Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/validator-registry/rewards/RewardDistributor.sol": {
"content": "// SPDX-License-Identifier: BSL 1.1
pragma solidity 0.8.26;
import {Ownable2StepUpgradeable} from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol";
import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IRewardDistributor} from "../../interfaces/IRewardDistributor.sol";
import {RewardDistributorStorage} from "./RewardDistributorStorage.sol";
import {Errors} from "../../utils/Errors.sol";
contract RewardDistributor is IRewardDistributor, RewardDistributorStorage,
Ownable2StepUpgradeable, ReentrancyGuardUpgradeable, PausableUpgradeable, UUPSUpgradeable {
using SafeERC20 for IERC20;
modifier onlyOwnerOrRewardManager() {
require(msg.sender == rewardManager || msg.sender == owner(), NotOwnerOrRewardManager());
_;
}
/// @dev See https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
/// @dev Receive function is disabled prevent misc transfers.
receive() external payable {
revert Errors.InvalidReceive();
}
/// @dev Fallback function disabled to prevent misc transfers.
fallback() external payable {
revert Errors.InvalidFallback();
}
/// @dev Initializes the RewardManager contract.
function initialize(
address _owner,
address _rewardManager
) external initializer {
__Ownable_init(_owner);
__ReentrancyGuard_init();
__Pausable_init();
__UUPSUpgradeable_init();
_setRewardManager(_rewardManager);
}
/// @param rewardList Array of ETH Distributions.
function grantETHRewards(Distribution[] calldata rewardList) external payable nonReentrant whenNotPaused onlyOwnerOrRewardManager {
uint256 len = rewardList.length;
uint256 totalAmount = 0;
for (uint256 i = 0; i < len; ++i) {
totalAmount += rewardList[i].amount;
rewardData[rewardList[i].operator][rewardList[i].recipient][0].accrued += rewardList[i].amount;
emit ETHGranted(rewardList[i].operator, rewardList[i].recipient, rewardList[i].amount);
}
emit RewardsBatchGranted(0, totalAmount);
require(msg.value == totalAmount, IncorrectPaymentAmount(msg.value, totalAmount));
}
/// @param rewardList Array of token Distributions.
function grantTokenRewards(Distribution[] calldata rewardList, uint256 tokenID) external payable nonReentrant whenNotPaused onlyOwnerOrRewardManager {
uint256 len = rewardList.length;
uint256 totalAmount = 0;
address rewardToken = rewardTokens[tokenID];
require(rewardToken != address(0), InvalidRewardToken());
for (uint256 i = 0; i < len; ++i) {
totalAmount += rewardList[i].amount;
rewardData[rewardList[i].operator][rewardList[i].recipient][tokenID].accrued += rewardList[i].amount;
emit TokensGranted(rewardList[i].operator, rewardList[i].recipient, rewardList[i].amount);
}
emit RewardsBatchGranted(tokenID, totalAmount);
IERC20(rewardToken).safeTransferFrom(msg.sender, address(this), totalAmount);
}
/// @notice Claim rewards for the caller (as operator) to specific recipients.
/// @param recipients List of recipients to claim rewards for.
/// @param tokenID The ID of the token to claim rewards for. 0 for ETH.
function claimRewards(address[] calldata recipients, uint256 tokenID) external whenNotPaused nonReentrant {
_claimRewards(msg.sender, recipients, tokenID);
}
/// @notice Claim rewards on behalf of an operator to specific recipients (must be delegated).
/// @param operator Operator to claim rewards for.
/// @param recipients List of recipients to claim rewards for.
/// @param tokenID The ID of the token to claim rewards for. 0 for ETH.
function claimOnbehalfOfOperator(address operator, address[] calldata recipients, uint256 tokenID) external whenNotPaused nonReentrant {
uint256 len = recipients.length;
for (uint256 i = 0; i < len; ++i) {
require(claimDelegate[operator][recipients[i]][msg.sender], InvalidClaimDelegate());
}
_claimRewards(operator, recipients, tokenID);
}
/// @notice Allows an operator to set the recipient for a list of pubkeys.
/// @dev If operator is no longer valid at the time of stipend distribution, the recipient will not receive the stipend.
/// @param pubkeys List of pubkeys to set the recipient for.
/// @param recipient Recipient to set for the pubkeys.
function overrideRecipientByPubkey(bytes[] calldata pubkeys, address recipient) external whenNotPaused nonReentrant {
require(recipient != address(0), ZeroAddress());
uint256 len = pubkeys.length;
for (uint256 i = 0; i < len; ++i) {
bytes calldata pubkey = pubkeys[i];
require(pubkey.length == 48, InvalidBLSPubKeyLength());
bytes32 pkHash = keccak256(pubkey);
operatorKeyOverrides[msg.sender][pkHash] = recipient;
emit RecipientSet(msg.sender, pubkey, recipient);
}
}
/// @dev Allows an operator to set a default recipient for all non-overridden keys.
/// If a recipient is set for a specific key, it will override the default recipient.
/// @param recipient Default recipient to set for all non-overridden keys of the operator.
function setOperatorGlobalOverride(address recipient) external whenNotPaused nonReentrant {
require(recipient != address(0), ZeroAddress());
operatorGlobalOverride[msg.sender] = recipient;
emit OperatorGlobalOverrideSet(msg.sender, recipient);
}
/// @dev Allows an operator to set a delegate to claim rewards for one of their recipients.
function setClaimDelegate(address delegate, address recipient, bool status) external whenNotPaused nonReentrant {
claimDelegate[msg.sender][recipient][delegate] = status;
emit ClaimDelegateSet(msg.sender, recipient, delegate, status);
}
/// @dev Allows an operator to migrate unclaimed recipient rewards to a different address.
/// @param tokenID The ID of the token to migrate rewards for.
function migrateExistingRewards(address from, address to, uint256 tokenID) external whenNotPaused nonReentrant {
require(to != address(0), ZeroAddress());
require(to != from, InvalidRecipient());
require(tokenID == 0 || rewardTokens[tokenID] != address(0), InvalidRewardToken());
uint128 claimableAmt = getPendingRewards(msg.sender, from, tokenID);
require(claimableAmt > 0, NoClaimableRewards(msg.sender, from));
rewardData[msg.sender][from][tokenID].accrued -= claimableAmt;
rewardData[msg.sender][to][tokenID].accrued += claimableAmt;
emit RewardsMigrated(tokenID, msg.sender, from, to, claimableAmt);
}
/// @dev Allows the owner to reclaim stipends that were incorrectly granted or unable to be claimed by an operator.
function reclaimStipendsToOwner(address[] calldata operators, address[] calldata recipients, uint256 tokenID) external onlyOwner {
require(tokenID == 0 || rewardTokens[tokenID] != address(0), InvalidRewardToken());
address _owner = owner();
uint256 toWithdraw = 0;
uint256 len = operators.length;
require(len == recipients.length, LengthMismatch());
for (uint256 i = 0; i < len; ++i) {
address operator = operators[i];
address recipient = recipients[i];
uint128 claimableAmt = getPendingRewards(operator, recipient, tokenID);
rewardData[operator][recipient][tokenID].accrued -= claimableAmt;
toWithdraw += claimableAmt;
emit RewardsReclaimed(tokenID, operator, recipient, claimableAmt);
}
require(toWithdraw > 0, NoClaimableRewards(_owner, _owner));
_transferFunds(_owner, _owner, toWithdraw, tokenID);
}
/// @dev Enables the owner to pause the contract.
function pause() external onlyOwner {
_pause();
}
/// @dev Enables the owner to unpause the contract.
function unpause() external onlyOwner {
_unpause();
}
/// @dev Allows the owner to set the stipend manager address.
function setRewardManager(address _rewardManager) external onlyOwner {
_setRewardManager(_rewardManager);
}
/// @dev Allows the owner to set a reward token address for a given id.
function setRewardToken(address _rewardToken, uint256 _id) external onlyOwner {
_setRewardToken(_rewardToken, _id);
}
// Retreives the recipient for an operator's registered key
function getKeyRecipient(address operator, bytes calldata pubkey) external view returns (address) {
require(pubkey.length == 48, InvalidBLSPubKeyLength());
require(operator != address(0), InvalidOperator());
bytes32 pkHash = keccak256(pubkey);
// Individual key overrides take priority over the default recipient
if (operatorKeyOverrides[operator][pkHash] != address(0)) {
return operatorKeyOverrides[operator][pkHash];
}
// If no key override, return the default recipient
address defaultOverride = operatorGlobalOverride[operator];
if (defaultOverride != address(0)) {
return defaultOverride;
}
// If no default override, return the operator
return operator;
}
function getPendingRewards(address operator, address recipient, uint256 tokenID) public view returns (uint128) {
return rewardData[operator][recipient][tokenID].accrued - rewardData[operator][recipient][tokenID].claimed;
}
// solhint-disable-next-line no-empty-blocks
function _authorizeUpgrade(address) internal override onlyOwner {}
/// @dev Allows a reward recipient to claim their rewards.
function _claimRewards(address operator, address[] calldata recipients, uint256 tokenID) internal {
require(operator != address(0), InvalidOperator());
require(tokenID == 0 || rewardTokens[tokenID] != address(0), InvalidRewardToken());
uint256 len = recipients.length;
uint128[] memory claimAmounts = new uint128[](len);
for (uint256 i = 0; i < len; ++i) {
address recipient = recipients[i];
claimAmounts[i] = getPendingRewards(operator, recipient, tokenID);
rewardData[operator][recipient][tokenID].claimed += claimAmounts[i];
}
for (uint256 i = 0; i < len; ++i) {
address recipient = recipients[i];
if (claimAmounts[i] > 0) {
_transferFunds(operator, recipient, claimAmounts[i], tokenID);
}
}
}
function _transferFunds(address operator, address recipient, uint256 amount, uint256 tokenID) internal {
if (tokenID == 0) {
(bool success, ) = payable(recipient).call{value: amount}("");
require(success, RewardsTransferFailed(recipient));
emit ETHRewardsClaimed(operator, recipient, amount);
} else {
IERC20(rewardTokens[tokenID]).safeTransfer(recipient, amount);
emit TokenRewardsClaimed(operator, recipient, amount);
}
}
function _setRewardManager(address _rewardManager) internal {
require(_rewardManager != address(0), ZeroAddress());
rewardManager = _rewardManager;
emit RewardManagerSet(_rewardManager);
}
function _setRewardToken(address _rewardToken, uint256 _id) internal {
require(_id != 0, InvalidTokenID());
rewardTokens[_id] = _rewardToken;
emit RewardTokenSet(_rewardToken, _id);
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/access/Ownable2StepUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {OwnableUpgradeable} from "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable2Step
struct Ownable2StepStorage {
address _pendingOwner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable2Step")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant Ownable2StepStorageLocation = 0x237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00;
function _getOwnable2StepStorage() private pure returns (Ownable2StepStorage storage $) {
assembly {
$.slot := Ownable2StepStorageLocation
}
}
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
function __Ownable2Step_init() internal onlyInitializing {
}
function __Ownable2Step_init_unchained() internal onlyInitializing {
}
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
Ownable2StepStorage storage $ = _getOwnable2StepStorage();
return $._pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
Ownable2StepStorage storage $ = _getOwnable2StepStorage();
$._pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
Ownable2StepStorage storage $ = _getOwnable2StepStorage();
delete $._pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/utils/PausableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Pausable
struct PausableStorage {
bool _paused;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;
function _getPausableStorage() private pure returns (PausableStorage storage $) {
assembly {
$.slot := PausableStorageLocation
}
}
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Initializes the contract in unpaused state.
*/
function __Pausable_init() internal onlyInitializing {
__Pausable_init_unchained();
}
function __Pausable_init_unchained() internal onlyInitializing {
PausableStorage storage $ = _getPausableStorage();
$._paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
PausableStorage storage $ = _getPausableStorage();
return $._paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
PausableStorage storage $ = _getPausableStorage();
$._paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
PausableStorage storage $ = _getPausableStorage();
$._paused = false;
emit Unpaused(_msgSender());
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.20;
import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*/
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable
address private immutable __self = address(this);
/**
* @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
* and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
* while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
* If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
* be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
* during an upgrade.
*/
string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
/**
* @dev The call is from an unauthorized context.
*/
error UUPSUnauthorizedCallContext();
/**
* @dev The storage `slot` is unsupported as a UUID.
*/
error UUPSUnsupportedProxiableUUID(bytes32 slot);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
_checkProxy();
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
_checkNotDelegated();
_;
}
function __UUPSUpgradeable_init() internal onlyInitializing {
}
function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
}
/**
* @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual notDelegated returns (bytes32) {
return ERC1967Utils.IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data);
}
/**
* @dev Reverts if the execution is not performed via delegatecall or the execution
* context is not of a proxy with an ERC1967-compliant implementation pointing to self.
* See {_onlyProxy}.
*/
function _checkProxy() internal view virtual {
if (
address(this) == __self || // Must be called through delegatecall
ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
) {
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Reverts if the execution is performed via delegatecall.
* See {notDelegated}.
*/
function _checkNotDelegated() internal view virtual {
if (address(this) != __self) {
// Must not be called through delegatecall
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
*
* As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
* is expected to be the implementation slot in ERC1967.
*
* Emits an {IERC1967-Upgraded} event.
*/
function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
revert UUPSUnsupportedProxiableUUID(slot);
}
ERC1967Utils.upgradeToAndCall(newImplementation, data);
} catch {
// The implementation is not UUPS
revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
}
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/utils/ReentrancyGuardUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
/// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
struct ReentrancyGuardStorage {
uint256 _status;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;
function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
assembly {
$.slot := ReentrancyGuardStorageLocation
}
}
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
$._status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
// On the first call to nonReentrant, _status will be NOT_ENTERED
if ($._status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
$._status = ENTERED;
}
function _nonReentrantAfter() private {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
$._status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
return $._status == ENTERED;
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
"
},
"contracts/interfaces/IRewardDistributor.sol": {
"content": "// SPDX-License-Identifier: BSL 1.1
pragma solidity 0.8.26;
/// @title IStipendDistributor
/// @notice Interface for stipend distribution and claims.
interface IRewardDistributor {
struct Distribution {
address operator;
address recipient;
uint128 amount;
}
/// @dev Pack both counters into a single slot for each asset.
struct RewardData {
uint128 accrued;
uint128 claimed;
}
// -------- Events --------
/// @dev Emitted when the oracle address is updated.
event RewardManagerSet(address indexed rewardManager);
/// @dev Emitted when stipends are granted.
event ETHGranted(address indexed operator, address indexed recipient, uint256 indexed amount);
event TokensGranted(address indexed operator, address indexed recipient, uint256 indexed amount);
event RewardsBatchGranted(uint256 indexed tokenID, uint256 indexed amount);
/// @dev Emitted when rewards are claimed by a recipient for an operator.
event ETHRewardsClaimed(address indexed operator, address indexed recipient, uint256 indexed amount);
event TokenRewardsClaimed(address indexed operator, address indexed recipient, uint256 indexed amount);
/// @dev Emitted when a recipient mapping is overridden for a specific pubkey.
event RecipientSet(address indexed operator, bytes pubkey, address indexed recipient);
/// @dev Emitted when an operator sets/updates their global override recipient.
event OperatorGlobalOverrideSet(address indexed operator, address indexed recipient);
/// @dev Emitted when an operator sets/updates a claim delegate for a given recipient.
event ClaimDelegateSet(address indexed operator, address indexed recipient, address indexed delegate, bool status);
/// @dev Emitted when accrued rewards are migrated from one recipient to another for an operator.
event RewardsMigrated(uint256 tokenID, address indexed operator, address indexed from, address indexed to, uint128 amount);
/// @dev Emitted when accrued rewards are reclaimed by the owner.
event RewardsReclaimed(uint256 indexed tokenID, address indexed operator, address indexed recipient, uint256 amount);
/// @dev Emitted when the reward token address is updated.
event RewardTokenSet(address indexed rewardToken, uint256 indexed tokenID);
// -------- Errors --------
error NotOwnerOrRewardManager();
error InvalidRewardToken();
error ZeroAddress();
error InvalidTokenID();
error InvalidBLSPubKeyLength();
error InvalidRecipient();
error InvalidOperator();
error InvalidClaimDelegate();
error LengthMismatch();
error NoClaimableRewards(address operator, address recipient);
error RewardsTransferFailed(address recipient);
error IncorrectPaymentAmount(uint256 received, uint256 expected);
// -------- Externals --------
/// @notice Initialize the proxy.
function initialize(address owner, address rewardManager) external;
/// @notice Grant ETH rewards to multiple (operator, recipient) pairs.
function grantETHRewards(Distribution[] calldata rewardList) external payable;
/// @notice Grant token rewards to multiple (operator, recipient) pairs.
function grantTokenRewards(Distribution[] calldata rewardList, uint256 tokenID) external payable;
/// @notice Claim rewards for the caller (as operator) to specific recipients.
function claimRewards(address[] calldata recipients, uint256 tokenID) external;
/// @notice Claim rewards on behalf of an operator to specific recipients (must be delegated).
function claimOnbehalfOfOperator(address operator, address[] calldata recipients, uint256 tokenID) external;
/// @notice Override recipient for a list of BLS pubkeys in a registry.
function overrideRecipientByPubkey(bytes[] calldata pubkeys, address recipient) external;
/// @notice Set the caller's global override recipient for any non-overridden keys.
function setOperatorGlobalOverride(address recipient) external;
/// @notice Allow or revoke a delegate to claim for a given recipient of the caller (operator).
function setClaimDelegate(address delegate, address recipient, bool status) external;
/// @notice Migrate unclaimed rewards from one recipient to another for the caller (operator).
function migrateExistingRewards(address from, address to, uint256 tokenID) external;
/// @notice Pause / Unpause admin controls.
function reclaimStipendsToOwner(address[] calldata operators, address[] calldata recipients, uint256 tokenID) external;
function pause() external;
function unpause() external;
function setRewardManager(address _rewardManager) external;
function setRewardToken(address _rewardToken, uint256 _id) external;
function getKeyRecipient(address operator, bytes calldata pubkey) external view returns (address);
function getPendingRewards(address operator, address recipient, uint256 tokenID) external view returns (uint128);
}"
},
"contracts/validator-registry/rewards/RewardDistributorStorage.sol": {
"content": "// SPDX-License-Identifier: BSL 1.1
pragma solidity 0.8.26;
import {IRewardDistributor} from "../../interfaces/IRewardDistributor.sol";
/// @title RewardDistributorStorage
/// @notice Storage layout for RewardDistributor
abstract contract RewardDistributorStorage {
/// @dev Address authorized to grant ETH and token rewards.
address public rewardManager;
mapping(uint256 id => address token) public rewardTokens;
/// @dev Default recipient per operator (used when no pubkey-specific override exists).
mapping(address operator => address recipient) public operatorGlobalOverride;
/// @dev Recipient override by BLS pubkey hash (keccak256(pubkey)).
mapping(address operator => mapping(bytes32 keyhash => address recipient)) public operatorKeyOverrides;
/// @dev Accrued and claimed amounts per (operator, recipient).
mapping(address operator => mapping(address recipient => mapping(uint256 tokenID => IRewardDistributor.RewardData))) public rewardData;
/// @dev Operator → recipient → delegate → isAuthorized
mapping(address operator => mapping(address recipient => mapping(address delegate => bool))) public claimDelegate;
// === Storage gap for future upgrades ===
uint256[48] private __gap;
}"
},
"contracts/utils/Errors.sol": {
"content": "// SPDX-License-Identifier: BSL 1.1
pragma solidity 0.8.26;
library Errors {
/// @dev Custom error for invalid fallback calls.
error InvalidFallback();
/// @dev Custom error for invalid receive calls.
error InvalidReceive();
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/access/OwnableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable
struct OwnableStorage {
address _owner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
assembly {
$.slot := OwnableStorageLocation
}
}
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
function __Ownable_init(address initialOwner) internal onlyInitializing {
__Ownable_init_unchained(initialOwner);
}
function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
OwnableStorage storage $ = _getOwnableStorage();
return $._owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
OwnableStorage storage $ = _getOwnableStorage();
address oldOwner = $._owner;
$._owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/Initializable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/utils/ContextUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/interfaces/draft-IERC1822.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
* proxy whose upgrades are fully controlled by the current implementation.
*/
interface IERC1822Proxiable {
/**
* @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
* address.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy.
*/
function proxiableUUID() external view returns (bytes32);
}
"
},
"lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/proxy/ERC1967/ERC1967Utils.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)
pragma solidity ^0.8.20;
import {IBeacon} from "../beacon/IBeacon.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";
/**
* @dev This abstract contract provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
*/
library ERC1967Utils {
// We re-declare ERC-1967 events here because they can't be used directly from IERC1967.
// This will be fixed in Solidity 0.8.21. At that point we should remove these events.
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/
event BeaconUpgraded(address indexed beacon);
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev The `implementation` of the proxy is invalid.
*/
error ERC1967InvalidImplementation(address implementation);
/**
* @dev The `admin` of the proxy is invalid.
*/
error ERC1967InvalidAdmin(address admin);
/**
* @dev The `beacon` of the proxy is invalid.
*/
error ERC1967InvalidBeacon(address beacon);
/**
* @dev An upgrade function sees `msg.value > 0` that may be lost.
*/
error ERC1967NonPayable();
/**
* @dev Returns the current implementation address.
*/
function getImplementation() inter
Submitted on: 2025-10-23 15:56:18
Comments
Log in to comment.
No comments yet.