Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"silo-core/contracts/interestRateModel/kink/DynamicKinkModelFactory.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {Clones} from "openzeppelin5/proxy/Clones.sol";
import {SafeCast} from "openzeppelin5/utils/math/SafeCast.sol";
import {Create2Factory} from "common/utils/Create2Factory.sol";
import {IInterestRateModel} from "../../interfaces/IInterestRateModel.sol";
import {IDynamicKinkModel} from "../../interfaces/IDynamicKinkModel.sol";
import {IDynamicKinkModelFactory} from "../../interfaces/IDynamicKinkModelFactory.sol";
import {DynamicKinkModel} from "./DynamicKinkModel.sol";
import {KinkMath} from "../../lib/KinkMath.sol";
contract DynamicKinkModelFactory is Create2Factory, IDynamicKinkModelFactory {
using KinkMath for int256;
/// @dev DP in 18 decimal points used for integer calculations
int256 public constant DP = int256(1e18);
/// @dev seconds per year used in interest calculations.
int256 public constant ONE_YEAR = 365 days;
/// @dev IRM contract implementation address to clone
DynamicKinkModel public immutable IRM;
mapping(address irm => bool) public createdByFactory;
constructor(DynamicKinkModel _implementation) {
IRM = _implementation;
}
/// @inheritdoc IDynamicKinkModelFactory
function create(
IDynamicKinkModel.Config calldata _config,
IDynamicKinkModel.ImmutableArgs calldata _immutableArgs,
address _initialOwner,
address _silo,
bytes32 _externalSalt
)
external
virtual
returns (IInterestRateModel irm)
{
return IInterestRateModel(address(_create(_config, _immutableArgs, _initialOwner, _silo, _externalSalt)));
}
/// @inheritdoc IDynamicKinkModelFactory
// solhint-disable-next-line code-complexity, function-max-lines
function generateConfig(IDynamicKinkModel.UserFriendlyConfig calldata _default)
external
view
virtual
returns (IDynamicKinkModel.Config memory config)
{
IDynamicKinkModel.UserFriendlyConfigInt memory defaultInt = _castConfig(_default);
// 0 <= ulow < u1 < u2 < ucrit < DP
require(defaultInt.u1.inOpenInterval(defaultInt.ulow, defaultInt.u2), IDynamicKinkModel.InvalidU1());
require(defaultInt.u2.inOpenInterval(defaultInt.u1, defaultInt.ucrit), IDynamicKinkModel.InvalidU2());
require(defaultInt.ucrit.inOpenInterval(defaultInt.u2, DP), IDynamicKinkModel.InvalidUcrit());
config.ulow = defaultInt.ulow;
config.u1 = defaultInt.u1;
config.u2 = defaultInt.u2;
config.ucrit = defaultInt.ucrit;
// 0 <= rmin < rcritMin <= rcritMax < r100
require(
defaultInt.rcritMin.inOpenIntervalTopIncluded(defaultInt.rmin, defaultInt.rcritMax),
IDynamicKinkModel.InvalidRcritMin()
);
require(
defaultInt.rcritMax.inOpenIntervalLowIncluded(defaultInt.rcritMin, defaultInt.r100),
IDynamicKinkModel.InvalidRcritMax()
);
int256 s = 365 days;
// 0 < tMin <= tcrit <= t2 < 100y
require(defaultInt.tMin != 0, IDynamicKinkModel.InvalidTMin());
require(defaultInt.tcrit.inClosedInterval(defaultInt.tMin, defaultInt.t2), IDynamicKinkModel.InvalidTCrit());
require(defaultInt.t2.inOpenIntervalLowIncluded(defaultInt.tcrit, 100 * s), IDynamicKinkModel.InvalidT2());
// 0 < tlow <= t1 < 100y
require(defaultInt.tlow != 0, IDynamicKinkModel.InvalidTLow());
require(defaultInt.t1.inOpenIntervalLowIncluded(defaultInt.tlow, 100 * s), IDynamicKinkModel.InvalidT1());
// r check is move to the last, so it will be easier to detect issues with scallar values
int256 rCheckHi = (defaultInt.r100 - defaultInt.rmin) * DP / (defaultInt.rcritMax - defaultInt.rmin);
int256 rCheckLo = (DP - defaultInt.ulow) * DP / (defaultInt.ucrit - defaultInt.ulow);
require(rCheckHi >= rCheckLo, IDynamicKinkModel.InvalidDefaultConfig());
config.rmin = defaultInt.rmin / s;
config.kmin =
SafeCast.toInt96((defaultInt.rcritMin - defaultInt.rmin) * DP / (defaultInt.ucrit - defaultInt.ulow) / s);
config.kmax =
SafeCast.toInt96((defaultInt.rcritMax - defaultInt.rmin) * DP / (defaultInt.ucrit - defaultInt.ulow) / s);
config.alpha =
(rCheckHi * (defaultInt.ucrit - defaultInt.ulow) - (DP - defaultInt.ulow) * DP) / (DP - defaultInt.ucrit);
config.c1 = (config.kmax - config.kmin) * DP / defaultInt.t1;
config.c2 = (config.kmax - config.kmin) * DP / defaultInt.t2;
config.cminus =
((config.kmax - config.kmin) * DP / defaultInt.tlow - config.c1) / (defaultInt.u1 - defaultInt.ulow);
config.cplus =
((config.kmax - config.kmin) * DP / defaultInt.tcrit - config.c2) / (defaultInt.ucrit - defaultInt.u2);
config.c1 /= DP;
config.c2 /= DP;
config.dmax = (config.kmax - config.kmin) / defaultInt.tMin;
IDynamicKinkModel(address(IRM)).verifyConfig(config);
}
/// @inheritdoc IDynamicKinkModelFactory
function verifyConfig(IDynamicKinkModel.Config calldata _config) external view virtual {
IRM.verifyConfig(_config);
}
function predictAddress(address _deployer, bytes32 _externalSalt)
external
view
returns (address predictedAddress)
{
require(_deployer != address(0), DeployerCannotBeZero());
predictedAddress = Clones.predictDeterministicAddress(address(IRM), _createSalt(_deployer, _externalSalt));
}
function _create(
IDynamicKinkModel.Config memory _config,
IDynamicKinkModel.ImmutableArgs memory _immutableArgs,
address _initialOwner,
address _silo,
bytes32 _externalSalt
)
internal
virtual
returns (IDynamicKinkModel irm)
{
IRM.verifyConfig(_config);
bytes32 salt = _salt(_externalSalt);
irm = IDynamicKinkModel(Clones.cloneDeterministic(address(IRM), salt));
irm.initialize(_config, _immutableArgs, _initialOwner, _silo);
createdByFactory[address(irm)] = true;
emit NewDynamicKinkModel(irm);
}
function _castConfig(IDynamicKinkModel.UserFriendlyConfig calldata _default)
internal
pure
returns (IDynamicKinkModel.UserFriendlyConfigInt memory config)
{
config.ulow = SafeCast.toInt256(_default.ulow);
config.u1 = SafeCast.toInt256(_default.u1);
config.u2 = SafeCast.toInt256(_default.u2);
config.ucrit = SafeCast.toInt256(_default.ucrit);
config.rmin = SafeCast.toInt256(_default.rmin);
config.rcritMin = SafeCast.toInt256(_default.rcritMin);
config.rcritMax = SafeCast.toInt256(_default.rcritMax);
config.r100 = SafeCast.toInt256(_default.r100);
config.t1 = SafeCast.toInt256(_default.t1);
config.t2 = SafeCast.toInt256(_default.t2);
config.tlow = SafeCast.toInt256(_default.tlow);
config.tcrit = SafeCast.toInt256(_default.tcrit);
config.tMin = SafeCast.toInt256(_default.tMin);
}
}
"
},
"gitmodules/openzeppelin-contracts-5/contracts/proxy/Clones.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Clones.sol)
pragma solidity ^0.8.20;
import {Errors} from "../utils/Errors.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*/
library Clones {
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address implementation) internal returns (address instance) {
return clone(implementation, 0);
}
/**
* @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
* to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function clone(address implementation, uint256 value) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
/// @solidity memory-safe-assembly
assembly {
// Stores the bytecode after address
mstore(0x20, 0x5af43d82803e903d91602b57fd5bf3)
// implementation address
mstore(0x11, implementation)
// Packs the first 3 bytes of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0x88, implementation), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
instance := create(value, 0x09, 0x37)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple time will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
return cloneDeterministic(implementation, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
* a `value` parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministic(
address implementation,
bytes32 salt,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
/// @solidity memory-safe-assembly
assembly {
// Stores the bytecode after address
mstore(0x20, 0x5af43d82803e903d91602b57fd5bf3)
// implementation address
mstore(0x11, implementation)
// Packs the first 3 bytes of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0x88, implementation), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
instance := create2(value, 0x09, 0x37, salt)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := keccak256(add(ptr, 0x43), 0x55)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
}
"
},
"gitmodules/openzeppelin-contracts-5/contracts/utils/math/SafeCast.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
/// @solidity memory-safe-assembly
assembly {
u := iszero(iszero(b))
}
}
}
"
},
"common/utils/Create2Factory.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {Nonces} from "openzeppelin5/utils/Nonces.sol";
contract Create2Factory is Nonces {
function _salt() internal returns (bytes32 salt) {
salt = keccak256(abi.encodePacked(
msg.sender,
_useNonce(msg.sender)
));
}
function _salt(bytes32 _externalSalt) internal returns (bytes32 salt) {
salt = keccak256(abi.encodePacked(
msg.sender,
_useNonce(msg.sender),
_externalSalt
));
}
function _createSalt(address _deployer, bytes32 _externalSalt) internal view returns (bytes32 salt) {
salt = keccak256(abi.encodePacked(
_deployer,
nonces(_deployer),
_externalSalt
));
}
}
"
},
"silo-core/contracts/interfaces/IInterestRateModel.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IInterestRateModel {
event InterestRateModelError();
/// @dev Sets config address for all Silos that will use this model
/// @param _irmConfig address of IRM config contract
function initialize(address _irmConfig) external;
/// @dev get compound interest rate and update model storage for current block.timestamp
/// @param _collateralAssets total silo collateral assets
/// @param _debtAssets total silo debt assets
/// @param _interestRateTimestamp last IRM timestamp
/// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
function getCompoundInterestRateAndUpdate(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _interestRateTimestamp
)
external
returns (uint256 rcomp);
/// @dev get compound interest rate
/// @param _silo address of Silo for which interest rate should be calculated
/// @param _blockTimestamp current block timestamp
/// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
function getCompoundInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcomp);
/// @dev get current annual interest rate
/// @param _silo address of Silo for which interest rate should be calculated
/// @param _blockTimestamp current block timestamp
/// @return rcur current annual interest rate (1e18 == 100%)
function getCurrentInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcur);
/// @dev returns decimal points used by model
function decimals() external view returns (uint256);
}
"
},
"silo-core/contracts/interfaces/IDynamicKinkModel.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IDynamicKinkModelConfig} from "./IDynamicKinkModelConfig.sol";
/// @title IDynamicKinkModel
/// @notice Interface for the Dynamic Kink Interest Rate Model
/// @dev This interface defines an adaptive interest rate model that dynamically adjusts rates based on market
/// utilization.
/// The model uses a "kink" mechanism where interest rates change more aggressively as utilization increases.
/// Unlike static models, this implementation adapts over time to market conditions.
///
/// Key Features:
/// - Dynamic rate adjustment based on utilization thresholds
/// - Time-based rate evolution to prevent sudden spikes
/// - Configurable parameters for different market conditions
/// - Compound interest calculation for accurate accrual
///
/// The model operates with several utilization zones:
/// - Low utilization (0 to ulow): Minimal rates to encourage borrowing
/// - Optimal range (u1 to u2): Stable rates for normal operations
/// - High utilization (u2 to ucrit): Increasing rates to manage risk
/// - Critical utilization (ucrit to 1e18): Maximum rates
interface IDynamicKinkModel {
/// @notice User-friendly configuration structure for setting up the Dynamic Kink Model
/// @dev This structure provides intuitive parameters that are converted to internal model parameters.
/// All utilization values are in 18 decimals (e.g., 0.5e18 = 50% utilization).
/// All time values are in seconds.
///
/// @param ulow Utilization threshold below which rates are minimal
/// @param ucrit Critical utilization threshold where rates become very high
/// @param u1 lower bound of optimal utilization range (the model is static when utilization is in this interval).
/// @param u2 upper bound of optimal utilization range (the model is static when utilization is in this interval).
/// @param rmin Minimal per-second interest rate (minimal APR), active below ulow.
/// @param rcritMin Minimal APR that the model can output at the critical utilization ucrit
/// @param rcritMax Maximal APR that the model can output at the critical utilization ucrit
/// @param r100 Maximum possible per-second rate at 100% utilization
/// @param t1 Time in seconds for rate to decrease from max to min at u1 utilization
/// @param t2 Time in seconds for rate to increase from min to max at u2 utilization
/// @param tlow Time in seconds to reset rates when utilization drops to ulow
/// @param tcrit Time in seconds for rate to increase from min to max at critical utilization
/// @param tMin minimal time it takes to grow from the minimal to the maximal APR at any utilization
struct UserFriendlyConfig {
uint64 ulow;
uint64 ucrit;
uint64 u1;
uint64 u2;
uint72 rmin;
uint72 rcritMin;
uint72 rcritMax;
uint72 r100;
uint32 t1;
uint32 t2;
uint32 tlow;
uint32 tcrit;
uint32 tMin;
}
/// @dev same as UserFriendlyConfig but with int256 values to help with calculations
struct UserFriendlyConfigInt {
int256 ulow;
int256 ucrit;
int256 u1;
int256 u2;
int256 rmin;
int256 rcritMin;
int256 rcritMax;
int256 r100;
int256 t1;
int256 t2;
int256 tlow;
int256 tcrit;
int256 tMin;
}
/// @notice Internal configuration structure used by the model for calculations
/// @dev These values are used in the mathematical calculations of the interest rate model.
/// Utilization values are in 18 decimals 1e18 = 100%.
/// @param ulow ulow ∈ [0, 1e18) Low utilization threshold
/// @param u1 u1 ∈ [0, 1e18) Lower bound of optimal utilization range
/// @param u2 u2 ∈ [u1, 1e18) Upper bound of optimal utilization range
/// @param ucrit ucrit ∈ [ulow, 1e18) Critical utilization threshold
/// @param rmin rmin >= 0 Minimal per-second interest rate
/// @param kmin kmin >= 0 Minimal slope k of central segment (curve) of the kink
/// @param kmax kmax >= kmin Maximal slope k of central segment (curve) of the kink
/// @param alpha alpha >= 0 Factor controlling the slope for the critical segment of the kink
/// @param cminus cminus >= 0 Coefficient of decrease of the slope k
/// @param cplus cplus >= 0 Coefficient for increasing the slope k
/// @param c1 c1 >= 0 Minimal rate of decrease of the slope k
/// @param c2 c2 >= 0 Minimal growth rate of the slope k
/// @param dmax dmax >= 0 Maximum growth rate of the slope k
struct Config {
int256 ulow;
int256 u1;
int256 u2;
int256 ucrit;
int256 rmin;
int96 kmin;
int96 kmax;
int256 alpha;
int256 cminus;
int256 cplus;
int256 c1;
int256 c2;
int256 dmax;
}
struct ImmutableArgs {
uint32 timelock;
int96 rcompCap;
}
struct ImmutableConfig {
uint32 timelock;
int96 rcompCapPerSecond;
}
/// @notice Internal variables used during compound interest calculations
/// @dev This structure contains temporary variables used in the mathematical calculations.
/// Integrators typically don't need to interact with these values directly.
///
/// @param T Time elapsed since the last interest rate update (in seconds)
/// @param k1 Internal variable for slope calculations
/// @param f Factor used in kink slope calculations
/// @param roc Rate of change variable for slope calculations
/// @param x Internal calculation variable
/// @param interest Absolute value of compounded interest
struct LocalVarsRCOMP {
int256 T;
int256 k1;
int256 f;
int256 roc;
int256 x;
int256 interest;
}
struct CompoundInterestRateArgs {
address silo;
uint256 collateralAssets;
uint256 debtAssets;
uint256 interestRateTimestamp;
uint256 blockTimestamp;
bool usePending;
}
/// @notice Current state of the Dynamic Kink Model
/// @dev This structure tracks the current state of the model, including the dynamic slope value
/// that changes over time based on utilization patterns.
///
/// @param k Current slope value of the kink curve (changes dynamically over time)
/// @param silo Address of the Silo contract this model is associated with
struct ModelState {
int96 k;
address silo;
}
struct History {
int96 k;
IDynamicKinkModelConfig irmConfig;
}
/// @notice Emitted when the model is initialized with a new configuration
/// @param owner Address that will own this model instance
/// @param silo Address of the Silo contract this model is associated with
event Initialized(address indexed owner, address indexed silo);
/// @notice Emitted when a new configuration is set for the model
/// @param config The new configuration contract address
/// @param activeAt Timestamp at which the configuration becomes active
event NewConfig(IDynamicKinkModelConfig indexed config, uint256 activeAt);
/// @notice Emitted when a pending configuration update is canceled
/// @param config The canceled configuration contract address
event PendingUpdateConfigCanceled(IDynamicKinkModelConfig indexed config);
error AddressZero();
error AlphaDividerZero();
error AlreadyInitialized();
error EmptySilo();
error InvalidAlpha();
error InvalidC1();
error InvalidC2();
error InvalidCminus();
error InvalidCplus();
error InvalidDefaultConfig();
error InvalidDmax();
error InvalidKmax();
error InvalidKmin();
error InvalidKRange();
error InvalidRcompCap();
error InvalidRcritMax();
error InvalidRcritMin();
error InvalidRmin();
error InvalidSilo();
error InvalidT1();
error InvalidT2();
error InvalidTimelock();
error InvalidTimestamp();
error InvalidTMin();
error InvalidTLow();
error InvalidTCrit();
error InvalidU1();
error InvalidU2();
error InvalidUcrit();
error InvalidUlow();
error NegativeRcomp();
error NegativeRcur();
error NoPendingUpdateToCancel();
error NoPendingConfig();
error OnlySilo();
error PendingUpdate();
error XOverflow();
/// @notice Initialize the Dynamic Kink Model with configuration and ownership
/// @dev This function sets up the model for a specific Silo contract. Can only be called once.
/// @param _config The configuration parameters for the interest rate model
/// @param _immutableArgs The immutable configuration parameters for the interest rate model
/// @param _initialOwner Address that will own and control this model instance
/// @param _silo Address of the Silo contract this model will serve
function initialize(
IDynamicKinkModel.Config calldata _config,
IDynamicKinkModel.ImmutableArgs calldata _immutableArgs,
address _initialOwner,
address _silo
)
external;
/// @notice Update the model configuration
/// @dev This function allows the model owner to update the configuration of the model.
/// By setting the same config, we can reset k to kmin.
/// @param _config The new configuration parameters for the interest rate model
function updateConfig(IDynamicKinkModel.Config calldata _config) external;
/// @notice Cancel the pending configuration update
/// @dev This function allows the model owner to cancel the pending configuration update.
/// It will revert if there is no pending update.
function cancelPendingUpdateConfig() external;
/// @notice Calculate compound interest rate and update the model's internal state
/// @dev This function is the primary method used by Silo contracts to calculate
/// and accrue interest. Unlike getCompoundInterestRate(), this function
/// modifies the model's internal state by updating the dynamic slope value (k).
///
/// This function should only be called by the associated Silo contract,
/// as it performs state updates that affect future interest calculations.
/// It includes comprehensive overflow protection and gracefully handles
/// calculation errors by returning 0 and resetting the slope to minimum.
///
/// The function calculates interest based on:
/// - Current collateral and debt amounts
/// - Time elapsed since last interest rate update
/// - Dynamic slope adjustments based on utilization patterns
///
/// @param _collateralAssets Total collateral assets in the Silo (in asset units)
/// @param _debtAssets Total debt assets in the Silo (in asset units)
/// @param _interestRateTimestamp Timestamp of the last interest rate update
/// @return rcomp Total compound interest multiplier (in 18 decimals, represents total accrued interest)
/// @custom:throws OnlySilo() if called by any address other than the associated Silo contract
function getCompoundInterestRateAndUpdate(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _interestRateTimestamp
)
external
returns (uint256 rcomp);
function configsHistory(IDynamicKinkModelConfig _irmConfig)
external
view
returns (int96 k, IDynamicKinkModelConfig irmConfig);
/// @notice Get the current (active) configuration contract for this model
/// @return config The IDynamicKinkModelConfig contract containing the model parameters
function irmConfig() external view returns (IDynamicKinkModelConfig config);
/// @notice Get the current (active) model state
function modelState() external view returns (ModelState memory state);
/// @notice Get both the current model state and configuration
/// @param _usePending Whether to use the pending configuration to pull config from
/// @return state Current state of the model (including dynamic slope value)
/// @return config configuration parameters, either active or pending, depending on _usePending
/// @return immutableConfig Immutable configuration parameters
function getModelStateAndConfig(bool _usePending)
external
view
returns (ModelState memory state, Config memory config, ImmutableConfig memory immutableConfig);
/// @notice Maximum compound interest rate per second (prevents extreme rates)
/// @return cap Maximum per-second compound interest rate in 18 decimals
function RCOMP_CAP_PER_SECOND() external view returns (int256 cap); // solhint-disable-line func-name-mixedcase
/// @notice Maximum current interest rate (prevents extreme APRs)
/// @return cap Maximum annual interest rate in 18 deci
Submitted on: 2025-10-21 10:08:01
Comments
Log in to comment.
No comments yet.