Description:
Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/Trecena.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
// MENE, MENE, TEKEL, UPHARSIN
import { ReentrancyGuard } from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import { EIP712 } from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
contract Trecena is ReentrancyGuard, EIP712 {
using SafeERC20 for IERC20;
enum Pool { None, Sun, Moon }
uint public constant TARGET_DURATION_SECONDS = 86400;
uint public constant AVG_BLOCK_TIME_SECONDS = 12;
uint256 public constant BLOCKS_PER_CYCLE = TARGET_DURATION_SECONDS / AVG_BLOCK_TIME_SECONDS;
uint256 public constant BLOCKS_BETWEEN_SAMPLES = 260;
uint256 public constant APPROVAL_CYCLE_COUNT = 13;
uint256 public constant CHECKPOINT_INTERVAL = 1;
uint256 public constant MIN_OFFERING_USDC = 20 * 1e6;
uint16 public constant PLATFORM_FEE_BASIS_POINTS = 100;
uint8 public constant USDC_DECIMALS = 6;
IERC20 public immutable usdcToken;
address payable public immutable TemploTrecena;
address public immutable TemploMayor;
uint256 public immutable Nahui_Ollin;
uint256 public lastSampleTimestamp;
uint256 public lastSampleBlock;
uint256 public observedBlockTimeAverage = AVG_BLOCK_TIME_SECONDS;
mapping(uint256 => uint256) public cycleLengths;
mapping(uint256 => uint256) public cycleStartBlockCheckpoints;
bytes32 internal constant READY_KNIFE_TYPEHASH = keccak256(
"ReadyObsidianKnife(address caller,address warrior,uint256 trecenaCycleId,uint256 expiryBlock)"
);
bytes32 internal constant DISARM_KNIFE_TYPEHASH = keccak256(
"DisarmObsidianKnife(address caller,address warrior,uint256 trecenaCycleId,uint256 expiryBlock)"
);
bytes32 internal constant REARM_KNIFE_TYPEHASH = keccak256(
"RearmObsidianKnife(address caller,address warrior,uint256 trecenaCycleId,uint256 expiryBlock)"
);
struct TrecenaCycleData {
mapping(Pool => uint256) poolTotals;
mapping(address => WarriorOfferings) individualWarriorOfferings;
Pool winningPool;
bool finalized;
}
struct WarriorOfferings {
mapping(Pool => uint256) offerings;
uint256 totalOfferings;
bool hasWithdrawn;
}
struct WithdrawalData {
uint256 trecenaCycleId;
}
mapping(uint256 => TrecenaCycleData) public trecenaCycles;
mapping(bytes32 => bool) private usedSignatures;
mapping(uint256 => mapping(address => bool)) public isRevoked;
mapping(address => uint256) public warriorTotalClaimedWinnings;
uint256 public totalHistoricalVolume;
mapping(address => uint256) public approvedUntilCycle;
error WarriorNotApprovedForTrecenaCycle();
error InsufficientOffering();
error AlreadyRewarded();
error NoOfferings();
error InvalidTemploMayorAddress();
error SignatureUsed();
error InvalidSignature();
error ExpiryBlockPassed();
error WarriorRevoked();
error TrecenaCycleEnded();
error TrecenaCycleNotActive();
error InvalidTemploTrecenaAddress();
error InvalidTokenDecimals(uint8 expected, uint8 actual);
error OnlyEOA();
error CycleNotYetEnded();
error CycleAlreadyFinalized();
error InvalidCycleId();
error OnlyCurrentCycleAllowed();
error CycleCalculationOverflow();
error RunawayCycleCalculation();
error CycleNotFinalized();
event OfferingMade(
uint256 indexed trecenaCycleId,
address indexed warriorAddress,
Pool indexed pool,
uint256 grossAmount,
uint256 netAmount,
uint256 blockNumber
);
event WarriorArmed(uint256 indexed trecenaCycleId, address indexed warrior);
event WarriorDisarmed(uint256 indexed trecenaCycleId, address indexed warrior);
event WarriorRearmed(uint256 indexed trecenaCycleId, address indexed warrior);
event WarriorRewarded(uint256 indexed trecenaCycleId, address indexed warrior, uint256 amount);
event CycleFinalized(uint256 indexed trecenaCycleId, Pool winningPool);
modifier blockNotExpired(uint256 expiryBlock) {
if (block.number > expiryBlock) {
revert ExpiryBlockPassed();
}
_;
}
modifier onlyCurrentCycle(uint256 trecenaCycleId) {
if (trecenaCycleId != getCurrentCycleId()) {
revert OnlyCurrentCycleAllowed();
}
_;
}
constructor(
IERC20 _usdcToken,
address payable _TemploTrecena,
address _TemploMayor
) EIP712("Trecena", "1") {
uint8 actual = IERC20Metadata(address(_usdcToken)).decimals();
if (actual != USDC_DECIMALS) {
revert InvalidTokenDecimals(USDC_DECIMALS, actual);
}
if (_TemploTrecena == address(0)) {
revert InvalidTemploTrecenaAddress();
}
if (_TemploMayor == address(0)) {
revert InvalidTemploMayorAddress();
}
usdcToken = _usdcToken;
TemploTrecena = _TemploTrecena;
TemploMayor = _TemploMayor;
Nahui_Ollin = block.number;
lastSampleTimestamp = block.timestamp;
lastSampleBlock = block.number;
observedBlockTimeAverage = AVG_BLOCK_TIME_SECONDS;
cycleLengths[0] = BLOCKS_PER_CYCLE;
cycleStartBlockCheckpoints[0] = Nahui_Ollin;
}
function _maybeUpdateBlockTimeEstimate() internal {
if (block.number % 13 == 0) {
if (block.number - lastSampleBlock >= BLOCKS_BETWEEN_SAMPLES) {
_updateBlockTimeEstimate();
}
}
}
function _updateBlockTimeEstimate() internal {
uint256 blocksDelta = block.number - lastSampleBlock;
uint256 timeDelta = block.timestamp - lastSampleTimestamp;
bool updatedAverage = false;
if (blocksDelta > 0 && timeDelta / blocksDelta >= 1 && timeDelta / blocksDelta <= 60) {
uint256 newAverage = timeDelta / blocksDelta;
uint256 oldAverage = observedBlockTimeAverage;
observedBlockTimeAverage = (oldAverage * 80 + newAverage * 20) / 100;
uint256 nextCycleId = getCurrentCycleId() + 1;
uint256 nextCycleLength = TARGET_DURATION_SECONDS / observedBlockTimeAverage;
cycleLengths[nextCycleId] = nextCycleLength;
if (nextCycleId % CHECKPOINT_INTERVAL == 0) {
uint256 prevCheckpointId = nextCycleId - CHECKPOINT_INTERVAL;
uint256 prevCheckpointStartBlock = cycleStartBlockCheckpoints[prevCheckpointId];
if (prevCheckpointStartBlock == 0 && prevCheckpointId != 0) {
prevCheckpointStartBlock = _calculateStartBlockFromScratch(prevCheckpointId);
}
uint256 currentCheckpointStartBlock = prevCheckpointStartBlock;
for (uint256 i = prevCheckpointId; i < nextCycleId; i++) {
uint256 len = cycleLengths[i];
if (len == 0) len = BLOCKS_PER_CYCLE;
currentCheckpointStartBlock += len;
}
cycleStartBlockCheckpoints[nextCycleId] = currentCheckpointStartBlock;
}
updatedAverage = true;
}
lastSampleTimestamp = block.timestamp;
lastSampleBlock = block.number;
}
function _getCycleLength(uint256 cycleId) internal view returns (uint256 length) {
length = cycleLengths[cycleId];
if (length == 0) {
uint256 avg = observedBlockTimeAverage;
if (avg == 0) {
avg = AVG_BLOCK_TIME_SECONDS;
}
length = TARGET_DURATION_SECONDS / avg;
if (length == 0) {
length = BLOCKS_PER_CYCLE;
}
}
}
function _calculateStartBlockUsingCheckpoints(uint256 trecenaCycleId) internal view returns (uint256 startBlock) {
if (trecenaCycleId == 0) return Nahui_Ollin;
uint256 lastCheckpointId = (trecenaCycleId / CHECKPOINT_INTERVAL) * CHECKPOINT_INTERVAL;
startBlock = cycleStartBlockCheckpoints[lastCheckpointId];
if (startBlock == 0 && lastCheckpointId != 0) {
startBlock = _calculateStartBlockFromScratch(lastCheckpointId);
}
if (startBlock == 0 && lastCheckpointId == 0) {
startBlock = Nahui_Ollin;
}
for (uint256 i = lastCheckpointId; i < trecenaCycleId; i++) {
startBlock += _getCycleLength(i);
}
}
function _calculateStartBlockFromScratch(uint256 trecenaCycleId) internal view returns (uint256 startBlock) {
startBlock = Nahui_Ollin;
for (uint256 i = 0; i < trecenaCycleId; i++) {
startBlock += _getCycleLength(i);
}
}
function getCurrentCycleId() public view returns (uint256 cycleId) {
if (block.number < Nahui_Ollin) return 0;
uint256 currentBlock = block.number;
uint256 avgLen = observedBlockTimeAverage > 0 ? TARGET_DURATION_SECONDS / observedBlockTimeAverage : BLOCKS_PER_CYCLE;
uint256 estimatedCycle = (currentBlock - Nahui_Ollin) / avgLen;
uint256 startSearchCheckpointId = (estimatedCycle / CHECKPOINT_INTERVAL) * CHECKPOINT_INTERVAL;
uint256 blockAccum = cycleStartBlockCheckpoints[startSearchCheckpointId];
cycleId = startSearchCheckpointId;
if (blockAccum == 0 || blockAccum > currentBlock) {
blockAccum = Nahui_Ollin;
cycleId = 0;
}
while (true) {
uint256 cycleLength = _getCycleLength(cycleId);
uint256 nextCycleStartBlock = blockAccum + cycleLength;
if (nextCycleStartBlock < blockAccum) {
revert CycleCalculationOverflow();
}
if (currentBlock < nextCycleStartBlock) {
return cycleId;
}
blockAccum = nextCycleStartBlock;
cycleId++;
if (cycleId > estimatedCycle + CHECKPOINT_INTERVAL * 2) {
revert RunawayCycleCalculation();
}
}
}
function getTrecenaCycleBlockRange(uint256 trecenaCycleId) public view returns (uint256 startBlock, uint256 endBlock) {
startBlock = _calculateStartBlockUsingCheckpoints(trecenaCycleId);
uint256 length = _getCycleLength(trecenaCycleId);
endBlock = startBlock + length;
if (endBlock < startBlock) revert CycleCalculationOverflow();
}
function getCycleIdForBlock(uint256 blockNumber) public view returns (uint256 cycleId) {
if (blockNumber < Nahui_Ollin) revert InvalidCycleId();
uint256 avgLen = observedBlockTimeAverage > 0 ? TARGET_DURATION_SECONDS / observedBlockTimeAverage : BLOCKS_PER_CYCLE;
uint256 estimatedCycle = (blockNumber - Nahui_Ollin) / avgLen;
uint256 startSearchCheckpointId = (estimatedCycle / CHECKPOINT_INTERVAL) * CHECKPOINT_INTERVAL;
uint256 blockAccum = cycleStartBlockCheckpoints[startSearchCheckpointId];
cycleId = startSearchCheckpointId;
if (blockAccum == 0 || blockAccum > blockNumber) {
blockAccum = Nahui_Ollin;
cycleId = 0;
}
while (true) {
uint256 cycleLength = _getCycleLength(cycleId);
uint256 nextCycleStartBlock = blockAccum + cycleLength;
if (nextCycleStartBlock < blockAccum) revert CycleCalculationOverflow();
if (blockNumber < nextCycleStartBlock) {
return cycleId;
}
blockAccum = nextCycleStartBlock;
cycleId++;
if (cycleId > estimatedCycle + CHECKPOINT_INTERVAL * 2) {
revert RunawayCycleCalculation();
}
}
}
function isCycleActive(uint256 cycleId) public view returns (bool) {
return cycleId == getCurrentCycleId();
}
function getTrecenaCycleStatus(uint256 trecenaCycleId) public view returns (uint8 status) {
uint256 currentCycleId = getCurrentCycleId();
if (trecenaCycleId > currentCycleId) {
return 0;
}
else if (trecenaCycleId == currentCycleId) {
return 1;
}
else {
return trecenaCycles[trecenaCycleId].finalized ? 3 : 2;
}
}
function ReadyObsidianKnife(
uint256 trecenaCycleId,
address kycApprovedAddress,
uint256 expiryBlock,
bytes memory signature
) external blockNotExpired(expiryBlock) onlyCurrentCycle(trecenaCycleId) {
_maybeUpdateBlockTimeEstimate();
bytes32 structHash = keccak256(abi.encode(
READY_KNIFE_TYPEHASH,
msg.sender,
kycApprovedAddress,
trecenaCycleId,
expiryBlock
));
bytes32 digest = _hashTypedDataV4(structHash);
if (usedSignatures[digest]) {
revert SignatureUsed();
}
address signer = ECDSA.recover(digest, signature);
if (signer != TemploMayor) {
revert InvalidSignature();
}
usedSignatures[digest] = true;
approvedUntilCycle[kycApprovedAddress] = trecenaCycleId + APPROVAL_CYCLE_COUNT - 1;
emit WarriorArmed(trecenaCycleId, kycApprovedAddress);
}
function DisarmObsidianKnife(
uint256 trecenaCycleId,
address warrior,
uint256 expiryBlock,
bytes memory signature
) external blockNotExpired(expiryBlock) onlyCurrentCycle(trecenaCycleId) {
_maybeUpdateBlockTimeEstimate();
bytes32 structHash = keccak256(abi.encode(
DISARM_KNIFE_TYPEHASH,
msg.sender,
warrior,
trecenaCycleId,
expiryBlock
));
bytes32 digest = _hashTypedDataV4(structHash);
if (usedSignatures[digest]) {
revert SignatureUsed();
}
address signer = ECDSA.recover(digest, signature);
if (signer != TemploMayor) {
revert InvalidSignature();
}
usedSignatures[digest] = true;
approvedUntilCycle[warrior] = trecenaCycleId - 1;
for (uint256 i = 0; i < APPROVAL_CYCLE_COUNT; i++) {
isRevoked[trecenaCycleId + i][warrior] = true;
}
emit WarriorDisarmed(trecenaCycleId, warrior);
}
function RearmObsidianKnife(
uint256 trecenaCycleId,
address warrior,
uint256 expiryBlock,
bytes memory signature
) external blockNotExpired(expiryBlock) onlyCurrentCycle(trecenaCycleId) {
_maybeUpdateBlockTimeEstimate();
bytes32 structHash = keccak256(abi.encode(
REARM_KNIFE_TYPEHASH,
msg.sender,
warrior,
trecenaCycleId,
expiryBlock
));
bytes32 digest = _hashTypedDataV4(structHash);
if (usedSignatures[digest]) {
revert SignatureUsed();
}
address signer = ECDSA.recover(digest, signature);
if (signer != TemploMayor) {
revert InvalidSignature();
}
usedSignatures[digest] = true;
approvedUntilCycle[warrior] = trecenaCycleId + APPROVAL_CYCLE_COUNT - 1;
for (uint256 i = 0; i < APPROVAL_CYCLE_COUNT; i++) {
isRevoked[trecenaCycleId + i][warrior] = false;
}
emit WarriorRearmed(trecenaCycleId, warrior);
}
function SunOffering(uint256 _amount) external nonReentrant {
if (msg.sender != tx.origin) revert OnlyEOA();
_maybeUpdateBlockTimeEstimate();
uint256 currentCycleId = getCurrentCycleId();
_executeOffering(currentCycleId, Pool.Sun, _amount, msg.sender);
}
function MoonOffering(uint256 _amount) external nonReentrant {
if (msg.sender != tx.origin) revert OnlyEOA();
_maybeUpdateBlockTimeEstimate();
uint256 currentCycleId = getCurrentCycleId();
_executeOffering(currentCycleId, Pool.Moon, _amount, msg.sender);
}
function _executeOffering(
uint256 trecenaCycleId,
Pool _pool,
uint256 _amount,
address warriorAddress
) internal {
if (!isCycleActive(trecenaCycleId)) revert TrecenaCycleNotActive();
if (isRevoked[trecenaCycleId][warriorAddress]) revert WarriorRevoked();
if (approvedUntilCycle[warriorAddress] < trecenaCycleId) revert WarriorNotApprovedForTrecenaCycle();
if (_amount < MIN_OFFERING_USDC) revert InsufficientOffering();
uint256 fee = (_amount * PLATFORM_FEE_BASIS_POINTS) / 10000;
uint256 netOffering = _amount - fee;
_updateStateAndTransfer(
trecenaCycles[trecenaCycleId],
trecenaCycleId,
warriorAddress,
_pool,
_amount,
netOffering,
fee
);
}
function _updateStateAndTransfer(
TrecenaCycleData storage trecenaCycle,
uint256 trecenaCycleId,
address warriorAddress,
Pool pool,
uint256 grossAmount,
uint256 netOffering,
uint256 fee
) internal {
WarriorOfferings storage warriorOfferings = trecenaCycle.individualWarriorOfferings[warriorAddress];
trecenaCycle.poolTotals[pool] += netOffering;
warriorOfferings.offerings[pool] += netOffering;
warriorOfferings.totalOfferings += netOffering;
totalHistoricalVolume += netOffering;
usdcToken.safeTransferFrom(warriorAddress, address(this), grossAmount);
if (fee > 0) {
usdcToken.safeTransfer(TemploTrecena, fee);
}
emit OfferingMade(trecenaCycleId, warriorAddress, pool, grossAmount, netOffering, block.number);
}
function ReceiveRewards(
WithdrawalData calldata withdrawalData
) external nonReentrant {
_maybeUpdateBlockTimeEstimate();
uint256 trecenaCycleId = withdrawalData.trecenaCycleId;
uint256 currentCycleId = getCurrentCycleId();
if (trecenaCycleId >= currentCycleId) {
revert CycleNotYetEnded();
}
TrecenaCycleData storage trecenaCycle = trecenaCycles[trecenaCycleId];
address warriorAddress = msg.sender;
WarriorOfferings storage warriorOfferings = trecenaCycle.individualWarriorOfferings[warriorAddress];
if (warriorOfferings.hasWithdrawn) {
revert AlreadyRewarded();
}
uint256 warriorSunOffering = warriorOfferings.offerings[Pool.Sun];
uint256 warriorMoonOffering = warriorOfferings.offerings[Pool.Moon];
if (warriorSunOffering == 0 && warriorMoonOffering == 0) {
revert NoOfferings();
}
if (!trecenaCycle.finalized) {
_finalizeTrecenaCycle(trecenaCycleId);
}
if (!trecenaCycle.finalized) revert CycleNotFinalized();
uint256 reward = _calculateReward(trecenaCycle, warriorSunOffering, warriorMoonOffering);
warriorOfferings.hasWithdrawn = true;
warriorTotalClaimedWinnings[warriorAddress] += reward;
if (reward > 0) {
usdcToken.safeTransfer(warriorAddress, reward);
emit WarriorRewarded(trecenaCycleId, warriorAddress, reward);
}
}
function _finalizeTrecenaCycle(uint256 cycleId) internal {
TrecenaCycleData storage cycle = trecenaCycles[cycleId];
if (cycle.finalized) {
return;
}
uint256 currentCycleId = getCurrentCycleId();
if (cycleId >= currentCycleId) {
revert CycleNotYetEnded();
}
uint256 sunPoolTotal = cycle.poolTotals[Pool.Sun];
uint256 moonPoolTotal = cycle.poolTotals[Pool.Moon];
cycle.winningPool = _determineWinningPool(sunPoolTotal, moonPoolTotal);
cycle.finalized = true;
emit CycleFinalized(cycleId, cycle.winningPool);
}
function _calculateReward(
TrecenaCycleData storage trecenaCycle,
uint256 warriorSunOffering,
uint256 warriorMoonOffering
) internal view returns (uint256) {
Pool winningPool = trecenaCycle.winningPool;
if (winningPool == Pool.None) {
return warriorSunOffering + warriorMoonOffering;
}
uint256 sunTotal = trecenaCycle.poolTotals[Pool.Sun];
uint256 moonTotal = trecenaCycle.poolTotals[Pool.Moon];
if (winningPool == Pool.Sun) {
if (warriorSunOffering == 0) return 0;
if (sunTotal == 0) return warriorSunOffering;
uint256 sunBonus = (moonTotal * warriorSunOffering) / sunTotal;
return warriorSunOffering + sunBonus;
}
if (warriorMoonOffering == 0) return 0;
if (moonTotal == 0) return warriorMoonOffering;
uint256 moonBonus = (sunTotal * warriorMoonOffering) / moonTotal;
return warriorMoonOffering + moonBonus;
}
function getObservedBlockTimeAverage() external view returns (uint256) {
return observedBlockTimeAverage;
}
function getCycleLength(uint256 cycleId) public view returns (uint256) {
return _getCycleLength(cycleId);
}
function getEstimatedCycleDurationSeconds(uint256 cycleId) external view returns (uint256) {
uint256 blocks = _getCycleLength(cycleId);
uint256 avg = observedBlockTimeAverage;
if (avg == 0) avg = AVG_BLOCK_TIME_SECONDS;
return blocks * avg;
}
function getPoolTotal(uint256 trecenaCycleId, Pool pool) external view returns (uint256) {
return trecenaCycles[trecenaCycleId].poolTotals[pool];
}
function getWarriorOffering(uint256 trecenaCycleId, address warrior, Pool pool) external view returns (uint256) {
return trecenaCycles[trecenaCycleId].individualWarriorOfferings[warrior].offerings[pool];
}
function getWarriorTotalOffering(uint256 trecenaCycleId, address warrior) external view returns (uint256) {
return trecenaCycles[trecenaCycleId].individualWarriorOfferings[warrior].totalOfferings;
}
function hasWithdrawn(uint256 trecenaCycleId, address warrior) external view returns (bool) {
return trecenaCycles[trecenaCycleId].individualWarriorOfferings[warrior].hasWithdrawn;
}
function isTrecenaCycleOpenForOfferings(uint256 trecenaCycleId) external view returns (bool) {
return isCycleActive(trecenaCycleId);
}
function isTrecenaCycleFinalized(uint256 trecenaCycleId) external view returns (bool) {
return trecenaCycles[trecenaCycleId].finalized;
}
function getWinningPool(uint256 trecenaCycleId) public view returns (Pool) {
uint256 currentCycleId = getCurrentCycleId();
TrecenaCycleData storage trecenaCycle = trecenaCycles[trecenaCycleId];
if (trecenaCycle.finalized) {
return trecenaCycle.winningPool;
}
if (trecenaCycleId >= currentCycleId) {
return Pool.None;
}
uint256 sunPoolTotal = trecenaCycle.poolTotals[Pool.Sun];
uint256 moonPoolTotal = trecenaCycle.poolTotals[Pool.Moon];
return _determineWinningPool(sunPoolTotal, moonPoolTotal);
}
function isApprovedForTrecenaCycle(uint256 trecenaCycleId, address warrior) external view returns (bool) {
return approvedUntilCycle[warrior] >= trecenaCycleId && !isRevoked[trecenaCycleId][warrior];
}
function calculatePotentialReward(
uint256 trecenaCycleId,
address warrior
) external view returns (uint256) {
TrecenaCycleData storage trecenaCycle = trecenaCycles[trecenaCycleId];
WarriorOfferings storage warriorOfferings = trecenaCycle.individualWarriorOfferings[warrior];
if (warriorOfferings.hasWithdrawn || warriorOfferings.totalOfferings == 0) {
return 0;
}
uint256 warriorSunOffering = warriorOfferings.offerings[Pool.Sun];
uint256 warriorMoonOffering = warriorOfferings.offerings[Pool.Moon];
Pool winner = getWinningPool(trecenaCycleId);
if (winner == Pool.None) {
return warriorSunOffering + warriorMoonOffering;
}
uint256 sunTotal = trecenaCycle.poolTotals[Pool.Sun];
uint256 moonTotal = trecenaCycle.poolTotals[Pool.Moon];
if (winner == Pool.Sun) {
if (warriorSunOffering == 0) return 0;
if (sunTotal == 0) return warriorSunOffering;
uint256 sunBonus = (moonTotal * warriorSunOffering) / sunTotal;
return warriorSunOffering + sunBonus;
}
if (warriorMoonOffering == 0) return 0;
if (moonTotal == 0) return warriorMoonOffering;
uint256 moonBonus = (sunTotal * warriorMoonOffering) / moonTotal;
return warriorMoonOffering + moonBonus;
}
function getTrecenaCycleTotalOfferings(uint256 trecenaCycleId) external view returns (uint256) {
TrecenaCycleData storage trecenaCycle = trecenaCycles[trecenaCycleId];
return trecenaCycle.poolTotals[Pool.Sun] + trecenaCycle.poolTotals[Pool.Moon];
}
function getPoolRatio(uint256 trecenaCycleId) external view returns (uint256 sunRatio, uint256 moonRatio) {
TrecenaCycleData storage trecenaCycle = trecenaCycles[trecenaCycleId];
uint256 sunTotal = trecenaCycle.poolTotals[Pool.Sun];
uint256 moonTotal = trecenaCycle.poolTotals[Pool.Moon];
uint256 total = sunTotal + moonTotal;
if (total == 0) {
return (0, 0);
}
sunRatio = (sunTotal * 10000) / total;
moonRatio = 10000 - sunRatio;
return (sunRatio, moonRatio);
}
function getWarriorTrecenaCycleHistory(address warrior, uint256 trecenaCycleId) external view returns (
uint256 sunOffering,
uint256 moonOffering,
uint256 totalOffering,
bool hasWarriorWithdrawn,
uint256 reward
) {
TrecenaCycleData storage trecenaCycle = trecenaCycles[trecenaCycleId];
WarriorOfferings storage warriorOfferings = trecenaCycle.individualWarriorOfferings[warrior];
sunOffering = warriorOfferings.offerings[Pool.Sun];
moonOffering = warriorOfferings.offerings[Pool.Moon];
totalOffering = warriorOfferings.totalOfferings;
hasWarriorWithdrawn = warriorOfferings.hasWithdrawn;
uint256 currentCycleId = getCurrentCycleId();
if (trecenaCycleId < currentCycleId && totalOffering > 0) {
Pool winner = getWinningPool(trecenaCycleId);
if (winner == Pool.None) {
reward = sunOffering + moonOffering;
} else if (winner == Pool.Sun) {
if (sunOffering == 0) reward = 0;
else {
uint256 sunTotal = trecenaCycle.poolTotals[Pool.Sun];
if (sunTotal == 0) reward = sunOffering;
else reward = sunOffering + (trecenaCycle.poolTotals[Pool.Moon] * sunOffering) / sunTotal;
}
} else {
if (moonOffering == 0) reward = 0;
else {
uint256 moonTotal = trecenaCycle.poolTotals[Pool.Moon];
if (moonTotal == 0) reward = moonOffering;
else reward = moonOffering + (trecenaCycle.poolTotals[Pool.Sun] * moonOffering) / moonTotal;
}
}
} else {
reward = 0;
}
return (sunOffering, moonOffering, totalOffering, hasWarriorWithdrawn, reward);
}
function getWarriorTotalWinnings(address warrior) external view returns (uint256) {
return warriorTotalClaimedWinnings[warrior];
}
function isEligibleForRefund(uint256 trecenaCycleId, address warrior) external view returns (bool) {
uint256 currentCycleId = getCurrentCycleId();
if (trecenaCycleId >= currentCycleId) {
return false;
}
TrecenaCycleData storage trecenaCycle = trecenaCycles[trecenaCycleId];
WarriorOfferings storage warriorOfferings = trecenaCycle.individualWarriorOfferings[warrior];
if (warriorOfferings.hasWithdrawn || warriorOfferings.totalOfferings == 0) {
return false;
}
Pool winner = getWinningPool(trecenaCycleId);
return winner == Pool.None;
}
function getTotalHistoricalVolume() external view returns (uint256) {
return totalHistoricalVolume;
}
function getMostPopularPool(uint256 trecenaCycleId) external view returns (Pool) {
return getWinningPool(trecenaCycleId);
}
function isWarriorRevoked(uint256 trecenaCycleId, address warrior) external view returns (bool) {
return isRevoked[trecenaCycleId][warrior];
}
function hasWarriorMadeOfferingToPool(uint256 trecenaCycleId, address warrior, Pool pool) external view returns (bool) {
return trecenaCycles[trecenaCycleId].individualWarriorOfferings[warrior].offerings[pool] > 0;
}
function getCurrentTrecenaCycleDetails() external view returns (
uint256 cycleId,
uint256 startBlock,
uint256 endBlock,
uint8 status,
uint256 sunTotal,
uint256 moonTotal,
Pool projectedWinner
) {
cycleId = getCurrentCycleId();
(startBlock, endBlock) = getTrecenaCycleBlockRange(cycleId);
status = getTrecenaCycleStatus(cycleId);
TrecenaCycleData storage trecenaCycle = trecenaCycles[cycleId];
sunTotal = trecenaCycle.poolTotals[Pool.Sun];
moonTotal = trecenaCycle.poolTotals[Pool.Moon];
projectedWinner = getWinningPool(cycleId);
return (cycleId, startBlock, endBlock, status, sunTotal, moonTotal, projectedWinner);
}
function _determineWinningPool(uint256 sunTotal, uint256 moonTotal) internal pure returns (Pool) {
if (sunTotal == moonTotal) {
return Pool.None;
} else if (sunTotal > moonTotal) {
return Pool.Sun;
} else {
return Pool.Moon;
}
}
}
"
},
"@openzeppelin/contracts/utils/cryptography/EIP712.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/// @inheritdoc IERC5267
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}
"
},
"@openzeppelin/contracts/utils/cryptography/ECDSA.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
"
},
"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}
"
},
"@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity >=0.6.2;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
"
},
"@openzeppelin/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"@openzeppelin/contracts/security/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
"
},
"@openzeppelin/contracts/interfaces/IERC5267.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC5267.sol)
pragma solidity >=0.4.16;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
"
},
"@openzeppelin/contracts/utils/ShortStrings.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* St
Submitted on: 2025-10-21 18:52:02
Comments
Log in to comment.
No comments yet.