Lens

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/Lens.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.13;

import "./Lender.sol";

contract Lens {

    using FixedPointMathLib for uint256;
    

    function getCollateralOf(Lender _lender, address borrower) public view returns (uint256) {
        uint borrowerDebtShares = _lender.freeDebtShares(borrower);
        // If borrower has no debt shares skip calculation
        if (borrowerDebtShares == 0) return 0;
        uint _borrowerEpoch = _lender.borrowerEpoch(borrower);
        uint bal = _lender._cachedCollateralBalances(borrower);
        uint lastIndex = _lender.borrowerLastRedeemedIndex(borrower);
        // Loop through all missed epochs
        for (uint i = 0; i < 5 && _borrowerEpoch < _lender.epoch() && borrowerDebtShares > 0; ++i) {
            // Apply redemption for the borrower's current epoch
            uint indexDelta = _lender.epochRedeemedCollateral(_borrowerEpoch) - lastIndex;
            uint redeemedCollateral = indexDelta.mulDivUp(borrowerDebtShares, 1e36);
            bal = bal < redeemedCollateral ? 0 : bal - redeemedCollateral;

            // Move to next epoch, reduce shares
            _borrowerEpoch += 1;
            borrowerDebtShares = borrowerDebtShares.divWadUp(1e36) == 1 ? 0 : borrowerDebtShares.divWadUp(1e36); // If shares is 1 round down to 0
            lastIndex = 0; // For new epoch, last redeemed index is 0
        }
        // Apply any remaining redemption for the current epoch
        if (borrowerDebtShares > 0) {
            uint indexDelta = _lender.epochRedeemedCollateral(_borrowerEpoch) - lastIndex;
            uint redeemedCollateral = indexDelta.mulDivUp(borrowerDebtShares, 1e36);
            bal = bal < redeemedCollateral ? 0 : bal - redeemedCollateral;
        }
        return bal;
    }
}"
    },
    "src/Lender.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.13;

import "lib/solmate/src/tokens/ERC20.sol";
import "lib/solmate/src/utils/SafeTransferLib.sol";
import "lib/solmate/src/utils/FixedPointMathLib.sol";
import "./Coin.sol";
import "./Vault.sol";
import "./InterestModel.sol";

interface IChainlinkFeed {
    function decimals() external view returns (uint8);
    function latestRoundData() external view returns (
        uint80 roundId,
        int256 answer,
        uint256 startedAt,
        uint256 updatedAt,
        uint80 answeredInRound
    );
}

interface IFactory {
    function getFeeOf(address _lender) external view returns (uint256);
}

contract Lender {

    using SafeTransferLib for ERC20;
    using FixedPointMathLib for uint256;

    // single 256-bit slot
    uint16 public targetFreeDebtRatioStartBps = 2000; // max uint16 is 65535 bps which is outside of the range [0, 10000]
    uint16 public targetFreeDebtRatioEndBps = 4000; // max uint16 is 65535 bps which is outside of the range [0, 10000]
    uint16 public redeemFeeBps = 30; // max uint16 is 65535 bps fee which is outside of the range [0, 10000]
    uint64 public expRate = uint64(uint(wadLn(2*1e18)) / 7 days); // max result is 693147180559945309 which is within uint64 range
    uint40 public lastAccrue; // max uint40 is year 36812
    uint88 public lastBorrowRateMantissa = uint88(5e15); // max uint88 is equivalent to 309485000% APR
    uint16 public feeBps; // max uint16 is 65535 bps which is outside of the range [0, 10000]

    // single 256-bit slot
    uint16 public cachedGlobalFeeBps;
    uint120 public accruedLocalReserves;
    uint120 public accruedGlobalReserves;

    // Other state variables
    address public operator;
    address public pendingOperator;
    uint public immutabilityDeadline; // may only be reduced by operator
    uint public totalFreeDebt;
    uint public totalFreeDebtShares;
    uint public totalPaidDebt;
    uint public totalPaidDebtShares;
    uint public epoch;

    // Constants and immutables
    Coin public immutable coin;
    ERC20 public immutable collateral;
    IChainlinkFeed public immutable feed;
    Vault public immutable vault;
    InterestModel public immutable interestModel;
    IFactory public immutable factory;
    uint public immutable collateralFactor;
    uint public immutable minDebt;
    uint public constant STALENESS_THRESHOLD = 25 hours; // standard 24 hours staleness + 1 hour buffer
    uint public constant STALENESS_UNWIND_DURATION = 24 hours;
    uint public constant MIN_LIQUIDATION_DEBT = 10_000e18; // 10,000 Coin

    // Mappings
    mapping(address => uint) public _cachedCollateralBalances; // should not be read externally in most cases
    mapping(address => uint) public freeDebtShares;
    mapping(address => uint) public paidDebtShares;
    mapping(address => bool) public isRedeemable;
    mapping(address => mapping(address => bool)) public delegations;

    mapping(address => uint) public borrowerLastRedeemedIndex;
    mapping(address => uint) public borrowerEpoch;
    mapping(uint => uint) public epochRedeemedCollateral;
    uint256 public nonRedeemableCollateral;

    constructor(
        ERC20 _collateral,
        IChainlinkFeed _feed,
        Coin _coin,
        Vault _vault,
        InterestModel _interestModel,
        IFactory _factory,
        address _operator,
        uint _collateralFactor,
        uint _minDebt,
        uint _timeUntilImmutability
    ) {
        require(_collateralFactor <= 10000, "Invalid collateral factor");
        require(_timeUntilImmutability < 1460 days, "Max immutability deadline is in 4 years");
        collateral = _collateral;
        feed = _feed;
        coin = _coin;
        vault = _vault;
        interestModel = _interestModel;
        factory = _factory;
        operator = _operator;
        collateralFactor = _collateralFactor;
        minDebt = _minDebt;
        immutabilityDeadline = block.timestamp + _timeUntilImmutability;
        lastAccrue = uint40(block.timestamp);
        cachedGlobalFeeBps = uint16(factory.getFeeOf(address(this)));
    }

    // Modifiers
    
    modifier onlyOperator() {
        require(msg.sender == operator, "Unauthorized");
        _;
    }

    modifier beforeDeadline() {
        require(block.timestamp < immutabilityDeadline, "Deadline passed");
        _;
    }

    // Public functions

    function accrueInterest() public {
        uint timeElapsed = block.timestamp - lastAccrue;
        if(timeElapsed == 0) return;

        try interestModel.calculateInterest(
            totalPaidDebt,
            lastBorrowRateMantissa,
            timeElapsed,
            expRate,
            getFreeDebtRatio(),
            targetFreeDebtRatioStartBps,
            targetFreeDebtRatioEndBps
        ) returns (uint currBorrowRate, uint interest) {
            uint120 localReserveFee = uint120(interest * feeBps / 10000);
            uint120 globalReserveFee = uint120(interest * cachedGlobalFeeBps / 10000);
            accruedLocalReserves += localReserveFee;
            accruedGlobalReserves += globalReserveFee;
            // we remove reserve fees from interest before calculating how much to give to stakers
            uint interestAfterFees = interest - localReserveFee - globalReserveFee;
            uint totalStaked = vault.totalAssets();
            if(totalStaked < totalPaidDebt) { // this also implies totalPaidDebt > 0 and guards the division below
                // if total staked is less than paid debt, giving all interest to stakers would
                // result in higher supply rate than borrow rate which is undesirable.
                // we cap the supply rate at the borrow rate and give the rest to local reserves.
                uint stakedInterest = interestAfterFees * totalStaked / totalPaidDebt;
                coin.mint(address(vault), stakedInterest);
                uint remainingInterest = interestAfterFees - stakedInterest;
                accruedLocalReserves += uint120(remainingInterest);
            } else {
                // if total staked is greater than paid debt, we give all interest to stakers
                coin.mint(address(vault), interestAfterFees);
            }
            totalPaidDebt += interest; // we add all interest to paid debt (NOT interestAfterFees)
            lastAccrue = uint40(block.timestamp);
            lastBorrowRateMantissa = uint88(currBorrowRate);
            cachedGlobalFeeBps = uint16(factory.getFeeOf(address(this)));
        } catch {
            // If the call reverts, do nothing.
        }
    }

    function adjust(address account, int collateralDelta, int debtDelta) public {
        accrueInterest();
        updateBorrower(account);
        // Handle collateral changes
        if (collateralDelta > 0) {
            if(!isRedeemable[account]) nonRedeemableCollateral += uint(collateralDelta);
            
            // Deposit collateral
            _cachedCollateralBalances[account] += uint(collateralDelta);
            collateral.safeTransferFrom(msg.sender, address(this), uint(collateralDelta));
        } else if (collateralDelta < 0) {
            // Ensure sufficient collateral for non-redeemable accounts
            if (isRedeemable[account]) {
                require(
                    collateral.balanceOf(address(this)) - uint256(-collateralDelta) >= nonRedeemableCollateral,
                    "Insufficient redeemable collateral"
                );
            } else {
                nonRedeemableCollateral -= uint256(-collateralDelta);
            }
 
            // Withdraw collateral
            _cachedCollateralBalances[account] -= uint(-collateralDelta);
            collateral.safeTransfer(msg.sender, uint(-collateralDelta));
        }

        // Handle debt changes
        if (debtDelta > 0) {
            // Borrow
            uint amount = uint256(debtDelta);
            increaseDebt(account, amount);
            coin.mint(msg.sender, amount);
        } else if (debtDelta < 0) {
            // Repay
            uint amount = uint256(-debtDelta);
            uint debt = getDebtOf(account);
            if(debt <= amount) {
                amount = debt;
                decreaseDebt(account, type(uint).max);
            } else {
                decreaseDebt(account, amount);
            }
            coin.transferFrom(msg.sender, address(this), amount);
            coin.burn(amount);
        }

        // if debtDelta is non-zero, require debt balance to either be 0 or >= minDebt
        uint debtBalance = getDebtOf(account);
        if(debtDelta != 0) require(debtBalance == 0 || debtBalance >= minDebt, "Debt below minimum and larger than 0");

        // Emit event before the first early return
        emit PositionAdjusted(account, collateralDelta, debtDelta);

        // Skip remaining invariants if caller does not reduce collateral AND does not increase debt
        if(collateralDelta >= 0 && debtDelta <= 0) return;

        // The caller is removing collateral and/or increasing debt. Enforce ownership beyond this point
        require(msg.sender == account || delegations[account][msg.sender], "Unauthorized");

        // Skip solvency checks if debt is zero
        if(debtBalance == 0) return;

        // Check solvency
        (uint price, bool reduceOnly, ) = getCollateralPrice();
        require(!reduceOnly, "Reduce only");
        uint borrowingPower = price * _cachedCollateralBalances[account] * collateralFactor / 1e18 / 10000;
        require(debtBalance <= borrowingPower, "Solvency check failed");
    }

    function adjust(address account, int collateralDelta, int debtDelta, bool chooseRedeemable) external {
        setRedemptionStatus(account, chooseRedeemable);
        adjust(account, collateralDelta, debtDelta);
    }

    /// @notice Allows an account to delegate control of their position to another address (adjustPosition, optInRedemptions, optOutRedemptions functions)
    /// @param delegatee The address to delegate to
    /// @param isDelegatee True to enable delegation, false to revoke
    function delegate(address delegatee, bool isDelegatee) external {
        delegations[msg.sender][delegatee] = isDelegatee;
        emit DelegationUpdated(msg.sender, delegatee, isDelegatee);
    }

    function setRedemptionStatus(address account, bool chooseRedeemable) public {
        accrueInterest();
        updateBorrower(account);
        require(msg.sender == account || delegations[account][msg.sender], "Unauthorized");
        if(chooseRedeemable == isRedeemable[account]) return; // no change
        if(chooseRedeemable){
            borrowerEpoch[account] = epoch;
            borrowerLastRedeemedIndex[account] = epochRedeemedCollateral[epoch];
            nonRedeemableCollateral -= _cachedCollateralBalances[account];
        } else {
            nonRedeemableCollateral += _cachedCollateralBalances[account];
        }
        uint prevDebt = getDebtOf(account);
        if(prevDebt > 0) {
            decreaseDebt(account, type(uint).max);
            isRedeemable[account] = chooseRedeemable;
            increaseDebt(account, prevDebt);
            uint currDebt = getDebtOf(account);
            require(currDebt >= prevDebt, "Debt decreased unexpectedly");
        } else {
            isRedeemable[account] = chooseRedeemable;
        }
        emit RedemptionStatusUpdated(account, chooseRedeemable);
    }

        /// @notice Liquidates an unsafe position
    /// @param borrower The account to be liquidated
    /// @param repayAmount The amount of debt to repay
    /// @param minCollateralOut The minimum amount of collateral to receive
    /// @return The amount of collateral received
    function liquidate(address borrower, uint repayAmount, uint minCollateralOut) external returns(uint) {
        accrueInterest();
        updateBorrower(borrower);
        require(repayAmount > 0, "Repay amount must be greater than 0");
        (uint price,, bool allowLiquidations) = getCollateralPrice();
        require(allowLiquidations, "liquidations disabled");
        uint debt = getDebtOf(borrower);
        uint collateralBalance = _cachedCollateralBalances[borrower];
        // check liquidation condition
        uint liquidatableDebt = getLiquidatableDebt(collateralBalance, price, debt);
        require(liquidatableDebt > 0, "insufficient liquidatable debt");
        if(repayAmount > liquidatableDebt) {
            repayAmount = liquidatableDebt;
        }

        // apply repayment
        decreaseDebt(borrower, repayAmount);

        // calculate collateral reward
        uint liqIncentiveBps = getLiquidationIncentiveBps(collateralBalance, price, debt);
        uint collateralRewardValue = repayAmount * (10000 + liqIncentiveBps) / 10000;
        uint collateralReward = collateralRewardValue * 1e18 / price;
        collateralReward = collateralReward > collateralBalance ? collateralBalance : collateralReward;
        require(collateralReward >= minCollateralOut, "insufficient collateral out");

        if(collateralReward > 0) {
            collateral.safeTransfer(msg.sender, collateralReward);
            _cachedCollateralBalances[borrower] = collateralBalance - collateralReward;
            if(!isRedeemable[borrower]) nonRedeemableCollateral -= collateralReward;
        }
        coin.transferFrom(msg.sender, address(this), repayAmount);
        coin.burn(repayAmount);
        emit Liquidated(borrower, msg.sender, repayAmount, collateralReward);
        // try to write off remaining debt. Call externally and catch error to prevent liquidation failure
        try this.writeOff(borrower, msg.sender) {} catch {}
        return collateralReward;
    }

    /// @notice Redistributes excess debt of undercollateralized accounts among other borrowers
    /// @param borrower The account in potentiallyundercollateralized state
    /// @return writtenOff True if the borrower was written off, false otherwise
    /// @param to The address to send the collateral to
    /// @dev This function is called by liquidate() when a borrower's position is undercollateralized. It should never revert to avoid liquidation failure.
    function writeOff(address borrower, address to) external returns (bool writtenOff) {
        accrueInterest();
        updateBorrower(borrower);
        // check for write off
        uint debt = getDebtOf(borrower);
        if(debt > 0) {
            uint collateralBalance = _cachedCollateralBalances[borrower];
            (uint price,, bool allowLiquidations) = getCollateralPrice();
            require(allowLiquidations, "liquidations disabled");
            uint collateralValue = price * collateralBalance / 1e18;
            // if debt is more than 100 times the collateral value, write off
            if(debt > collateralValue * 100) {
                // 1. delete all of the borrower's debt
                decreaseDebt(borrower, type(uint).max);
                // 2. redistribute excess debt among remaining borrowers
                uint256 totalDebt = totalFreeDebt + totalPaidDebt;
                if (totalDebt > 0) {
                    uint256 freeDebtIncrease = debt * totalFreeDebt / totalDebt;
                    uint256 paidDebtIncrease = debt - freeDebtIncrease;

                    totalFreeDebt += freeDebtIncrease;
                    totalPaidDebt += paidDebtIncrease;
                }
                // 3. send collateral to caller
                collateral.safeTransfer(to, collateralBalance);
                if(!isRedeemable[borrower]) nonRedeemableCollateral -= collateralBalance;
                
                _cachedCollateralBalances[borrower] = 0;
                emit WrittenOff(borrower, to, debt, collateralBalance);
                writtenOff = true;
            }
        }
    }

    /// @notice Redeems Coin for collateral at current market price minus a fee
    /// @param amountIn The amount of Coin to redeem
    /// @param minAmountOut The minimum amount of collateral to receive
    /// @return amountOut The amount of collateral received
    /// @dev Redemptions requires sufficient redeemable collateral to seize and free debt to repay
    function redeem(uint amountIn, uint minAmountOut) external returns (uint amountOut) {
        accrueInterest();
        // calculate amountOut
        amountOut = getRedeemAmountOut(amountIn);
        require(amountOut >= minAmountOut, "insufficient amount out");
        require(collateral.balanceOf(address(this)) - amountOut >= nonRedeemableCollateral, "Insufficient redeemable collateral");
        // repay on behalf of free debtors
        totalFreeDebt -= amountIn;
        coin.transferFrom(msg.sender, address(this), amountIn);
        coin.burn(amountIn);

        // distribute collateral redemption per free debt share
        epochRedeemedCollateral[epoch] += amountOut.mulDivUp(1e36, totalFreeDebtShares);

        collateral.safeTransfer(msg.sender, amountOut);

        // Intentional division by zero and revert if totalFreeDebt is 0
        if( totalFreeDebtShares / totalFreeDebt > 1e9) {
            epoch++;
            totalFreeDebtShares = totalFreeDebtShares.mulDivUp(1e18,1e36); 
            emit NewEpoch(epoch);
        }

        emit Redeemed(msg.sender, amountIn, amountOut);
        return amountOut;
    }

    // Internal functions

    function updateBorrower(address borrower) internal {
        uint borrowerDebtShares = freeDebtShares[borrower];
        
        if (borrowerDebtShares > 0) {
            uint _borrowerEpoch = borrowerEpoch[borrower];
            uint bal = _cachedCollateralBalances[borrower];
            uint lastIndex = borrowerLastRedeemedIndex[borrower];
            // Loop through missed epochs (max 5 iterations considering max uint256 is 2^256 - 1 would go to zero in 5 iterations)
            for (uint i = 0; i < 5 && _borrowerEpoch < epoch && borrowerDebtShares > 0; ++i) {
                // Apply redemption for the borrower's current epoch
                uint indexDelta = epochRedeemedCollateral[_borrowerEpoch] - lastIndex;
                uint redeemedCollateral = indexDelta.mulDivUp(borrowerDebtShares, 1e36);
                bal = bal < redeemedCollateral ? 0 : bal - redeemedCollateral;

                // Move to next epoch, reduce shares
                _borrowerEpoch += 1;
                borrowerDebtShares = borrowerDebtShares.divWadUp(1e36) == 1 ? 0 : borrowerDebtShares.divWadUp(1e36); // If shares is 1 round down to 0
                lastIndex = 0; // For new epoch, last redeemed index is 0
            }
            // Apply any remaining redemption for the current epoch
            if (borrowerDebtShares > 0) {
                uint indexDelta = epochRedeemedCollateral[_borrowerEpoch] - lastIndex;
                uint redeemedCollateral = indexDelta.mulDivUp(borrowerDebtShares, 1e36);
                bal = bal < redeemedCollateral ? 0 : bal - redeemedCollateral;
            }
            // Update state
            freeDebtShares[borrower] = borrowerDebtShares;
            _cachedCollateralBalances[borrower] = bal;
        }

        if(isRedeemable[borrower]){
            borrowerEpoch[borrower] = epoch;
            borrowerLastRedeemedIndex[borrower] = epochRedeemedCollateral[epoch];
        } 
    }

    function increaseDebt(address account, uint256 amount) internal {
        if (isRedeemable[account]) {
            // Handle free debt
            uint shares = totalFreeDebtShares == 0 ? 
                    amount : 
                    amount.mulDivUp(totalFreeDebtShares, totalFreeDebt);
            totalFreeDebt += amount;
            totalFreeDebtShares += shares;
            freeDebtShares[account] += shares;
        } else {
            // Handle paid debt 
            uint256 shares = totalPaidDebtShares == 0 ? 
                amount : 
                amount.mulDivUp(totalPaidDebtShares, totalPaidDebt);
            totalPaidDebt += amount;
            totalPaidDebtShares += shares;
            paidDebtShares[account] += shares;
        }
    }

    function decreaseDebt(address account, uint256 amount) internal {
        if (isRedeemable[account]) {
            // Handle free debt
            uint256 shares;
            if(amount == type(uint).max) {
                shares = freeDebtShares[account];
                amount = getDebtOf(account);
            } else {
                shares = amount.mulDivDown(totalFreeDebtShares, totalFreeDebt);
            }
            freeDebtShares[account] -= shares;
            totalFreeDebtShares = totalFreeDebtShares <= shares ? 0 : totalFreeDebtShares - shares; // prevent underflow
            totalFreeDebt = totalFreeDebt <= amount ? 0 : totalFreeDebt - amount; // prevent underflow
        } else {
            // Handle paid debt
            uint256 shares;
            if(amount == type(uint).max) {
                shares = paidDebtShares[account];
                amount = getDebtOf(account);
            } else {
                shares = amount.mulDivDown(totalPaidDebtShares, totalPaidDebt);
            }
            
            paidDebtShares[account] -= shares;
            totalPaidDebtShares -= shares;
            totalPaidDebt -= amount;
        }
    }

    function getLiquidatableDebt(uint collateralBalance, uint price, uint debt) internal view returns(uint liquidatableDebt){
        uint borrowingPower = price * collateralBalance * collateralFactor / 1e18 / 10000;
        if(borrowingPower > debt) return 0;
        // liquidate 25% of the total debt
        liquidatableDebt = debt / 4; // 25% of the debt
        // liquidate at least MIN_LIQUIDATION_DEBT (or the entire debt if it's less than MIN_LIQUIDATION_DEBT)
        if(liquidatableDebt < MIN_LIQUIDATION_DEBT) liquidatableDebt = debt < MIN_LIQUIDATION_DEBT ? debt : MIN_LIQUIDATION_DEBT;
    }

    function getLiquidationIncentiveBps(uint collateralBalance, uint price, uint debt) internal view returns(uint) {
        uint collateralValue = collateralBalance * price / 1e18;
        if (collateralValue == 0) return 100; // avoid division by zero, return 1% incentive
        uint ltvBps = debt * 10000 / collateralValue;
        uint _collateralFactor = collateralFactor; // gas optimization
        uint maxLtvBps = _collateralFactor + 500; // range is [_collateralFactor, _collateralFactor + 5%]

        if (ltvBps <= _collateralFactor) {
            return 100; // 1% incentive
        } else if (ltvBps >= maxLtvBps) {
            return 1000; // 10% incentive
        } else {
            // linear interpolation between 1% and 10% incentive
            return 100 + (ltvBps - _collateralFactor) * 900 / (maxLtvBps - _collateralFactor);
        }
    }

    // Getters

    function getFreeDebtRatio() public view returns (uint) {
        return totalFreeDebt == 0 ? 0 : totalFreeDebt * 10000 / (totalPaidDebt + totalFreeDebt);
    }

    function getDebtOf(address account) public view returns (uint) {
        if(isRedeemable[account]) {
            return totalFreeDebtShares == 0 ? 0 : freeDebtShares[account].mulDivUp(totalFreeDebt, totalFreeDebtShares);
        } else {
            return totalPaidDebtShares == 0 ? 0 : paidDebtShares[account].mulDivUp(totalPaidDebt, totalPaidDebtShares);
        }
    }

    /// @notice Gets the current price of the collateral asset
    /// @return price The price in USD normalized to (36 - collateral decimals) decimals for consistent calculations
    /// @return reduceOnly A boolean indicating if reduce only mode is enabled
    /// @return allowLiquidations A boolean indicating if liquidations and write-offs are enabled
    function getCollateralPrice() public view returns (uint price, bool reduceOnly, bool allowLiquidations) {
        uint updatedAt;
        allowLiquidations = true; // Default to allowing liquidations
        
        // call our own getFeedPrice() externally to catch all feed reverts e.g. due to inexistent feed contract, function, etc.
        try this.getFeedPrice() returns (uint _price, uint _updatedAt) {
            price = _price;
            updatedAt = _updatedAt;
            if(price == 0) {
                reduceOnly = true;
                allowLiquidations = false; // Disable liquidations if price is invalid
            }
        } catch {
            reduceOnly = true;
            allowLiquidations = false; // Disable liquidations only if the oracle feed is reverting
        }
        
        uint currentTime = block.timestamp;
        uint timeElapsed = currentTime >= updatedAt ? currentTime - updatedAt : 0;

        if (timeElapsed > STALENESS_THRESHOLD) {
            reduceOnly = true;
            uint stalenessDuration = timeElapsed - STALENESS_THRESHOLD;
            if (stalenessDuration < STALENESS_UNWIND_DURATION) {
                price = price * (STALENESS_UNWIND_DURATION - stalenessDuration) / STALENESS_UNWIND_DURATION;
            } else {
                price = 0;
            }
        }
        price = price == 0 ? 1 : price; // avoid division by zero in consumer functions
    }

    function getFeedPrice() external view returns (uint price, uint updatedAt) {
        (,int256 feedPrice,,uint256 feedUpdatedAt,) = feed.latestRoundData();
        uint8 feedDecimals = feed.decimals();
        uint8 tokenDecimals = collateral.decimals();
        if(feedDecimals + tokenDecimals <= 36) {
            uint8 decimals = 36 - tokenDecimals - feedDecimals;
            price = feedPrice > 0 ? uint(feedPrice) * (10**decimals) : 0; // convert negative price to uint 0 to signal invalid price
        } else {
            uint8 decimals = feedDecimals + tokenDecimals - 36;
            price = feedPrice > 0 ? uint(feedPrice) / (10**decimals) : 0; // convert negative price to uint 0 to signal invalid price
        }
        updatedAt = feedUpdatedAt;
    }

    /// @notice Calculates the amount of collateral received for redeeming Coin
    /// @param amountIn The amount of Coin to redeem
    /// @return amountOut The amount of collateral to receive
    function getRedeemAmountOut(uint amountIn) public view returns (uint amountOut) {
        if(amountIn > totalFreeDebt) return 0; // can't redeem more than free debt
        (uint price,, bool allowLiquidations) = getCollateralPrice();
        if(!allowLiquidations) return 0;
        // multiply amountIn by price then apply redeem fee to amountIn
        amountOut = amountIn * 1e18 * (10000 - redeemFeeBps) / price / 10000;
    }

    // Setters

    function setHalfLife(uint64 halfLife) external onlyOperator beforeDeadline {
        accrueInterest();
        require(halfLife >= 12 hours && halfLife <= 30 days, "Invalid half life");
        expRate = uint64(uint(wadLn(2*1e18)) / halfLife);
        emit HalfLifeUpdated(halfLife);
    }

    function setTargetFreeDebtRatio(uint16 startBps, uint16 endBps) external onlyOperator beforeDeadline {
        accrueInterest();
        require(startBps >= 500 && startBps <= endBps, "Invalid start bps");
        require(endBps >= startBps && endBps <= 9500, "Invalid end bps");
        targetFreeDebtRatioStartBps = uint16(startBps);
        targetFreeDebtRatioEndBps = uint16(endBps);
        emit TargetFreeDebtRatioUpdated(startBps, endBps);
    }

    function setRedeemFeeBps(uint16 _redeemFeeBps) external onlyOperator beforeDeadline {
        accrueInterest();
        require(_redeemFeeBps <= 300, "Invalid redeem fee bps");
        redeemFeeBps = uint16(_redeemFeeBps);
        emit RedeemFeeBpsUpdated(_redeemFeeBps);
    }

    function setLocalReserveFeeBps(uint _feeBps) external onlyOperator {
        accrueInterest();
        require(_feeBps <= 1000, "Invalid fee");
        feeBps = uint16(_feeBps);
        emit LocalReserveFeeUpdated(_feeBps);
    }

    function setPendingOperator(address _pendingOperator) external onlyOperator {
        pendingOperator = _pendingOperator;
        emit PendingOperatorUpdated(_pendingOperator);
    }

    function acceptOperator() external {
        require(msg.sender == pendingOperator, "Unauthorized");
        operator = pendingOperator;
        emit OperatorAccepted(pendingOperator);
    }

    function enableImmutabilityNow() external onlyOperator beforeDeadline {
        immutabilityDeadline = block.timestamp;
    }

    function pullLocalReserves() external onlyOperator {
        accrueInterest();
        coin.mint(msg.sender, accruedLocalReserves);
        accruedLocalReserves = 0;
    }

    function pullGlobalReserves(address _to) external {
        require(msg.sender == address(factory), "Unauthorized");
        accrueInterest();
        coin.mint(_to, accruedGlobalReserves);
        accruedGlobalReserves = 0;
    }

    // Events

    event PositionAdjusted(address indexed account, int collateralDelta, int debtDelta);
    event HalfLifeUpdated(uint64 halfLife);
    event TargetFreeDebtRatioUpdated(uint16 startBps, uint16 endBps);
    event RedeemFeeBpsUpdated(uint16 redeemFeeBps);
    event DelegationUpdated(address indexed delegator, address indexed delegatee, bool isDelegatee);
    event PendingOperatorUpdated(address indexed pendingOperator);
    event OperatorAccepted(address indexed operator);
    event LocalReserveFeeUpdated(uint256 feeBps);
    event RedemptionStatusUpdated(address indexed account, bool isRedeemable);
    event Liquidated(address indexed borrower, address indexed liquidator, uint repayAmount, uint collateralOut);
    event WrittenOff(address indexed borrower, address indexed to, uint debt, uint collateral);
    event NewEpoch(uint epoch);
    event Redeemed(address indexed account, uint amountIn, uint amountOut);
}
"
    },
    "lib/solmate/src/tokens/ERC20.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            address recoveredAddress = ecrecover(
                keccak256(
                    abi.encodePacked(
                        "\x19\x01",
                        DOMAIN_SEPARATOR(),
                        keccak256(
                            abi.encode(
                                keccak256(
                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                ),
                                owner,
                                spender,
                                value,
                                nonces[owner]++,
                                deadline
                            )
                        )
                    )
                ),
                v,
                r,
                s
            );

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}
"
    },
    "lib/solmate/src/utils/SafeTransferLib.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
    /*//////////////////////////////////////////////////////////////
                             ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address to, uint256 amount) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Transfer the ETH and store if it succeeded or not.
            success := call(gas(), to, amount, 0, 0, 0, 0)
        }

        require(success, "ETH_TRANSFER_FAILED");
    }

    /*//////////////////////////////////////////////////////////////
                            ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
            mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
            )
        }

        require(success, "TRANSFER_FROM_FAILED");
    }

    function safeTransfer(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "TRANSFER_FAILED");
    }

    function safeApprove(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "APPROVE_FAILED");
    }
}
"
    },
    "lib/solmate/src/utils/FixedPointMathLib.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant MAX_UINT256 = 2**256 - 1;

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // Divide x * y by the denominator.
            z := div(mul(x, y), denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // If x * y modulo the denominator is strictly greater than 0,
            // 1 is added to round up the division of x * y by the denominator.
            z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Mod x by y. Note this will return
            // 0 instead of reverting if y is zero.
            z := mod(x, y)
        }
    }

    function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Divide x by y. Note this will return
            // 0 instead of reverting if y is zero.
            r := div(x, y)
        }
    }

    function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Add 1 to x * y if x % y > 0. Note this will
            // return 0 instead of reverting if y is zero.
            z := add(gt(mod(x, y), 0), div(x, y))
        }
    }
}
"
    },
    "src/Coin.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.13;

import "lib/solmate/src/tokens/ERC20.sol";

contract Coin is ERC20 {

    address public immutable minter;

    constructor(address _minter, string memory name, string memory symbol) ERC20(name, symbol, 18) {
        minter = _minter;
    }

    function mint(address to, uint256 amount) external {
        require(msg.sender == minter, "Only minter can mint");
        _mint(to, amount);
    }

    function burn(uint256 amount) external {
        _burn(msg.sender, amount);
    }
}"
    },
    "src/Vault.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.13;

import "lib/solmate/src/tokens/ERC4626.sol";

interface ILender {
    function accrueInterest() external;
    function coin() external view returns (ERC20);
}

contract Vault is ERC4626 {

    ILender public immutable lender;
    uint256 constant MIN_SHARES = 1e16; // 1 cent;

    /// @param _name Name of the token. Prepended with "Staked "
    /// @param _symbol Symbol of the token. Prepended with "s"
    /// @param _lender Address of the Lender token
    constructor(
        string memory _name,
        string memory _symbol,
        address _lender
    ) ERC4626(
        ILender(_lender).coin(),
        string.concat("Staked ", _name),
        string.concat("s", _symbol)
    ) {
        lender = ILender(_lender);
    }

    modifier accrueInterest() {
        lender.accrueInterest();
        _;
    }

    function totalAssets() public view override returns (uint256) {
        return asset.balanceOf(address(this));
    }

    /// @notice Deposits assets into the vault
    /// @param assets Amount of assets to deposit
    /// @param receiver Address to receive the shares
    /// @return shares Amount of shares minted
    function deposit(uint256 assets, address receiver) public accrueInterest override returns (uint256 shares) {
        bool isFirstDeposit = totalSupply == 0;
        shares = super.deposit(assets, receiver);
        if(isFirstDeposit) {
            // if this underflows, the first deposit is less than MIN_SHARES which is not allowed
            balanceOf[receiver] -= MIN_SHARES;
            balanceOf[address(0)] += MIN_SHARES;
            emit Transfer(receiver, address(0), MIN_SHARES);
            shares -= MIN_SHARES;
        }
    }

    /// @notice Mints shares of the vault
    /// @param shares Amount of shares to mint
    /// @param receiver Address to receive the shares
    /// @return assets Amount of assets deposited
    function mint(uint256 shares, address receiver) public accrueInterest override returns (uint256 assets) {
        bool isFirstDeposit = totalSupply == 0;
        assets = super.mint(shares, receiver);
        if(isFirstDeposit) {
            // if this underflows, the first deposit is less than MIN_SHARES which is not allowed
            balanceOf[receiver] -= MIN_SHARES;
            balanceOf[address(0)] += MIN_SHARES;
            emit Transfer(receiver, address(0), MIN_SHARES);
            assets -= MIN_SHARES; // shares and assets are 1:1 when the first deposit is made
        }
    }

    /// @notice Withdraws assets from the vault
    /// @param assets Amount of assets to withdraw
    /// @param receiver Address to receive the assets
    /// @param owner Owner of the shares
    /// @return shares Amount of shares burned
    function withdraw(
        uint256 assets,
        address receiver,
        address owner
    ) public accrueInterest override returns (uint256 shares) {
        shares = super.withdraw(assets, receiver, owner);
    }

    /// @notice Redeems shares for assets
    /// @param shares Amount of shares to redeem
    /// @param receiver Address to receive the assets
    /// @param owner Owner of the shares
    /// @return assets Amount of assets withdrawn
    function redeem(
        uint256 shares,
        address receiver,
        address owner
    ) public accrueInterest override returns (uint256 assets) {
        assets = super.redeem(shares, receiver, owner);
    }

}"
    },
    "src/InterestModel.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.13;

import "lib/solmate/src/utils/SignedWadMath.sol";

// Only one instance of this contract is deployed for use by all Lender contracts
contract InterestModel {

    uint internal constant MIN_RATE = 5e15; // 0.5%

    // The reason why this pure math is called externally by Lender contracts even though
    // it is non-upgradeable is to allow Lender contracts try/catch the call for safety.
    // In case of unexpected under/overflow here, Lender contracts would skip accruing interest
    // while allowing borrowers to exit. Otherwise failure would freeze their funds.
    // We could have also added this as an external function to Lender and called
    // self.calculateInterest() externally, but since it's the same cost to call it here,
    // we opt for this approach in order to reduce contract bytecode size of Lender.
    // We also reduce Factory deployment costs by only using one instance of
    // this contract for all Lender contracts.
    function calculateInterest(
        uint _totalPaidDebt,
        uint _lastRate,
        uint _timeElapsed,
        uint _expRate,
        uint _lastFreeDebtRatioBps,
        uint _targetFreeDebtRatioStartBps,
        uint _targetFreeDebtRatioEndBps
    ) external pure returns (uint currBorrowRate, uint interest) {
        // check _expRate * _timeElapsed overflow
        if(uint(type(int256).max) / _expRate < _timeElapsed) _timeElapsed = uint(type(int256).max) / _expRate;
        // we use a negative exponent in order to prevent growthDecay overflow due to large timeElapsed
        // Results of positive exponents can exceed max uint256, negative exponents only return a value between [0, 1e18]
        uint growthDecay = uint(wadExp(-int(_expRate * _timeElapsed)));
        
        if (_lastFreeDebtRatioBps < _targetFreeDebtRatioStartBps) {
            currBorrowRate = _lastRate * 1e18 / growthDecay;
            interest = _totalPaidDebt * (currBorrowRate - _lastRate) / _expRate / 365 days;
        } else if (_lastFreeDebtRatioBps > _targetFreeDebtRatioEndBps) {
            currBorrowRate = _lastRate * growthDecay / 1e18;
            if (currBorrowRate < MIN_RATE) {
                currBorrowRate = MIN_RATE;
                // calculate integral
                if (_lastRate <= MIN_RATE) {
                    // Already at min rate, just use flat rate for entire period
                    interest = _totalPaidDebt * MIN_RATE * _timeElapsed / 365 days / 1e18;
                } else {
                    uint timeToMin = uint(-wadLn(int(MIN_RATE * 1e18 / _lastRate))) / _expRate;
                    // Decaying integral up to min rate, then add flat rate portion
                    interest = _totalPaidDebt * ((_lastRate - MIN_RATE) / _expRate + 
                              MIN_RATE * (_timeElapsed - timeToMin)) / 365 days / 1e18;
                }
            } else {
                interest = _totalPaidDebt * (_lastRate - currBorrowRate) / _expRate / 365 days;
            }
        } else {
            currBorrowRate = _lastRate;
            interest = _totalPaidDebt * _lastRate * _timeElapsed / 365 days / 1e18;
        }
    }
}"
    },
    "lib/solmate/src/tokens/ERC4626.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";
import {SafeTransferLib} from "../utils/SafeTransferLib.sol";
import {FixedPointMathLib} from "../utils/FixedPointMathLib.sol";

/// @notice Minimal ERC4626 tokenized Vault implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC4626.sol)
abstract contract ERC4626 is ERC20 {
    using SafeTransferLib for ERC20;
    using FixedPointMathLib for uint256;

    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Deposit(address indexed caller, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed caller,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /*//////////////////////////////////////////////////////////////
                               IMMUTABLES
    //////////////////////////////////////////////////////////////*/

    ERC20 public immutable asset;

    constructor(
        ERC20 _asset,
        string memory _name,
        string memory _symbol
    ) ERC20(_name, _symbol, _asset.decimals()) {
        asset = _asset;
    }

    /*//////////////////////////////////////////////////////////////
                        DEPOSIT/WITHDRAWAL LOGIC
    //////////////////////////

Tags:
Multisig, Upgradeable, Multi-Signature, Factory, Oracle|addr:0x5336183353ca175cc1ed3e067c8f057683bf21a9|verified:true|block:23396847|tx:0x33da32dde2b94b4b307be0a0510120737090e996df41cab4edf23b614e82f864|first_check:1758281765

Submitted on: 2025-09-19 13:36:07

Comments

Log in to comment.

No comments yet.