Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/auction/PenguStrategy.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import {IPenguStrategyToken} from "../IPenguStrategyToken.sol";
import {ISeaport} from "./interfaces/ISeaport.sol";
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {AuctionHouse} from "./AuctionHouse.sol";
import {VillageNFT} from "./VillageNFT.sol";
contract PenguStrategy is AuctionHouse {
IPenguStrategyToken public token;
IERC721 public pudgies;
VillageNFT public villageNft;
ISeaport public constant SEAPORT = ISeaport(0x0000000000000068F116a894984e2DB1123eB395);
uint256 public constant AUCTION_PRICE_MULTIPLIER = 4;
event PudgyBought(uint256 indexed pudgyId, uint256 price);
constructor(address _token, address _pudgies, address _owner) {
token = IPenguStrategyToken(_token);
pudgies = IERC721(_pudgies);
// Deploy the Village NFT contract
villageNft = new VillageNFT(_pudgies, _token, address(this), _owner);
// Note: Deployer must call token.configure(...) after deployment
}
function buyPudgy(ISeaport.Order calldata order, uint256 maxPrice) external payable nonReentrant {
// Validate it's a Pudgy Penguins NFT
require(
order.parameters.offer.length > 0 && order.parameters.offer[0].token == address(pudgies)
&& order.parameters.offer[0].itemType == ISeaport.ItemType.ERC721,
"Not a Pudgy"
);
// Calculate total ETH needed (sum all consideration items that are ETH)
uint256 actualPrice = 0;
for (uint256 i = 0; i < order.parameters.consideration.length; i++) {
if (order.parameters.consideration[i].itemType == ISeaport.ItemType.NATIVE) {
actualPrice += order.parameters.consideration[i].startAmount;
}
}
// Slippage protection
require(actualPrice <= maxPrice, "Price exceeds maximum");
uint256 balance = address(this).balance;
if (balance < actualPrice) {
uint256 needed = actualPrice - balance;
token.useSurplus(needed);
}
// Fulfill the order on Seaport v1.6
bool fulfilled = SEAPORT.fulfillOrder{value: actualPrice}(order, bytes32(0));
require(fulfilled, "Order not fulfilled");
// Verify we received the NFT
uint256 tokenId = order.parameters.offer[0].identifierOrCriteria;
require(pudgies.ownerOf(tokenId) == address(this), "Not owner");
emit PudgyBought(tokenId, actualPrice);
// If auction is active, add to existing auction (village mode)
// Otherwise, start new auction
if (auction.active) {
_addPudgyToActiveAuction(tokenId, actualPrice);
} else {
// Start new auction
_startNewAuction(tokenId, actualPrice);
}
}
function _startNewAuction(uint256 pudgyId, uint256 actualPrice) internal {
_prepareAuction(pudgyId);
uint256[] memory pudgyIds = new uint256[](1);
pudgyIds[0] = pudgyId;
uint256 auctionId = _nextAuctionId++;
auction = Auction({
active: true,
auctionId: auctionId,
pudgyIds: pudgyIds,
startTime: block.timestamp,
startPrice: 0,
costBasis: actualPrice,
maxUnitPrice: actualPrice
});
// Calculate dynamic start price for village of 1
uint256 startPrice = _calculateStartPrice(actualPrice, 1, actualPrice, 0);
auction.startPrice = startPrice;
emit AuctionStarted(auctionId, pudgyIds, startPrice);
}
function _addPudgyToActiveAuction(uint256 tokenId, uint256 actualPrice) internal {
// Add pudgy to existing auction
auction.pudgyIds.push(tokenId);
// Update cost basis tracking
auction.costBasis += actualPrice;
if (actualPrice > auction.maxUnitPrice) {
auction.maxUnitPrice = actualPrice;
}
// Calculate new start price for village, ensuring it never decreases
uint256 villageSize = auction.pudgyIds.length;
uint256 newStartPrice =
_calculateStartPrice(auction.costBasis, villageSize, auction.maxUnitPrice, auction.startPrice);
// Reset auction with new price
auction.startPrice = newStartPrice;
auction.startTime = block.timestamp;
emit PudgyAddedToAuction(auction.auctionId, tokenId, newStartPrice);
}
receive() external payable {} // can receive ETH
function _prepareAuction(uint256 pudgyId) internal view override {
require(pudgies.ownerOf(pudgyId) == address(this), "Not owner");
}
function _calculateStartPrice(
uint256 costBasis,
uint256 villageSize,
uint256 maxUnitPrice,
uint256 previousStartPrice
) internal view override returns (uint256) {
uint256 startPrice = previousStartPrice;
// Price based on cumulative ETH deployed into this village
uint256 cumulativePengust = token.previewMint(costBasis);
uint256 cumulativePricing = cumulativePengust * AUCTION_PRICE_MULTIPLIER;
if (cumulativePricing > startPrice) {
startPrice = cumulativePricing;
}
if (maxUnitPrice > 0 && villageSize > 0) {
// Ensure unit cost floor scales with the most expensive pengu inside the village
uint256 unitPengust = token.previewMint(maxUnitPrice * villageSize);
uint256 unitPricing = unitPengust * AUCTION_PRICE_MULTIPLIER;
if (unitPricing > startPrice) {
startPrice = unitPricing;
}
}
return startPrice;
}
function _settleAuction(uint256[] memory pudgyIds, address buyer, uint256 price) internal override {
// Lock tokens from buyer
token.lock(price, buyer);
// Transfer all pudgies to the village NFT contract
for (uint256 i = 0; i < pudgyIds.length; i++) {
pudgies.transferFrom(address(this), address(villageNft), pudgyIds[i]);
}
// Mint village NFT to the buyer
uint256 villageId = villageNft.settleVillage(buyer, pudgyIds);
token.onVillageCreated(villageId, pudgyIds.length, buyer);
}
function onERC721Received(address, address, uint256, bytes calldata) external pure returns (bytes4) {
return this.onERC721Received.selector;
}
}
"
},
"src/IPenguStrategyToken.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;
interface IPenguStrategyToken {
// === ERC20 FUNCTIONS (inherited from ERC20) ===
// Note: ERC20 functions not redeclared here to avoid conflicts
// === CONSTANTS ===
function MAX_SUPPLY() external view returns (uint256);
function DEAD_ADDRESS() external view returns (address);
function BUY_FEE_RATE() external view returns (uint128);
function SELL_FEE_RATE() external view returns (uint128);
function PROTOCOL_FEE_BPS() external view returns (uint256);
// === STATE VARIABLES ===
function protocolFeeRecipient() external view returns (address);
function strategy() external view returns (address);
function villageNft() external view returns (address);
// === CORE FUNCTIONS ===
function mint(address receiver, uint256 minTokensOut) external payable;
function enableTransfers() external;
function redeem(uint256 amount, address from, address receiver, uint256 minAmountOut) external;
function lock(uint256 amount, address from) external;
// === PREVIEW FUNCTIONS ===
function previewMint(uint256 ethAmount) external view returns (uint256);
function quoteMint(uint256 amount) external view returns (uint256);
function previewRedeem(uint256 amount) external view returns (uint256);
// === SUPPLY FUNCTIONS ===
function lockedSupply() external view returns (uint256);
function effectiveSupply() external view returns (uint256);
function reserve() external view returns (uint256);
function surplus() external view returns (uint256);
function transfersEnabled() external view returns (bool);
function transferController() external view returns (address);
// === ADMIN FUNCTIONS ===
function deployer() external view returns (address);
function configure(address newStrategy, address newVillageNft, address newProtocolFeeRecipient) external;
function start() external;
// === STRATEGY FUNCTIONS ===
function useSurplus(uint256 amount) external;
// === VILLAGE FEE SYSTEM ===
function villageFeePool() external view returns (uint256);
function totalVillageWeight() external view returns (uint256);
function villageRewardsIndex() external view returns (uint256);
function villageWeight(uint256 villageId) external view returns (uint256);
function pendingVillageFees(uint256 villageId) external view returns (uint256);
function onVillageCreated(uint256 villageId, uint256 pudgyCount, address owner) external;
function claimVillageFees(uint256 villageId, address recipient) external returns (uint256);
function removeVillage(uint256 villageId, address recipient) external;
}
"
},
"src/auction/interfaces/ISeaport.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;
interface ISeaport {
enum OrderType {
FULL_OPEN,
PARTIAL_OPEN,
FULL_RESTRICTED,
PARTIAL_RESTRICTED,
CONTRACT
}
enum ItemType {
NATIVE,
ERC20,
ERC721,
ERC1155,
ERC721_WITH_CRITERIA,
ERC1155_WITH_CRITERIA
}
struct OfferItem {
ItemType itemType;
address token;
uint256 identifierOrCriteria;
uint256 startAmount;
uint256 endAmount;
}
struct ConsiderationItem {
ItemType itemType;
address token;
uint256 identifierOrCriteria;
uint256 startAmount;
uint256 endAmount;
address payable recipient;
}
struct OrderParameters {
address offerer;
address zone;
OfferItem[] offer;
ConsiderationItem[] consideration;
OrderType orderType;
uint256 startTime;
uint256 endTime;
bytes32 zoneHash;
uint256 salt;
bytes32 conduitKey;
uint256 totalOriginalConsiderationItems;
}
struct Order {
OrderParameters parameters;
bytes signature;
}
struct AdvancedOrder {
OrderParameters parameters;
uint120 numerator;
uint120 denominator;
bytes signature;
bytes extraData;
}
struct CriteriaResolver {
uint256 orderIndex;
uint256 side;
uint256 index;
uint256 identifier;
bytes32[] criteriaProof;
}
struct FulfillmentComponent {
uint256 orderIndex;
uint256 itemIndex;
}
struct Fulfillment {
FulfillmentComponent[] offerComponents;
FulfillmentComponent[] considerationComponents;
}
struct OrderComponents {
address offerer;
address zone;
OfferItem[] offer;
ConsiderationItem[] consideration;
OrderType orderType;
uint256 startTime;
uint256 endTime;
bytes32 zoneHash;
uint256 salt;
bytes32 conduitKey;
uint256 counter;
}
/**
* @notice Fulfill an order offering an ERC721 token by supplying Ether (or
* the native token for the given chain) as consideration for the order.
*/
function fulfillOrder(Order calldata order, bytes32 fulfillerConduitKey) external payable returns (bool fulfilled);
/**
* @notice Fulfill an advanced order
*/
function fulfillAdvancedOrder(
AdvancedOrder calldata advancedOrder,
CriteriaResolver[] calldata criteriaResolvers,
bytes32 fulfillerConduitKey,
address recipient
) external payable returns (bool fulfilled);
/**
* @notice Fulfill available advanced orders
*/
function fulfillAvailableAdvancedOrders(
AdvancedOrder[] calldata advancedOrders,
CriteriaResolver[] calldata criteriaResolvers,
FulfillmentComponent[][] calldata offerFulfillments,
FulfillmentComponent[][] calldata considerationFulfillments,
bytes32 fulfillerConduitKey,
address recipient,
uint256 maximumFulfilled
) external payable returns (bool[] memory availableOrders, Fulfillment[] memory fulfillments);
/**
* @notice Match an arbitrary number of orders
*/
function matchOrders(Order[] calldata orders, Fulfillment[] calldata fulfillments)
external
payable
returns (Fulfillment[] memory);
/**
* @notice Match an arbitrary number of advanced orders
*/
function matchAdvancedOrders(
AdvancedOrder[] calldata advancedOrders,
CriteriaResolver[] calldata criteriaResolvers,
Fulfillment[] calldata fulfillments,
address recipient
) external payable returns (Fulfillment[] memory);
/**
* @notice Cancel an arbitrary number of orders
*/
function cancel(OrderComponents[] calldata orders) external returns (bool cancelled);
/**
* @notice Validate an arbitrary number of orders
*/
function validate(Order[] calldata orders) external returns (bool validated);
/**
* @notice Retrieve the order hash for a given order
*/
function getOrderHash(OrderComponents calldata order) external view returns (bytes32 orderHash);
/**
* @notice Retrieve the status of a given order
*/
function getOrderStatus(bytes32 orderHash)
external
view
returns (bool isValidated, bool isCancelled, uint256 totalFilled, uint256 totalSize);
/**
* @notice Retrieve the current counter for a given offerer
*/
function getCounter(address offerer) external view returns (uint256 counter);
/**
* @notice Retrieve configuration information for this contract
*/
function information()
external
view
returns (string memory version, bytes32 domainSeparator, address conduitController);
/**
* @notice Retrieve the name of this contract
*/
function name() external pure returns (string memory contractName);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC721/IERC721.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721.sol)
pragma solidity >=0.6.2;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
"
},
"src/auction/AuctionHouse.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;
import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
abstract contract AuctionHouse is ReentrancyGuard {
// 12-hour half-life: ln(2) / 43200 seconds ≈ 1.604e-5
// Expressed in WAD: 1.604e-5 * 1e18 = 1.604e13
uint256 public constant AUCTION_DECAY_RATE = 16040000000000; // 1.604e13 in WAD
event AuctionStarted(uint256 indexed auctionId, uint256[] pudgyIds, uint256 startPrice);
event AuctionSettled(uint256 indexed auctionId, uint256[] pudgyIds, address indexed buyer, uint256 price);
event PudgyAddedToAuction(uint256 indexed auctionId, uint256 indexed pudgyId, uint256 newStartPrice);
Auction public auction;
uint256 public _nextAuctionId;
struct Auction {
bool active;
uint256 auctionId;
uint256[] pudgyIds;
uint256 startTime;
uint256 startPrice;
uint256 costBasis;
uint256 maxUnitPrice;
}
modifier whenAuctionActive() {
_whenAuctionActive();
_;
}
modifier whenAuctionNotActive() {
_whenAuctionNotActive();
_;
}
function _whenAuctionActive() internal view {
require(auction.active, "Auction not active");
}
function _whenAuctionNotActive() internal view {
require(!auction.active, "Auction already active");
}
function take(uint256 maxPrice) external whenAuctionActive nonReentrant {
uint256 price = currentAuctionPrice();
require(price <= maxPrice, "Price too high");
auction.active = false;
uint256[] memory pudgyIds = auction.pudgyIds;
uint256 auctionId = auction.auctionId;
_settleAuction(pudgyIds, msg.sender, price);
emit AuctionSettled(auctionId, pudgyIds, msg.sender, price);
}
function currentAuction() external view returns (Auction memory) {
return auction;
}
function isAuctionActive() external view returns (bool) {
return auction.active;
}
function currentAuctionPrice() public view returns (uint256) {
if (!auction.active) return 0;
return _priceAt(block.timestamp - auction.startTime);
}
function _priceAt(uint256 t) internal view virtual returns (uint256 price) {
// casting to int256 is safe because AUCTION_DECAY_RATE and t are uint256 values bounded by
// reasonably small timestamps, so the product fits within int256 during auction lifetime.
// forge-lint: disable-next-line(unsafe-typecast)
int256 exp = -int256(AUCTION_DECAY_RATE) * int256(t);
uint256 ratio = uint256(FixedPointMathLib.expWad(exp));
if (ratio == 0) return 1;
price = FixedPointMathLib.mulWadUp(auction.startPrice, ratio);
}
function _calculateStartPrice(
uint256 costBasis,
uint256 villageSize,
uint256 maxUnitPrice,
uint256 previousStartPrice
) internal view virtual returns (uint256);
function _prepareAuction(uint256 pudgyId) internal virtual;
function _settleAuction(uint256[] memory pudgyIds, address buyer, uint256 price) internal virtual;
}
"
},
"src/auction/VillageNFT.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;
import {ERC721} from "solady/tokens/ERC721.sol";
import {LibString} from "solady/utils/LibString.sol";
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {IPenguStrategyToken} from "../IPenguStrategyToken.sol";
import {Ownable} from "solady/auth/Ownable.sol";
contract VillageNFT is ERC721, ReentrancyGuard, Ownable {
IERC721 public immutable PUDGIES;
IPenguStrategyToken public immutable TOKEN;
address public immutable AUCTION_CONTRACT;
uint256 private _nextVillageId;
string private _baseTokenURI;
// Maps village token ID to array of pudgy IDs
mapping(uint256 => uint256[]) public villagePudgies;
event VillageMinted(uint256 indexed villageId, address indexed owner, uint256[] pudgyIds);
event VillageDisassembled(uint256 indexed villageId, address indexed owner, uint256[] pudgyIds);
modifier onlyAuction() {
_onlyAuction();
_;
}
function _onlyAuction() internal view {
require(msg.sender == AUCTION_CONTRACT, "Only auction contract");
}
constructor(address _pudgies, address _token, address _auctionContract, address _owner) {
PUDGIES = IERC721(_pudgies);
TOKEN = IPenguStrategyToken(_token);
AUCTION_CONTRACT = _auctionContract;
_initializeOwner(_owner);
}
function name() public pure override returns (string memory) {
return "Pudgy Village";
}
function symbol() public pure override returns (string memory) {
return "VILLAGE";
}
function tokenURI(uint256 villageId) public view override returns (string memory) {
require(_ownerOf(villageId) != address(0), "TokenDoesNotExist");
string memory base = _baseTokenURI;
return bytes(base).length == 0
? ""
: string.concat(base, LibString.toString(villageId));
}
function baseURI() external view returns (string memory) {
return _baseTokenURI;
}
function setBaseURI(string calldata newBaseURI) external onlyOwner {
_baseTokenURI = newBaseURI;
}
/// @notice Mint a new village NFT containing the specified pudgies
/// @param to The address to mint the village to
/// @param pudgyIds Array of pudgy penguin token IDs to include in the village
/// @return villageId The ID of the newly minted village NFT
function settleVillage(address to, uint256[] calldata pudgyIds) external onlyAuction returns (uint256 villageId) {
require(pudgyIds.length > 0, "Empty village");
// Verify this contract owns all the pudgies
for (uint256 i = 0; i < pudgyIds.length; i++) {
require(PUDGIES.ownerOf(pudgyIds[i]) == address(this), "Village does not own pudgy");
}
villageId = _nextVillageId++;
// Store pudgy IDs in the village
villagePudgies[villageId] = pudgyIds;
// Mint the village NFT
_mint(to, villageId);
emit VillageMinted(villageId, to, pudgyIds);
}
/// @notice Claim accumulated protocol fees for a given village
/// @param villageId The village whose fees to claim
function claimFees(uint256 villageId) external nonReentrant {
address owner = ownerOf(villageId);
require(msg.sender == owner, "Not village owner");
TOKEN.claimVillageFees(villageId, owner);
}
/// @notice Disassemble a village, returning all pudgies to the owner and burning the village NFT
/// @param villageId The ID of the village to disassemble
function genocide(uint256 villageId) external nonReentrant {
address owner = ownerOf(villageId);
require(msg.sender == owner, "Not village owner");
uint256[] memory pudgyIds = villagePudgies[villageId];
require(pudgyIds.length > 0, "Village already disassembled");
// Claim outstanding fees and remove village weight from the strategy token
TOKEN.removeVillage(villageId, owner);
// Transfer all pudgies to the owner
for (uint256 i = 0; i < pudgyIds.length; i++) {
PUDGIES.safeTransferFrom(address(this), owner, pudgyIds[i]);
}
// Clear the village data
delete villagePudgies[villageId];
// Burn the village NFT
_burn(villageId);
emit VillageDisassembled(villageId, owner, pudgyIds);
}
/// @notice Get the pudgy IDs contained in a village
/// @param villageId The ID of the village
/// @return Array of pudgy penguin token IDs
function getVillagePudgies(uint256 villageId) external view returns (uint256[] memory) {
return villagePudgies[villageId];
}
/// @notice Get the size (number of pudgies) in a village
/// @param villageId The ID of the village
/// @return Number of pudgies in the village
function getVillageSize(uint256 villageId) external view returns (uint256) {
return villagePudgies[villageId].length;
}
/// @notice Required for receiving ERC721 tokens
function onERC721Received(address, address, uint256, bytes calldata) external pure returns (bytes4) {
return this.onERC721Received.selector;
}
}
"
},
"lib/openzeppelin-contracts/contracts/utils/introspection/IERC165.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
},
"lib/solady/src/utils/FixedPointMathLib.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error ExpOverflow();
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error FactorialOverflow();
/// @dev The operation failed, due to an overflow.
error RPowOverflow();
/// @dev The mantissa is too big to fit.
error MantissaOverflow();
/// @dev The operation failed, due to an multiplication overflow.
error MulWadFailed();
/// @dev The operation failed, due to an multiplication overflow.
error SMulWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error DivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error SDivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error MulDivFailed();
/// @dev The division failed, as the denominator is zero.
error DivFailed();
/// @dev The full precision multiply-divide operation failed, either due
/// to the result being larger than 256 bits, or a division by a zero.
error FullMulDivFailed();
/// @dev The output is undefined, as the input is less-than-or-equal to zero.
error LnWadUndefined();
/// @dev The input outside the acceptable domain.
error OutOfDomain();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The scalar of ETH and most ERC20s.
uint256 internal constant WAD = 1e18;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* SIMPLIFIED FIXED POINT OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if gt(x, div(not(0), y)) {
if y {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
}
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(z, WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up.
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if iszero(eq(div(z, y), x)) {
if y {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
}
z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, WAD)
// Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
if iszero(mul(y, eq(sdiv(z, WAD), x))) {
mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(z, y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up.
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `x` to the power of `y`.
/// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
/// Note: This function is an approximation.
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Using `ln(x)` means `x` must be greater than 0.
return expWad((lnWad(x) * y) / int256(WAD));
}
/// @dev Returns `exp(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
/// Note: This function is an approximation. Monotonically increasing.
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is less than 0.5 we return zero.
// This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
if (x <= -41446531673892822313) return r;
/// @solidity memory-safe-assembly
assembly {
// When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
// an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
if iszero(slt(x, 135305999368893231589)) {
mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
revert(0x1c, 0x04)
}
}
// `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5 ** 18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
x = x - k * 54916777467707473351141471128;
// `k` is in the range `[-61, 195]`.
// Evaluate using a (6, 7)-term rational approximation.
// `p` is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
/// @solidity memory-safe-assembly
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already `2**96` too large.
r := sdiv(p, q)
}
// r should be in the range `(0.09, 0.25) * 2**96`.
// We now need to multiply r by:
// - The scale factor `s ≈ 6.031367120`.
// - The `2**k` factor from the range reduction.
// - The `1e18 / 2**96` factor for base conversion.
// We do this all at once, with an intermediate result in `2**213`
// basis, so the final right shift is always by a positive amount.
r = int256(
(uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
);
}
}
/// @dev Returns `ln(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
/// Note: This function is an approximation. Monotonically increasing.
function lnWad(int256 x) internal pure returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
// We do this by multiplying by `2**96 / 10**18`. But since
// `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
// and add `ln(2**96 / 10**18)` at the end.
// Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// We place the check here for more optimal stack operations.
if iszero(sgt(x, 0)) {
mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
revert(0x1c, 0x04)
}
// forgefmt: disable-next-item
r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
x := shr(159, shl(r, x))
// Evaluate using a (8, 8)-term rational approximation.
// `p` is made monic, we will multiply by a scale factor later.
// forgefmt: disable-next-item
let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
sar(96, mul(add(43456485725739037958740375743393,
sar(96, mul(add(24828157081833163892658089445524,
sar(96, mul(add(3273285459638523848632254066296,
x), x))), x))), x)), 11111509109440967052023855526967)
p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
// `q` is monic by convention.
let q := add(5573035233440673466300451813936, x)
q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
q := add(909429971244387300277376558375, sar(96, mul(x, q)))
// `p / q` is in the range `(0, 0.125) * 2**96`.
// Finalization, we need to:
// - Multiply by the scale factor `s = 5.549…`.
// - Add `ln(2**96 / 10**18)`.
// - Add `k * ln(2)`.
// - Multiply by `10**18 / 2**96 = 5**18 >> 78`.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already `2**96` too large.
p := sdiv(p, q)
// Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
p := mul(1677202110996718588342820967067443963516166, p)
// Add `ln(2) * k * 5**18 * 2**192`.
// forgefmt: disable-next-item
p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
// Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
// Base conversion: mul `2**18 / 2**192`.
r := sar(174, p)
}
}
/// @dev Returns `W_0(x)`, denominated in `WAD`.
/// See: https://en.wikipedia.org/wiki/Lambert_W_function
/// a.k.a. Product log function. This is an approximation of the principal branch.
/// Note: This function is an approximation. Monotonically increasing.
function lambertW0Wad(int256 x) internal pure returns (int256 w) {
// forgefmt: disable-next-item
unchecked {
if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
(int256 wad, int256 p) = (int256(WAD), x);
uint256 c; // Whether we need to avoid catastrophic cancellation.
uint256 i = 4; // Number of iterations.
if (w <= 0x1ffffffffffff) {
if (-0x4000000000000 <= w) {
i = 1; // Inputs near zero only take one step to converge.
} else if (w <= -0x3ffffffffffffff) {
i = 32; // Inputs near `-1/e` take very long to converge.
}
} else if (uint256(w >> 63) == uint256(0)) {
/// @solidity memory-safe-assembly
assembly {
// Inline log2 for more performance, since the range is small.
let v := shr(49, w)
let l := shl(3, lt(0xff, v))
l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
c := gt(l, 60)
i := add(2, add(gt(l, 53), c))
}
} else {
int256 ll = lnWad(w = lnWad(w));
/// @solidity memory-safe-assembly
assembly {
// `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
i := add(3, iszero(shr(68, x)))
c := iszero(shr(143, x))
}
if (c == uint256(0)) {
do { // If `x` is big, use Newton's so that intermediate values won't overflow.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := mul(w, div(e, wad))
w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
}
if (p <= w) break;
p = w;
} while (--i != uint256(0));
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
return w;
}
}
do { // Otherwise, use Halley's for faster convergence.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := add(w, wad)
let s := sub(mul(w, e), mul(x, wad))
w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
}
if (p <= w) break;
p = w;
} while (--i != c);
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
// For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
// R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
if (c == uint256(0)) return w;
int256 t = w | 1;
/// @solidity memory-safe-assembly
assembly {
x := sdiv(mul(x, wad), t)
}
x = (t * (wad + lnWad(x)));
/// @solidity memory-safe-assembly
assembly {
w := sdiv(x, add(wad, t))
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* GENERAL NUMBER UTILITIES */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `a * b == x * y`, with full precision.
function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
}
}
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// 512-bit multiply `[p1 p0] = x * y`.
// Compute the product mod `2**256` and mod `2**256 - 1`
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that `product = p1 * 2**256 + p0`.
// Temporarily use `z` as `p0` to save gas.
z := mul(x, y) // Lower 256 bits of `x * y`.
for {} 1 {} {
// If overflows.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
/*------------------- 512 by 256 division --------------------*/
// Make division exact by subtracting the remainder from `[p1 p0]`.
let r := mulmod(x, y, d) // Compute remainder using mulmod.
let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
// Make sure `z` is less than `2**256`. Also prevents `d == 0`.
// Placing the check here seems to give more optimal stack operations.
if iszero(gt(d, p1)) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
d := div(d, t) // Divide `d` by `t`, which is a power of two.
// Invert `d mod 2**256`
// Now that `d` is an odd number, it has an inverse
// modulo `2**256` such that `d * inv = 1 mod 2**256`.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, `d * inv = 1 mod 2**4`.
let inv := xor(2, mul(3, d))
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
z :=
mul(
// Divide [p1 p0] by the factors of two.
// Shift in bits from `p1` into `p0`. For this we need
// to flip `t` such that it is `2**256 / t`.
or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
)
break
}
z := div(z, d)
break
}
}
}
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
/// Performs the full 512 bit calculation regardless.
function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
internal
pure
returns (uint256 z)
{
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(z, lt(mm, z)))
let t := and(d, sub(0, d))
let r := mulmod(x, y, d)
d := div(d, t)
let inv := xor(2, mul(3, d))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
z :=
mul(
or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
mul(sub(2, mul(d, inv)), inv)
)
}
}
/// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Uniswap-v3-core under MIT license:
/// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
z = fullMulDiv(x, y, d);
/// @solidity memory-safe-assembly
assembly {
if mulmod(x, y, d) {
z := add(z, 1)
if iszero(z) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
}
}
}
/// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
/// Throws if result overflows a uint256.
/// Credit to Philogy under MIT license:
/// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Temporarily use `z` as `p0` to save gas.
z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
for {} 1 {} {
if iszero(or(iszero(x), eq(div(z, x), y))) {
let k := and(n, 0xff) // `n`, cleaned.
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
// | p1 | z |
// Before: | p1_0 ¦ p1_1 | z_0 ¦ z_1 |
// Final: | 0 ¦ p1_0 | p1_1 ¦ z_0 |
// Check that final `z` doesn't overflow by checking that p1_0 = 0.
if iszero(shr(k, p1)) {
z := add(shl(sub(256, k), p1), shr(k, z))
break
}
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
z := shr(and(n, 0xff), z)
break
}
}
}
/// @dev Returns `floor(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := div(z, d)
}
}
/// @dev Returns `ceil(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(z, d))), div(z, d))
}
}
/// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
/// @solidity memory-safe-assembly
assembly {
let g := n
let r := mod(a, n)
for { let y := 1 } 1 {} {
let q := div(g, r)
let t := g
g := r
r := sub(t, mul(r, q))
let u := x
x := y
y := sub(u, mul(y, q))
if iszero(r) { break }
}
x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
}
}
/// @dev Returns `ceil(x / d)`.
/// Reverts if `d` is zero.
function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
if iszero(d) {
mstore(0x00, 0x65244e4e) // `DivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(x, d))), div(x, d))
}
}
/// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(gt(x, y), sub(x, y))
}
}
/// @dev Returns `max(0, x - y)`.
function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(gt(x, y), sub(x, y))
}
}
/// @dev Returns `min(2 ** 256 - 1, x + y)`.
function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := or(sub(0, lt(add(x, y), x)), add(x, y))
}
}
/// @dev Returns `min(2 ** 256 - 1, x * y)`.
function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
}
}
/// @dev Returns `condition ? x : y`, without branching.
function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), iszero(condition)))
}
}
/// @dev Returns `condition ? x : y`, without branching.
function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), iszero(condition)))
}
}
/// @dev Returns `condition ? x : y`, without branching.
function ternary(bool condition, address x, address y) internal pure returns (address z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), iszero(condition)))
}
}
/// @dev Returns `x != 0 ? x : y`, without branching.
function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := or(x, mul(y, iszero(x)))
}
}
/// @dev Returns `x != bytes32(0) ? x : y`, without branching.
function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
/// @solidity memory-safe-assembly
assembly {
z := or(x, mul(y, iszero(x)))
}
}
/// @dev Returns `x != address(0) ? x : y`, without branching.
function coalesce(address x, address y) internal pure returns (address z) {
/// @solidity memory-safe-assembly
assembly {
z := or(x, mul(y, iszero(shl(96, x))))
}
}
/// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
/// Reverts if the computation overflows.
function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
if x {
z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
let half := shr(1, b) // Divide `b` by 2.
// Divide `y` by 2 every iteration.
for { y := shr(1, y) } y { y := shr(1, y) } {
let xx := mul(x, x) // Store x squared.
let xxRound := add(xx, half) // Round to the nearest number.
// Revert if `xx + half` overflowed, or if `x ** 2` overflows.
if or(lt(xxRound, xx), shr(128, x)) {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
x := div(xxRound, b) // Set `x` to scaled `xxRound`.
// If `y` is odd:
if and(y, 1) {
let zx := mul(z, x) // Compute `z * x`.
let zxRound := add(zx, half) // Round to the nearest number.
// If `z * x` overflowed or `zx + half` overflowed:
if or(xor(div(zx, x), z), lt(zxRound, zx)) {
// Revert if `x` is non-zero.
if x {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
}
z := div(zxRound, b) // Return properly scaled `zxRound`.
}
}
}
}
}
/// @dev Returns the square root of `x`, rounded down.
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memor
Submitted on: 2025-10-19 19:53:28
Comments
Log in to comment.
No comments yet.