => FunctionRule)) rules;
    }

    error Paused();
    error Unpaused();
    error ZeroAddress();
    error ZeroAmount();
    error ZeroRate();
    error InvalidString();
    error InvalidArray();
    error ExceededMaxDeposit(address sender, uint256 amount, uint256 maxAssets);
    error DefaultAsset();
    error AssetNotEmpty(address);
    error InvalidAsset(address);
    error InvalidTarget(address);
    error InvalidDecimals();
    error InvalidFunction(address target, bytes4 funcSig);
    error DuplicateAsset(address asset);
    error ExceededMaxWithdraw(address, uint256, uint256);
    error ExceededMaxRedeem(address, uint256, uint256);
    error ProcessFailed(bytes, bytes);
    error ProcessInvalid(bytes);
    error ProviderNotSet();
    error BufferNotSet();
    error DepositFailed();
    error AssetNotActive();
    error ExceedsMaxBasisPoints(uint256 value);
    error InvalidNativeAssetDecimals(uint256 decimals);
    error InvalidAssetDecimals(uint256 decimals);
    error InvalidDefaultAssetIndex(uint256 index);
    error ExceedsMaxPerformanceFee(uint256 value);
    error BaseAsset();
    error CallerNotHooks();
    error InvalidHooks();

    event DepositAsset(
        address indexed sender,
        address indexed receiver,
        address indexed asset,
        uint256 assets,
        uint256 baseAssets,
        uint256 shares
    );
    event WithdrawAsset(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        address asset,
        uint256 assets,
        uint256 shares
    );

    event SetProvider(address indexed provider);
    event SetBuffer(address indexed buffer);
    event SetAlwaysComputeTotalAssets(bool alwaysComputeTotalAssets);
    event NewAsset(address indexed asset, uint256 decimals, uint256 index);
    event ProcessSuccess(address[] targets, uint256[] values, bytes[] data);
    event Pause(bool paused);
    event SetProcessorRule(address indexed target, bytes4, FunctionRule);
    event NativeDeposit(uint256 amount);
    event ProcessAccounting(uint256 timestamp, uint256 totalAssetsBefore, uint256 totalAssetsAfter);
    event UpdateAsset(uint256 indexed index, address indexed asset, AssetUpdateFields fields);
    event DeleteAsset(uint256 indexed index, address indexed asset);
    event SetBaseWithdrawalFee(uint64 oldFee, uint64 newFee);
    event WithdrawalFeeOverridden(address indexed user, uint64 baseWithdrawalFee, bool isOverridden);
    event SetHooks(address indexed oldHooks, address indexed newHooks);

    // 4626-MAX
    function getAssets() external view returns (address[] memory list);
    function getAsset(address asset_) external view returns (AssetParams memory);
    function hasAsset(address asset_) external view returns (bool);
    function getProcessorRule(address contractAddress, bytes4 funcSig) external view returns (FunctionRule memory);
    function previewDepositAsset(address assetAddress, uint256 assets) external view returns (uint256);
    function depositAsset(address assetAddress, uint256 amount, address receiver) external returns (uint256);
    function provider() external view returns (address);
    function buffer() external view returns (address);
    function totalBaseAssets() external view returns (uint256);
    function computeTotalAssets() external view returns (uint256);
    function alwaysComputeTotalAssets() external view returns (bool);

    // ADMIN
    function setProvider(address provider) external;
    function setBuffer(address buffer) external;
    function setProcessorRule(address target, bytes4 functionSig, FunctionRule memory rule) external;
    function setProcessorRules(address[] memory targets, bytes4[] memory functionSigs, FunctionRule[] memory rules)
        external;
    function addAsset(address asset_, bool active_) external;
    function deleteAsset(uint256 index) external;
    function pause() external;
    function unpause() external;
    function hooks() external view returns (IHooks);
    function setHooks(address hooks) external;
    function mintShares(address recipient, uint256 shares) external;
    function withdrawAsset(address asset_, uint256 assets, address receiver, address owner)
        external
        returns (uint256);

    function processAccounting() external;
    function processor(address[] calldata targets, uint256[] calldata values, bytes[] calldata data)
        external
        returns (bytes[] memory);

    // FEES
    function _feeOnRaw(uint256 amount, address user) external view returns (uint256);
    function _feeOnTotal(uint256 amount, address user) external view returns (uint256);
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "lib/yieldnest-vault/src/Common.sol": {
      "content": "/* solhint-disable no-empty-blocks, no-unused-import */
// SPDX-License-Identifier: BSD-3-Clause
pragma solidity ^0.8.24;

import {AccessControlUpgradeable} from
    "lib/openzeppelin-contracts-upgradeable/contracts/access/AccessControlUpgradeable.sol";
import {Address} from "lib/openzeppelin-contracts/contracts/utils/Address.sol";
import {ERC20} from "lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {ERC20PermitUpgradeable} from
    "lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC20PermitUpgradeable.sol";
import {ERC20Upgradeable} from "lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/ERC20Upgradeable.sol";
import {IAccessControl} from "lib/openzeppelin-contracts/contracts/access/IAccessControl.sol";
import {IERC20} from "lib/openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import {IERC20Metadata} from "lib/openzeppelin-contracts/contracts/interfaces/IERC20Metadata.sol";
import {IERC20Permit} from "lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {IERC4626} from "lib/openzeppelin-contracts/contracts/interfaces/IERC4626.sol";
import {Math} from "lib/openzeppelin-contracts/contracts/utils/math/Math.sol";
import {ProxyAdmin} from "lib/openzeppelin-contracts/contracts/proxy/transparent/ProxyAdmin.sol";
import {ReentrancyGuardUpgradeable} from
    "lib/openzeppelin-contracts-upgradeable/contracts/utils/ReentrancyGuardUpgradeable.sol";
import {SafeERC20} from "lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {TimelockController} from "lib/openzeppelin-contracts/contracts/governance/TimelockController.sol";
import {
    TransparentUpgradeableProxy,
    ITransparentUpgradeableProxy
} from "lib/openzeppelin-contracts/contracts/proxy/transparent/TransparentUpgradeableProxy.sol";
import {IERC165} from "lib/openzeppelin-contracts/contracts/interfaces/IERC165.sol";
import {Initializable} from "lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/Initializable.sol";
import {OwnableUpgradeable} from "lib/openzeppelin-contracts-upgradeable/contracts/access/OwnableUpgradeable.sol";
import {Ownable} from "lib/openzeppelin-contracts/contracts/access/Ownable.sol";

contract Common {}
"
    },
    "lib/yieldnest-vault/src/interface/IValidator.sol": {
      "content": "// SPDX-License-Identifier: BSD-3-Clause
pragma solidity ^0.8.24;

interface IValidator {
    /// @notice Validates a transaction before execution
    /// @param target The address the transaction will be sent to
    /// @param value The amount of ETH (in wei) that will be sent with the transaction
    /// @param data The calldata that will be sent with the transaction
    /// @dev This function should revert if the transaction is invalid
    /// @dev This function is called before executing a transaction
    function validate(address target, uint256 value, bytes calldata data) external view;
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/Panic.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }

Tags:
ERC20, ERC165, Multisig, Mintable, Pausable, Yield, Voting, Timelock, Upgradeable, Multi-Signature, Factory, Oracle|addr:0x73eb5ad0369b54e99bd0b25903a037d87877d996|verified:true|block:23594502|tx:0x58acb8cdfbd264bb45aca6651ae25c2f043696592e969d7a9b2c5ff4ba29ba6b|first_check:1760690423

Submitted on: 2025-10-17 10:40:23

Comments

Log in to comment.

No comments yet.