Description:
Smart contract deployed on Ethereum with Factory features.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/contracts/facilitators/gsm/priceStrategy/FixedPriceStrategy.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {Math} from 'src/contracts/dependencies/openzeppelin-contracts/contracts/utils/math/Math.sol';
import {IGsmPriceStrategy} from 'src/contracts/facilitators/gsm/priceStrategy/interfaces/IGsmPriceStrategy.sol';
/**
* @title FixedPriceStrategy
* @author Aave
* @notice Price strategy involving a fixed-rate conversion from an underlying asset to GHO
*/
contract FixedPriceStrategy is IGsmPriceStrategy {
using Math for uint256;
/// @inheritdoc IGsmPriceStrategy
uint256 public constant GHO_DECIMALS = 18;
/// @inheritdoc IGsmPriceStrategy
address public immutable UNDERLYING_ASSET;
/// @inheritdoc IGsmPriceStrategy
uint256 public immutable UNDERLYING_ASSET_DECIMALS;
/// @dev The price ratio from underlying asset to GHO (expressed in WAD), e.g. a ratio of 2e18 means 2 GHO per 1 underlying asset
uint256 public immutable PRICE_RATIO;
/// @dev Underlying asset units represent units for the underlying asset
uint256 internal immutable _underlyingAssetUnits;
/**
* @dev Constructor
* @param priceRatio The price ratio from underlying asset to GHO (expressed in WAD)
* @param underlyingAsset The address of the underlying asset
* @param underlyingAssetDecimals The number of decimals of the underlying asset
*/
constructor(uint256 priceRatio, address underlyingAsset, uint8 underlyingAssetDecimals) {
require(priceRatio > 0, 'INVALID_PRICE_RATIO');
PRICE_RATIO = priceRatio;
UNDERLYING_ASSET = underlyingAsset;
UNDERLYING_ASSET_DECIMALS = underlyingAssetDecimals;
_underlyingAssetUnits = 10 ** underlyingAssetDecimals;
}
/// @inheritdoc IGsmPriceStrategy
function getAssetPriceInGho(uint256 assetAmount, bool roundUp) external view returns (uint256) {
return
assetAmount.mulDiv(
PRICE_RATIO,
_underlyingAssetUnits,
roundUp ? Math.Rounding.Up : Math.Rounding.Down
);
}
/// @inheritdoc IGsmPriceStrategy
function getGhoPriceInAsset(uint256 ghoAmount, bool roundUp) external view returns (uint256) {
return
ghoAmount.mulDiv(
_underlyingAssetUnits,
PRICE_RATIO,
roundUp ? Math.Rounding.Up : Math.Rounding.Down
);
}
}
"
},
"src/contracts/dependencies/openzeppelin-contracts/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
"
},
"src/contracts/facilitators/gsm/priceStrategy/interfaces/IGsmPriceStrategy.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title IGsmPriceStrategy
* @author Aave
* @notice Defines the behaviour of Price Strategies
*/
interface IGsmPriceStrategy {
/**
* @notice Returns the number of decimals of GHO
* @return The number of decimals of GHO
*/
function GHO_DECIMALS() external view returns (uint256);
/**
* @notice Returns the address of the underlying asset being priced
* @return The address of the underlying asset
*/
function UNDERLYING_ASSET() external view returns (address);
/**
* @notice Returns the decimals of the underlying asset being priced
* @return The number of decimals of the underlying asset
*/
function UNDERLYING_ASSET_DECIMALS() external view returns (uint256);
/**
* @notice Returns the price of the underlying asset (GHO denominated)
* @param assetAmount The amount of the underlying asset to calculate the price of
* @param roundUp True if the price should be rounded up, false if rounded down
* @return The price of the underlying asset (expressed in GHO units)
*/
function getAssetPriceInGho(uint256 assetAmount, bool roundUp) external view returns (uint256);
/**
* @notice Returns the price of GHO (denominated in the underlying asset)
* @param ghoAmount The amount of GHO to calculate the price of
* @param roundUp True if the price should be rounded up, false if rounded down
* @return The price of the GHO amount (expressed in underlying asset units)
*/
function getGhoPriceInAsset(uint256 ghoAmount, bool roundUp) external view returns (uint256);
}
"
}
},
"settings": {
"remappings": [
"forge-std/=lib/forge-std/src/",
"aave-v3-origin/=lib/aave-v3-origin/src/",
"aave-v3-origin-tests/=lib/aave-v3-origin/tests/",
"solidity-utils/=lib/aave-v3-origin/lib/solidity-utils/src/",
"@openzeppelin/contracts-upgradeable/=lib/aave-v3-origin/lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/contracts/",
"@openzeppelin/contracts/=lib/aave-v3-origin/lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/",
"ds-test/=lib/aave-v3-origin/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/aave-v3-origin/lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"halmos-cheatcodes/=lib/aave-v3-origin/lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts-upgradeable/=lib/aave-v3-origin/lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=lib/aave-v3-origin/lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "none",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "paris",
"viaIR": false
}
}}
Submitted on: 2025-10-21 19:38:50
Comments
Log in to comment.
No comments yet.