Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"silo-core/contracts/interestRateModel/kink/DynamicKinkModel.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {SafeCast} from "openzeppelin5/utils/math/SafeCast.sol";
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {SignedMath} from "openzeppelin5/utils/math/SignedMath.sol";
import {Initializable} from "openzeppelin5/proxy/utils/Initializable.sol";
import {Ownable1and2Steps} from "common/access/Ownable1and2Steps.sol";
import {PRBMathSD59x18} from "../../lib/PRBMathSD59x18.sol";
import {ISilo} from "../../interfaces/ISilo.sol";
import {IDynamicKinkModel} from "../../interfaces/IDynamicKinkModel.sol";
import {IDynamicKinkModelConfig} from "../../interfaces/IDynamicKinkModelConfig.sol";
import {DynamicKinkModelConfig} from "./DynamicKinkModelConfig.sol";
import {KinkMath} from "../../lib/KinkMath.sol";
import {SiloMathLib} from "../../lib/SiloMathLib.sol";
/// @title DynamicKinkModel
/// @notice Refer to Silo DynamicKinkModel paper for more details:
/// silo-core/docs/Kink_Interest_Rate_Model_V2_2025_09_23.pdf
/// @dev it follows `IInterestRateModel` interface except `initialize` method
/// @custom:security-contact security@silo.finance
contract DynamicKinkModel is IDynamicKinkModel, Ownable1and2Steps, Initializable {
using KinkMath for int256;
using KinkMath for int96;
using KinkMath for uint256;
/// @dev DP in 18 decimal points used for integer calculations
int256 internal constant _DP = int256(1e18);
/// @dev universal limit for several DynamicKinkModel config parameters. Follow the model whitepaper for more
/// information. Units of measure vary per variable type. Any config within these limits is considered
/// valid.
int256 public constant UNIVERSAL_LIMIT = 1e9 * _DP;
/// @dev maximum value of current interest rate the model will return. This is 1,000% APR in 18-decimals.
int256 public constant RCUR_CAP = 10 * _DP;
/// @dev seconds per year used in interest calculations.
int256 public constant ONE_YEAR = 365 days;
/// @dev maximum value of compound interest per second the model will return. This is per-second rate.
int256 public constant RCOMP_CAP_PER_SECOND = RCUR_CAP / ONE_YEAR;
/// @dev maximum exp() input to prevent an overflow.
int256 public constant X_MAX = 11 * _DP;
uint32 public constant MAX_TIMELOCK = 7 days;
/// @dev this is used for storing the current or pending model state
ModelState internal _modelState;
/// @inheritdoc IDynamicKinkModel
uint256 public activateConfigAt;
/// @dev Map of all configs for the model, used for restoring to last state
mapping(IDynamicKinkModelConfig current => History prev) public configsHistory;
IDynamicKinkModelConfig internal _irmConfig;
constructor() Ownable1and2Steps(address(0xdead)) {
// lock the implementation
_transferOwnership(address(0));
_disableInitializers();
}
function initialize(
IDynamicKinkModel.Config calldata _config,
IDynamicKinkModel.ImmutableArgs calldata _immutableArgs,
address _initialOwner,
address _silo
)
external
virtual
initializer
{
require(_silo != address(0), EmptySilo());
require(_immutableArgs.timelock <= MAX_TIMELOCK, InvalidTimelock());
require(_immutableArgs.rcompCap > 0, InvalidRcompCap());
require(_immutableArgs.rcompCap <= RCUR_CAP, InvalidRcompCap());
IDynamicKinkModel.ImmutableConfig memory immutableConfig = IDynamicKinkModel.ImmutableConfig({
timelock: _immutableArgs.timelock,
rcompCapPerSecond: int96(_immutableArgs.rcompCap / ONE_YEAR) // forge-lint: disable-line(unsafe-typecast)
});
_modelState.silo = _silo;
_updateConfiguration({_config: _config, _immutableConfig: immutableConfig, _init: true});
_transferOwnership(_initialOwner);
emit Initialized(_initialOwner, _silo);
}
/// @inheritdoc IDynamicKinkModel
function updateConfig(IDynamicKinkModel.Config calldata _config) external virtual onlyOwner {
_updateConfiguration(_config);
}
/// @inheritdoc IDynamicKinkModel
function cancelPendingUpdateConfig() external virtual onlyOwner {
require(pendingConfigExists(), NoPendingUpdateToCancel());
IDynamicKinkModelConfig pendingConfig = _irmConfig;
History memory currentState = configsHistory[pendingConfig];
_irmConfig = currentState.irmConfig;
_modelState.k = currentState.k;
configsHistory[pendingConfig] = History(0, IDynamicKinkModelConfig(address(0)));
activateConfigAt = 0;
emit PendingUpdateConfigCanceled(pendingConfig);
}
/// @inheritdoc IDynamicKinkModel
function getCompoundInterestRateAndUpdate(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _interestRateTimestamp
)
external
virtual
returns (uint256 rcomp)
{
int96 newK;
uint256 result;
(result, newK) = _getCompoundInterestRate(CompoundInterestRateArgs({
silo: msg.sender,
collateralAssets: _collateralAssets,
debtAssets: _debtAssets,
interestRateTimestamp: _interestRateTimestamp,
blockTimestamp: block.timestamp,
usePending: false
}));
rcomp = result;
if (pendingConfigExists()) {
configsHistory[_irmConfig].k = newK;
} else {
_modelState.k = newK;
}
}
/// @inheritdoc IDynamicKinkModel
function getCompoundInterestRate(address _silo, uint256 _blockTimestamp)
external
view
virtual
returns (uint256 rcomp)
{
(rcomp,) = _getCompoundInterestRate({_silo: _silo, _blockTimestamp: _blockTimestamp, _usePending: false});
}
function getPendingCompoundInterestRate(address _silo, uint256 _blockTimestamp)
external
view
virtual
returns (uint256 rcomp)
{
(rcomp,) = _getCompoundInterestRate({_silo: _silo, _blockTimestamp: _blockTimestamp, _usePending: true});
}
/// @notice it reverts for invalid silo
function getCurrentInterestRate(address _silo, uint256 _blockTimestamp)
external
view
virtual
returns (uint256 rcur)
{
rcur = _getCurrentInterestRate({_silo: _silo, _blockTimestamp: _blockTimestamp, _usePending: false});
}
function getPendingCurrentInterestRate(address _silo, uint256 _blockTimestamp)
external
view
virtual
returns (uint256 rcur)
{
rcur = _getCurrentInterestRate({_silo: _silo, _blockTimestamp: _blockTimestamp, _usePending: true});
}
/// @inheritdoc IDynamicKinkModel
function irmConfig() public view returns (IDynamicKinkModelConfig config) {
config = pendingConfigExists() ? configsHistory[_irmConfig].irmConfig : _irmConfig;
}
/// @inheritdoc IDynamicKinkModel
function modelState() public view returns (ModelState memory state) {
if (!pendingConfigExists()) return _modelState;
// in case of pending config, we need to read k from history
state.silo = _modelState.silo;
state.k = configsHistory[_irmConfig].k;
}
/// @inheritdoc IDynamicKinkModel
function pendingIrmConfig() public view returns (address config) {
config = pendingConfigExists() ? address(_irmConfig) : address(0);
}
/// @inheritdoc IDynamicKinkModel
function getModelStateAndConfig(bool _usePending)
public
view
virtual
returns (ModelState memory state, Config memory config, ImmutableConfig memory immutableConfig)
{
IDynamicKinkModelConfig irmConfigToUse;
if (_usePending) {
irmConfigToUse = IDynamicKinkModelConfig(pendingIrmConfig());
require(address(irmConfigToUse) != address(0), NoPendingConfig());
state = _modelState;
} else {
irmConfigToUse = irmConfig();
state = modelState();
}
(config, immutableConfig) = irmConfigToUse.getConfig();
}
/// @inheritdoc IDynamicKinkModel
function verifyConfig(IDynamicKinkModel.Config memory _config) public view virtual {
require(_config.ulow.inClosedInterval(0, _DP), InvalidUlow());
require(_config.u1.inClosedInterval(0, _DP), InvalidU1());
require(_config.u2.inClosedInterval(_config.u1, _DP), InvalidU2());
require(_config.ucrit.inClosedInterval(_config.ulow, _DP), InvalidUcrit());
require(_config.rmin.inClosedInterval(0, _DP), InvalidRmin());
require(_config.kmin.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidKmin());
require(_config.kmax.inClosedInterval(_config.kmin, UNIVERSAL_LIMIT), InvalidKmax());
// we store k as int96, so we double check if it is in the range of int96
require(_config.kmin.inClosedInterval(0, type(int96).max), InvalidKmin());
require(_config.kmax.inClosedInterval(_config.kmin, type(int96).max), InvalidKmax());
require(_config.alpha.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidAlpha());
require(_config.cminus.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidCminus());
require(_config.cplus.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidCplus());
require(_config.c1.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidC1());
require(_config.c2.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidC2());
require(_config.dmax.inClosedInterval(_config.c2, UNIVERSAL_LIMIT), InvalidDmax());
}
function pendingConfigExists() public view returns (bool) {
return activateConfigAt > block.timestamp;
}
/// @inheritdoc IDynamicKinkModel
function currentInterestRate( // solhint-disable-line function-max-lines, code-complexity
Config memory _cfg,
ModelState memory _state,
int256 _t0,
int256 _t1,
int256 _u,
int256 _tba
)
public
pure
virtual
returns (int256 rcur)
{
if (_tba == 0) return 0; // no debt, no interest
int256 T = _t1 - _t0;
// k is stored capped, so we can use it as is
int256 k = _state.k;
if (_u < _cfg.u1) {
k = SignedMath.max(k - (_cfg.c1 + _cfg.cminus * (_cfg.u1 - _u) / _DP) * T, _cfg.kmin);
} else if (_u > _cfg.u2) {
k = SignedMath.min(
k + SignedMath.min(_cfg.c2 + _cfg.cplus * (_u - _cfg.u2) / _DP, _cfg.dmax) * T, _cfg.kmax
);
}
int256 excessU; // additional interest rate
if (_u >= _cfg.ulow) {
excessU = _u - _cfg.ulow;
if (_u >= _cfg.ucrit) {
excessU = excessU + _cfg.alpha * (_u - _cfg.ucrit) / _DP;
}
rcur = excessU * k * ONE_YEAR / _DP + _cfg.rmin * ONE_YEAR;
} else {
rcur = _cfg.rmin * ONE_YEAR;
}
require(rcur >= 0, NegativeRcur());
rcur = SignedMath.min(rcur, RCUR_CAP);
}
/// @inheritdoc IDynamicKinkModel
function compoundInterestRate( // solhint-disable-line code-complexity, function-max-lines
Config memory _cfg,
ModelState memory _state,
int256 _rcompCapPerSecond,
int256 _t0,
int256 _t1,
int256 _u,
int256 _tba
)
public
pure
virtual
returns (int256 rcomp, int256 k)
{
LocalVarsRCOMP memory _l;
require(_t0 <= _t1, InvalidTimestamp());
_l.T = _t1 - _t0;
// if there is no time change, then k should not change
if (_l.T == 0) return (0, _state.k);
// rate of change of k
if (_u < _cfg.u1) {
_l.roc = -_cfg.c1 - _cfg.cminus * (_cfg.u1 - _u) / _DP;
} else if (_u > _cfg.u2) {
_l.roc = SignedMath.min(_cfg.c2 + _cfg.cplus * (_u - _cfg.u2) / _DP, _cfg.dmax);
}
k = _state.k;
// slope of the kink at t1 ignoring lower and upper bounds
_l.k1 = k + _l.roc * _l.T;
// calculate the resulting slope state
if (_l.k1 > _cfg.kmax) {
_l.x = _cfg.kmax * _l.T - (_cfg.kmax - k) ** 2 / (2 * _l.roc);
k = _cfg.kmax;
} else if (_l.k1 < _cfg.kmin) {
_l.x = _cfg.kmin * _l.T - (k - _cfg.kmin) ** 2 / (2 * _l.roc);
k = _cfg.kmin;
} else {
_l.x = (k + _l.k1) * _l.T / 2;
k = _l.k1;
}
if (_u >= _cfg.ulow) {
_l.f = _u - _cfg.ulow;
if (_u >= _cfg.ucrit) {
_l.f = _l.f + _cfg.alpha * (_u - _cfg.ucrit) / _DP;
}
}
_l.x = _cfg.rmin * _l.T + _l.f * _l.x / _DP;
// Overflow Checks
// limit x, so the exp() function will not overflow, we have unchecked math there
require(_l.x <= X_MAX, XOverflow());
rcomp = PRBMathSD59x18.exp(_l.x) - _DP;
require(rcomp >= 0, NegativeRcomp());
// limit rcomp
if (rcomp > _rcompCapPerSecond * _l.T) {
rcomp = _rcompCapPerSecond * _l.T;
// k should be set to min only on overflow or cap
k = _cfg.kmin;
}
// no debt, no interest, overriding min APR
if (_tba == 0) rcomp = 0;
}
function _updateConfiguration(IDynamicKinkModel.Config memory _config) internal virtual {
// even if _irmConfig is pending timelock, immutable config can be pulled from it
(, IDynamicKinkModel.ImmutableConfig memory immutableConfig) = _irmConfig.getConfig();
_updateConfiguration({_config: _config, _immutableConfig: immutableConfig, _init: false});
}
function _updateConfiguration(
IDynamicKinkModel.Config memory _config,
IDynamicKinkModel.ImmutableConfig memory _immutableConfig,
bool _init
) internal virtual {
require(!pendingConfigExists(), PendingUpdate());
activateConfigAt = _init ? block.timestamp : block.timestamp + _immutableConfig.timelock;
verifyConfig(_config);
IDynamicKinkModelConfig newCfg = IDynamicKinkModelConfig(new DynamicKinkModelConfig(_config, _immutableConfig));
configsHistory[newCfg] = History({k: _modelState.k, irmConfig: _irmConfig});
_modelState.k = _config.kmin;
_irmConfig = newCfg;
emit NewConfig(newCfg, activateConfigAt);
}
function _getCompoundInterestRate(
address _silo,
uint256 _blockTimestamp,
bool _usePending
)
internal
view
virtual
returns (uint256 rcomp, int96 k)
{
ISilo.UtilizationData memory data = ISilo(_silo).utilizationData();
(rcomp, k) = _getCompoundInterestRate(CompoundInterestRateArgs({
silo: _silo,
collateralAssets: data.collateralAssets,
debtAssets: data.debtAssets,
interestRateTimestamp: data.interestRateTimestamp,
blockTimestamp: _blockTimestamp,
usePending: _usePending
}));
}
function _getCompoundInterestRate(CompoundInterestRateArgs memory _args)
internal
view
virtual
returns (uint256 rcomp, int96 k)
{
(ModelState memory state, Config memory cfg, ImmutableConfig memory immutableCfg) =
getModelStateAndConfig(_args.usePending);
require(_args.silo == state.silo, InvalidSilo());
// k should be set to min on overflow
if (_args.interestRateTimestamp.wouldOverflowOnCastToInt256()) return (0, cfg.kmin);
if (_args.blockTimestamp.wouldOverflowOnCastToInt256()) return (0, cfg.kmin);
if (_args.collateralAssets.wouldOverflowOnCastToInt256()) return (0, cfg.kmin);
if (_args.debtAssets.wouldOverflowOnCastToInt256()) return (0, cfg.kmin);
try this.compoundInterestRate({
_cfg: cfg,
_state: state,
_rcompCapPerSecond: immutableCfg.rcompCapPerSecond,
_t0: int256(uint256(_args.interestRateTimestamp)),
_t1: int256(_args.blockTimestamp),
_u: _calculateUtiliation(_args.collateralAssets, _args.debtAssets),
_tba: int256(_args.debtAssets)
}) returns (int256 rcompInt, int256 newK) {
rcomp = SafeCast.toUint256(rcompInt);
k = _capK(newK, cfg.kmin, cfg.kmax);
} catch {
rcomp = 0;
k = cfg.kmin; // k should be set to min on overflow
}
}
function _getCurrentInterestRate(address _silo, uint256 _blockTimestamp, bool _usePending)
internal
view
virtual
returns (uint256 rcur)
{
(ModelState memory state, Config memory cfg,) = getModelStateAndConfig(_usePending);
require(_silo == state.silo, InvalidSilo());
ISilo.UtilizationData memory data = ISilo(state.silo).utilizationData();
if (data.debtAssets.wouldOverflowOnCastToInt256()) return 0;
if (_blockTimestamp.wouldOverflowOnCastToInt256()) return 0;
try this.currentInterestRate({
_cfg: cfg,
_state: state,
_t0: SafeCast.toInt256(data.interestRateTimestamp),
_t1: int256(_blockTimestamp), // forge-lint: disable-line(unsafe-typecast)
_u: _calculateUtiliation(data.collateralAssets, data.debtAssets),
_tba: int256(data.debtAssets) // forge-lint: disable-line(unsafe-typecast)
}) returns (int256 rcurInt) {
rcur = SafeCast.toUint256(rcurInt);
} catch {
rcur = 0;
}
}
// hard rule: utilization in the model should never be above 100%.
function _calculateUtiliation(uint256 _collateralAssets, uint256 _debtAssets)
internal
pure
virtual
returns (int256 u)
{
// forge-lint: disable-next-line(unsafe-typecast)
u = int256(SiloMathLib.calculateUtilization(uint256(_DP), _collateralAssets, _debtAssets));
}
/// @dev we expect _kmin and _kmax to be in the range of int96
function _capK(int256 _k, int256 _kmin, int256 _kmax) internal pure virtual returns (int96 cappedK) {
require(_kmin <= _kmax, InvalidKRange());
// safe to cast to int96, because we know, that _kmin and _kmax are in the range of int96
cappedK = int96(SignedMath.max(_kmin, SignedMath.min(_kmax, _k)));
}
}
"
},
"gitmodules/openzeppelin-contracts-5/contracts/utils/math/SafeCast.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
/// @solidity memory-safe-assembly
assembly {
u := iszero(iszero(b))
}
}
}
"
},
"gitmodules/openzeppelin-contracts-5/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return a == 0 ? 0 : (a - 1) / b + 1;
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
Submitted on: 2025-10-21 10:07:44
Comments
Log in to comment.
No comments yet.