Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/usd3/USD3.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.22;
import {BaseHooksUpgradeable} from "./base/BaseHooksUpgradeable.sol";
import {IERC20, SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Math} from "../../lib/openzeppelin/contracts/utils/math/Math.sol";
import {IMorpho, IMorphoCredit, MarketParams, Id} from "../interfaces/IMorpho.sol";
import {MorphoLib} from "../libraries/periphery/MorphoLib.sol";
import {MorphoBalancesLib} from "../libraries/periphery/MorphoBalancesLib.sol";
import {SharesMathLib} from "../libraries/SharesMathLib.sol";
import {IERC4626} from "../../lib/openzeppelin/contracts/interfaces/IERC4626.sol";
import {Pausable} from "../../lib/openzeppelin/contracts/utils/Pausable.sol";
import {TokenizedStrategyStorageLib, ERC20} from "@periphery/libraries/TokenizedStrategyStorageLib.sol";
import {IProtocolConfig} from "../interfaces/IProtocolConfig.sol";
import {ProtocolConfigLib} from "../libraries/ProtocolConfigLib.sol";
/**
* @title USD3
* @author 3Jane Protocol
* @notice Senior tranche strategy for USDC-based lending on 3Jane's credit markets
* @dev Implements Yearn V3 tokenized strategy pattern for unsecured lending via MorphoCredit.
* Deploys USDC capital to 3Jane's modified Morpho Blue markets that use credit-based
* underwriting instead of collateral. Features first-loss protection through sUSD3
* subordinate tranche absorption.
*
* Key features:
* - Senior tranche with first-loss protection from sUSD3 holders
* - Configurable deployment ratio to credit markets (maxOnCredit)
* - Automatic yield distribution to sUSD3 via performance fees
* - Loss absorption through direct share burning of sUSD3 holdings
* - Commitment period enforcement for deposits
* - Optional whitelist for controlled access
* - Dynamic fee adjustment via ProtocolConfig integration
*
* Yield Distribution Mechanism:
* - Tranche share distributed to sUSD3 holders via TokenizedStrategy's performance fee
* - Performance fee can be set from 0-100% through syncTrancheShare()
* - Direct storage manipulation bypasses TokenizedStrategy's 50% fee limit
* - Keeper-controlled updates ensure protocol-wide consistency
*
* Loss Absorption Mechanism:
* - When losses occur, sUSD3 shares are burned first (subordination)
* - Direct storage manipulation used to burn shares without asset transfers
* - USD3 holders protected up to total sUSD3 holdings
* - Losses exceeding sUSD3 balance shared proportionally among USD3 holders
*/
contract USD3 is BaseHooksUpgradeable {
using SafeERC20 for IERC20;
using MorphoLib for IMorpho;
using MorphoBalancesLib for IMorpho;
using SharesMathLib for uint256;
using Math for uint256;
/*//////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////*/
IERC4626 public constant WAUSDC = IERC4626(0xD4fa2D31b7968E448877f69A96DE69f5de8cD23E);
/*//////////////////////////////////////////////////////////////
STORAGE - MORPHO PARAMETERS
//////////////////////////////////////////////////////////////*/
/// @notice MorphoCredit contract for lending operations
IMorpho public morphoCredit;
/// @notice Market ID for the lending market this strategy uses
Id public marketId;
/// @notice Market parameters for the lending market
MarketParams internal _marketParams;
/*//////////////////////////////////////////////////////////////
UPGRADEABLE STORAGE
//////////////////////////////////////////////////////////////*/
/// @notice Address of the subordinate sUSD3 strategy
/// @dev Used for loss absorption and yield distribution
address public sUSD3;
/// @notice Whether whitelist is enforced for deposits
bool public whitelistEnabled;
/// @notice Whitelist status for addresses
mapping(address => bool) public whitelist;
/// @notice Whitelist of depositors allowed to 3rd party deposit
mapping(address => bool) public depositorWhitelist;
/// @notice Minimum deposit amount required
uint256 public minDeposit;
/// @notice Timestamp of last deposit for each user
/// @dev Used to enforce commitment periods
mapping(address => uint256) public depositTimestamp;
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event SUSD3StrategyUpdated(address oldStrategy, address newStrategy);
event WhitelistUpdated(address indexed user, bool allowed);
event DepositorWhitelistUpdated(address indexed depositor, bool allowed);
event MinDepositUpdated(uint256 newMinDeposit);
event TrancheShareSynced(uint256 trancheShare);
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
/**
* @notice Initialize the USD3 strategy
* @param _morphoCredit Address of the MorphoCredit lending contract
* @param _marketId Market ID for the lending market
* @param _management Management address for the strategy
* @param _keeper Keeper address for automated operations
*/
function initialize(address _morphoCredit, Id _marketId, address _management, address _keeper)
external
initializer
{
require(_morphoCredit != address(0), "!morpho");
morphoCredit = IMorpho(_morphoCredit);
marketId = _marketId;
// Get and cache market params
MarketParams memory params = morphoCredit.idToMarketParams(_marketId);
require(params.loanToken != address(0), "Invalid market");
_marketParams = params;
// Initialize BaseStrategy with management as temporary performanceFeeRecipient
// It will be updated to sUSD3 address after sUSD3 is deployed
__BaseStrategy_init(params.loanToken, "USD3", _management, _management, _keeper);
// Approve Morpho
IERC20(asset).forceApprove(address(morphoCredit), type(uint256).max);
}
/**
* @notice Reinitialize the USD3 strategy to switch asset from waUSDC to USDC
* @dev This function is called during the upgrade from the previous USD3 implementation.
* The upgrade process MUST follow this sequence to prevent user losses:
* 1. Set performance fee to 0 (via setPerformanceFee)
* 2. Set profit unlock time to 0 (via setProfitMaxUnlockTime)
* 3. Call report() on OLD implementation to finalize state before upgrade
* 4. Upgrade proxy to new implementation
* 5. Call reinitialize() to switch the underlying asset
* 6. Call report() on NEW implementation to update totalAssets with new asset
* 7. Call syncTrancheShare() to restore performance fees
* 8. Restore profit unlock time to previous value
* This ensures totalAssets reflects the true USDC value before users can withdraw.
* Without both report() calls, users would lose value as totalAssets would not
* account for waUSDC appreciation or the asset switch.
*/
function reinitialize() external reinitializer(2) {
address usdc = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
asset = ERC20(usdc);
TokenizedStrategyStorageLib.StrategyData storage strategyData = TokenizedStrategyStorageLib.getStrategyStorage();
strategyData.asset = ERC20(usdc);
IERC20(usdc).forceApprove(address(WAUSDC), type(uint256).max);
}
/*//////////////////////////////////////////////////////////////
EXTERNAL VIEW FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Get the symbol for the USD3 token
* @return Symbol string "USD3"
*/
function symbol() external pure returns (string memory) {
return "USD3";
}
/**
* @notice Get the market parameters for this strategy
* @return MarketParams struct containing lending market configuration
*/
function marketParams() external view returns (MarketParams memory) {
return _marketParams;
}
/*//////////////////////////////////////////////////////////////
INTERNAL VIEW FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @dev Get current market liquidity information
* @return totalSupplyAssets Total assets supplied to the market
* @return totalShares Total supply shares in the market
* @return totalBorrowAssets Total assets borrowed from the market
* @return waUSDCLiquidity Available liquidity in the market
*/
function getMarketLiquidity()
public
view
returns (uint256 totalSupplyAssets, uint256 totalShares, uint256 totalBorrowAssets, uint256 waUSDCLiquidity)
{
(totalSupplyAssets, totalShares, totalBorrowAssets,) = morphoCredit.expectedMarketBalances(_marketParams);
waUSDCLiquidity = totalSupplyAssets > totalBorrowAssets ? totalSupplyAssets - totalBorrowAssets : 0;
}
/**
* @dev Get strategy's position in the market
* @return shares Number of supply shares held
* @return waUSDCMax Maximum waUSDC that can be withdrawn
* @return waUSDCLiquidity Available market liquidity in waUSDC
*/
function getPosition() internal view returns (uint256 shares, uint256 waUSDCMax, uint256 waUSDCLiquidity) {
shares = morphoCredit.position(marketId, address(this)).supplyShares;
uint256 totalSupplyAssets;
uint256 totalShares;
(totalSupplyAssets, totalShares,, waUSDCLiquidity) = getMarketLiquidity();
waUSDCMax = shares.toAssetsDown(totalSupplyAssets, totalShares);
}
/*//////////////////////////////////////////////////////////////
INTERNAL STRATEGY FUNCTIONS
//////////////////////////////////////////////////////////////*/
/// @dev Deploy funds to MorphoCredit market respecting maxOnCredit ratio
/// @param _amount Amount of asset to deploy
function _deployFunds(uint256 _amount) internal override {
if (_amount == 0) return;
// Wrap USDC to waUSDC
_amount = WAUSDC.deposit(_amount, address(this));
uint256 maxOnCreditRatio = maxOnCredit();
if (maxOnCreditRatio == 0) {
// Don't deploy anything when set to 0%, keep all waUSDC local
return;
}
// Calculate total waUSDC (deployed + local)
uint256 deployedWaUSDC = suppliedWaUSDC();
uint256 localWaUSDC = balanceOfWaUSDC();
uint256 totalWaUSDC = deployedWaUSDC + localWaUSDC;
// Calculate max that should be deployed to MorphoCredit
uint256 maxDeployableWaUSDC = (totalWaUSDC * maxOnCreditRatio) / 10_000;
if (maxDeployableWaUSDC <= deployedWaUSDC) {
// Already at or above max, keep all new waUSDC local
return;
}
// Deploy only the amount needed to reach max
uint256 waUSDCToSupply = Math.min(localWaUSDC, maxDeployableWaUSDC - deployedWaUSDC);
_supplyToMorpho(waUSDCToSupply);
}
/// @dev Withdraw funds from MorphoCredit market
/// @param _amount Amount of asset to free up
function _freeFunds(uint256 _amount) internal override {
if (_amount == 0) {
return;
}
// Calculate how much waUSDC we need
uint256 waUSDCNeeded = WAUSDC.previewWithdraw(_amount);
// Check local waUSDC balance first
uint256 localWaUSDC = balanceOfWaUSDC();
if (localWaUSDC < waUSDCNeeded) {
// Need to withdraw from MorphoCredit
uint256 waUSDCToWithdraw = waUSDCNeeded - localWaUSDC;
uint256 withdrawn = _withdrawFromMorpho(waUSDCToWithdraw);
if (withdrawn > 0) {
localWaUSDC = balanceOfWaUSDC();
}
}
uint256 waUSDCToUnwrap = Math.min(localWaUSDC, waUSDCNeeded);
if (waUSDCToUnwrap > 0) {
WAUSDC.redeem(waUSDCToUnwrap, address(this), address(this));
}
}
/// @dev Emergency withdraw function to free funds from MorphoCredit
/// @param amount The amount to withdraw (use type(uint256).max for all)
function _emergencyWithdraw(uint256 amount) internal override {
// This is called during shutdown to free funds from Morpho
// Use _freeFunds which already handles the withdrawal logic
_freeFunds(amount);
}
/// @dev Harvest interest from MorphoCredit and report total assets
/// @return Total assets held by the strategy
function _harvestAndReport() internal override returns (uint256) {
MarketParams memory params = _marketParams;
morphoCredit.accrueInterest(params);
_tend(asset.balanceOf(address(this)));
uint256 totalWaUSDC = suppliedWaUSDC() + balanceOfWaUSDC();
return WAUSDC.convertToAssets(totalWaUSDC) + asset.balanceOf(address(this));
}
/// @dev Rebalances between idle and deployed funds to maintain maxOnCredit ratio
/// @param _totalIdle Current idle funds available
function _tend(uint256 _totalIdle) internal virtual override {
// First wrap any idle USDC to waUSDC
if (_totalIdle > 0) {
WAUSDC.deposit(_totalIdle, address(this));
}
// Calculate based on waUSDC amounts
uint256 deployedWaUSDC = suppliedWaUSDC();
uint256 localWaUSDC = balanceOfWaUSDC();
uint256 totalWaUSDC = deployedWaUSDC + localWaUSDC;
uint256 targetDeployedWaUSDC = (totalWaUSDC * maxOnCredit()) / 10_000;
if (deployedWaUSDC > targetDeployedWaUSDC) {
// Withdraw excess from MorphoCredit
uint256 waUSDCToWithdraw = deployedWaUSDC - targetDeployedWaUSDC;
_withdrawFromMorpho(waUSDCToWithdraw);
} else if (targetDeployedWaUSDC > deployedWaUSDC && localWaUSDC > 0) {
// Deploy more if we have local waUSDC
uint256 waUSDCToDeploy = Math.min(localWaUSDC, targetDeployedWaUSDC - deployedWaUSDC);
_supplyToMorpho(waUSDCToDeploy);
}
}
/// @dev Helper function to supply waUSDC to MorphoCredit
/// @param amount Amount of waUSDC to supply
/// @return supplied Actual amount supplied (for consistency with withdraw helper)
function _supplyToMorpho(uint256 amount) internal returns (uint256 supplied) {
if (amount == 0) return 0;
morphoCredit.supply(_marketParams, amount, 0, address(this), "");
return amount;
}
/// @dev Helper function to withdraw waUSDC from MorphoCredit
/// @param amountRequested Amount of waUSDC to withdraw
/// @return amountWithdrawn Actual amount withdrawn (may be less than requested)
function _withdrawFromMorpho(uint256 amountRequested) internal returns (uint256 amountWithdrawn) {
if (amountRequested == 0) return 0;
morphoCredit.accrueInterest(_marketParams);
(uint256 shares, uint256 waUSDCMax, uint256 waUSDCLiquidity) = getPosition();
uint256 availableWaUSDC = Math.min(waUSDCMax, waUSDCLiquidity);
if (availableWaUSDC == 0) {
return 0;
}
amountWithdrawn = Math.min(amountRequested, availableWaUSDC);
if (amountWithdrawn > 0) {
if (amountWithdrawn >= waUSDCMax) {
morphoCredit.withdraw(_marketParams, 0, shares, address(this), address(this));
} else {
morphoCredit.withdraw(_marketParams, amountWithdrawn, 0, address(this), address(this));
}
}
return amountWithdrawn;
}
/*//////////////////////////////////////////////////////////////
PUBLIC VIEW FUNCTIONS (OVERRIDES)
//////////////////////////////////////////////////////////////*/
/// @dev Returns available withdraw limit, enforcing commitment time
/// @param _owner Address to check limit for
/// @return Maximum amount that can be withdrawn
function availableWithdrawLimit(address _owner) public view override returns (uint256) {
// Get available liquidity first
uint256 idleAsset = asset.balanceOf(address(this));
(, uint256 waUSDCMax, uint256 waUSDCLiquidity) = getPosition();
uint256 availableWaUSDC;
if (Pausable(address(WAUSDC)).paused()) {
availableWaUSDC = 0;
} else {
uint256 localWaUSDC = Math.min(balanceOfWaUSDC(), WAUSDC.maxRedeem(address(this)));
uint256 morphoWaUSDC = Math.min(waUSDCMax, waUSDCLiquidity);
morphoWaUSDC = Math.min(morphoWaUSDC, WAUSDC.maxRedeem(address(morphoCredit)));
availableWaUSDC = localWaUSDC + morphoWaUSDC;
}
uint256 availableLiquidity = idleAsset + WAUSDC.convertToAssets(availableWaUSDC);
// During shutdown, bypass all checks
if (TokenizedStrategy.isShutdown()) {
return availableLiquidity;
}
// Check commitment time
uint256 commitTime = minCommitmentTime();
if (commitTime > 0) {
uint256 depositTime = depositTimestamp[_owner];
if (depositTime > 0 && block.timestamp < depositTime + commitTime) {
return 0; // Commitment period not met
}
}
return availableLiquidity;
}
/// @dev Returns available deposit limit, enforcing whitelist and supply cap
/// @param _owner Address to check limit for
/// @return Maximum amount that can be deposited
function availableDepositLimit(address _owner) public view override returns (uint256) {
// Check whitelist if enabled
if (whitelistEnabled && !whitelist[_owner]) {
return 0;
}
uint256 maxDeposit = WAUSDC.maxDeposit(address(this));
if (Pausable(address(WAUSDC)).paused() || maxDeposit == 0) {
return 0;
}
// Block deposits from borrowers
if (morphoCredit.borrowShares(marketId, _owner) > 0) {
return 0;
}
uint256 cap = supplyCap();
if (cap == 0 || cap == type(uint256).max) {
return type(uint256).max;
}
uint256 currentTotalAssets = TokenizedStrategy.totalAssets();
if (cap <= currentTotalAssets) {
return 0;
}
return Math.min(cap - currentTotalAssets, maxDeposit);
}
/*//////////////////////////////////////////////////////////////
HOOKS IMPLEMENTATION
//////////////////////////////////////////////////////////////*/
/// @dev Pre-deposit hook to enforce minimum deposit and track commitment time
function _preDepositHook(uint256 assets, uint256 shares, address receiver) internal override {
if (assets == 0 && shares > 0) {
assets = TokenizedStrategy.previewMint(shares);
}
// Handle type(uint256).max case - resolve to actual balance
if (assets == type(uint256).max) {
assets = asset.balanceOf(msg.sender);
}
// Enforce minimum deposit only for first-time depositors
uint256 currentBalance = TokenizedStrategy.balanceOf(receiver);
if (currentBalance == 0) {
require(assets >= minDeposit, "Below minimum deposit");
}
// Prevent commitment bypass and griefing attacks
if (minCommitmentTime() > 0) {
// Only allow self-deposits or whitelisted depositors
require(
msg.sender == receiver || depositorWhitelist[msg.sender],
"USD3: Only self or whitelisted deposits allowed"
);
// Always extend commitment for valid deposits
depositTimestamp[receiver] = block.timestamp;
}
}
/// @dev Post-withdraw hook to clear commitment on full exit
function _postWithdrawHook(uint256 assets, uint256 shares, address receiver, address owner, uint256 maxLoss)
internal
override
{
// Clear commitment timestamp if user fully exited
if (TokenizedStrategy.balanceOf(owner) == 0) {
delete depositTimestamp[owner];
}
}
/// @dev Post-report hook to handle loss absorption by burning sUSD3's shares
function _postReportHook(uint256 profit, uint256 loss) internal override {
if (loss > 0 && sUSD3 != address(0)) {
// Get sUSD3's current USD3 balance
uint256 susd3Balance = TokenizedStrategy.balanceOf(sUSD3);
if (susd3Balance > 0) {
// Calculate how many shares are needed to cover the loss
// IMPORTANT: We must use pre-report values to calculate the correct share amount
// The report has already reduced totalAssets, so we add the loss back
uint256 totalSupply = TokenizedStrategy.totalSupply();
uint256 totalAssets = TokenizedStrategy.totalAssets();
// Calculate shares to burn using pre-loss exchange rate
uint256 sharesToBurn = loss.mulDiv(totalSupply, totalAssets + loss, Math.Rounding.Floor);
// Cap at sUSD3's actual balance - they can't lose more than they have
if (sharesToBurn > susd3Balance) {
sharesToBurn = susd3Balance;
}
if (sharesToBurn > 0) {
_burnSharesFromSusd3(sharesToBurn);
}
}
}
}
/**
* @notice Prevent transfers during commitment period
* @dev Override from BaseHooksUpgradeable to enforce commitment
* @param from Address transferring shares
* @param to Address receiving shares
* @param amount Amount of shares being transferred
*/
function _preTransferHook(address from, address to, uint256 amount) internal override {
// Allow minting (from == 0) and burning (to == 0)
if (from == address(0) || to == address(0)) return;
// Allow transfers to/from sUSD3 (staking and withdrawals)
if (to == sUSD3 || from == sUSD3) return;
// Check commitment period
uint256 commitmentEnd = depositTimestamp[from] + minCommitmentTime();
require(
block.timestamp >= commitmentEnd || depositTimestamp[from] == 0,
"USD3: Cannot transfer during commitment period"
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL HELPER FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @dev Directly burn shares from sUSD3's balance using storage manipulation
*
* IMPORTANT: Direct storage manipulation is necessary here because TokenizedStrategy
* does not expose a public burn function. The only ways to burn shares in
* TokenizedStrategy are through withdraw/redeem (which require asset transfers)
* or internal profit/loss accounting. Since we need to burn sUSD3's shares
* without triggering asset transfers, direct storage manipulation is the only
* viable approach.
*
* @param amount Number of shares to burn from sUSD3
*/
function _burnSharesFromSusd3(uint256 amount) internal {
// Calculate storage slots using the library
bytes32 totalSupplySlot = TokenizedStrategyStorageLib.totalSupplySlot();
bytes32 balanceSlot = TokenizedStrategyStorageLib.balancesSlot(sUSD3);
// Read current values
uint256 currentBalance;
uint256 currentTotalSupply;
assembly {
currentBalance := sload(balanceSlot)
currentTotalSupply := sload(totalSupplySlot)
}
// Ensure we don't burn more than available
uint256 actualBurn = amount;
if (actualBurn > currentBalance) {
actualBurn = currentBalance;
}
// Update storage
assembly {
sstore(balanceSlot, sub(currentBalance, actualBurn))
sstore(totalSupplySlot, sub(currentTotalSupply, actualBurn))
}
// Emit Transfer event to address(0) for transparency
emit IERC20.Transfer(sUSD3, address(0), actualBurn);
}
/*//////////////////////////////////////////////////////////////
PUBLIC VIEW FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Get the balance of waUSDC held locally (not deployed to MorphoCredit)
* @return Amount of waUSDC held in this contract
*/
function balanceOfWaUSDC() public view returns (uint256) {
return WAUSDC.balanceOf(address(this));
}
/**
* @notice Get the amount of waUSDC supplied to MorphoCredit
* @return Amount of waUSDC deployed to the lending market
*/
function suppliedWaUSDC() public view returns (uint256) {
return morphoCredit.expectedSupplyAssets(_marketParams, address(this));
}
/**
* @notice Get the maximum percentage of funds to deploy to credit markets from ProtocolConfig
* @return Maximum deployment ratio in basis points (10000 = 100%)
* @dev Returns the value from ProtocolConfig directly. If not configured in ProtocolConfig,
* it returns 0, effectively preventing deployment until explicitly configured.
*/
function maxOnCredit() public view returns (uint256) {
IProtocolConfig config = IProtocolConfig(IMorphoCredit(address(morphoCredit)).protocolConfig());
return config.getMaxOnCredit();
}
/**
* @notice Get the minimum commitment time from ProtocolConfig
* @return Minimum commitment time in seconds
*/
function minCommitmentTime() public view returns (uint256) {
IProtocolConfig config = IProtocolConfig(IMorphoCredit(address(morphoCredit)).protocolConfig());
return config.getUsd3CommitmentTime();
}
/**
* @notice Get the supply cap from ProtocolConfig
* @return Supply cap in asset units (0 means no cap)
*/
function supplyCap() public view returns (uint256) {
IProtocolConfig config = IProtocolConfig(IMorphoCredit(address(morphoCredit)).protocolConfig());
return config.config(ProtocolConfigLib.USD3_SUPPLY_CAP);
}
/*//////////////////////////////////////////////////////////////
MANAGEMENT FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Set the sUSD3 subordinate strategy address
* @param _sUSD3 Address of the sUSD3 strategy
* @dev Only callable by management. After calling, also set performance fee recipient.
*/
function setSUSD3(address _sUSD3) external onlyManagement {
require(sUSD3 == address(0), "sUSD3 already set");
require(_sUSD3 != address(0), "Invalid address");
sUSD3 = _sUSD3;
emit SUSD3StrategyUpdated(address(0), _sUSD3);
// NOTE: After calling this, management should also call:
// ITokenizedStrategy(usd3Address).setPerformanceFeeRecipient(_sUSD3)
// to ensure yield distribution goes to sUSD3
}
/**
* @notice Enable or disable whitelist requirement
* @param _enabled True to enable whitelist, false to disable
*/
function setWhitelistEnabled(bool _enabled) external onlyManagement {
whitelistEnabled = _enabled;
}
/**
* @notice Update whitelist status for an address
* @param _user Address to update
* @param _allowed True to whitelist, false to remove from whitelist
*/
function setWhitelist(address _user, bool _allowed) external onlyManagement {
whitelist[_user] = _allowed;
emit WhitelistUpdated(_user, _allowed);
}
/**
* @notice Update depositor whitelist status for an address
* @param _depositor Address to update
* @param _allowed True to allow extending commitments, false to disallow
*/
function setDepositorWhitelist(address _depositor, bool _allowed) external onlyManagement {
depositorWhitelist[_depositor] = _allowed;
emit DepositorWhitelistUpdated(_depositor, _allowed);
}
/**
* @notice Set minimum deposit amount
* @param _minDeposit Minimum amount required for deposits
*/
function setMinDeposit(uint256 _minDeposit) external onlyManagement {
minDeposit = _minDeposit;
emit MinDepositUpdated(_minDeposit);
}
/*//////////////////////////////////////////////////////////////
KEEPER FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Sync the tranche share (performance fee) from ProtocolConfig
* @dev Reads TRANCHE_SHARE_VARIANT from ProtocolConfig and updates local storage
*
* IMPORTANT: Direct storage manipulation is necessary here because TokenizedStrategy's
* setPerformanceFee() function has a hardcoded MAX_FEE limit of 5000 (50%). Since we
* need to support higher fee distributions to sUSD3 (potentially up to 100% for full
* subordination scenarios), we must bypass this restriction by directly modifying the
* storage slot.
*
* Storage layout in TokenizedStrategy (slot 9):
* - Bits 0-31: profitMaxUnlockTime (uint32)
* - Bits 32-47: performanceFee (uint16) <- We modify this
* - Bits 48-207: performanceFeeRecipient (address)
*
* @dev Only callable by keepers to ensure controlled updates
*/
function syncTrancheShare() external onlyKeepers {
// Get the protocol config through MorphoCredit
IProtocolConfig config = IProtocolConfig(IMorphoCredit(address(morphoCredit)).protocolConfig());
// Read the tranche share variant (yield share to sUSD3 in basis points)
uint256 trancheShare = config.getTrancheShareVariant();
require(trancheShare <= 10_000, "Invalid tranche share");
// Get the storage slot for performanceFee using the library
bytes32 targetSlot = TokenizedStrategyStorageLib.profitConfigSlot();
// Read current slot value
uint256 currentSlotValue;
assembly {
currentSlotValue := sload(targetSlot)
}
// Clear the performanceFee bits (32-47) and set new value
uint256 mask = ~(uint256(0xFFFF) << 32);
uint256 newSlotValue = (currentSlotValue & mask) | (trancheShare << 32);
// Write back to storage
assembly {
sstore(targetSlot, newSlotValue)
}
emit TrancheShareSynced(trancheShare);
}
/*//////////////////////////////////////////////////////////////
STORAGE GAP
//////////////////////////////////////////////////////////////*/
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[40] private __gap;
}
"
},
"src/usd3/base/BaseHooksUpgradeable.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {BaseStrategyUpgradeable} from "./BaseStrategyUpgradeable.sol";
import {Hooks} from "@periphery/Bases/Hooks/Hooks.sol";
import {ITokenizedStrategy} from "@tokenized-strategy/interfaces/ITokenizedStrategy.sol";
/**
* @title BaseHooksUpgradeable
* @author Yearn's BaseHooks adapted for upgradeable strategies
* @notice This contract can be inherited by any strategy wishing to implement
* pre or post hooks for deposit, withdraw, transfer, or report functions.
*
* This version:
* - Inherits from BaseStrategyUpgradeable instead of BaseHealthCheck
* - Uses Yearn's Hooks contract for standardized hook interfaces
* - Is compatible with upgradeable proxy patterns
*/
abstract contract BaseHooksUpgradeable is BaseStrategyUpgradeable, Hooks {
/*//////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////*/
uint256 internal constant MAX_BPS = 10_000;
/*//////////////////////////////////////////////////////////////
OVERRIDDEN FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Deposit assets and receive shares
* @param assets Amount of assets to deposit
* @param receiver Address to receive the shares
* @return shares Amount of shares minted
*/
function deposit(uint256 assets, address receiver) external virtual returns (uint256 shares) {
_preDepositHook(assets, shares, receiver);
shares = abi.decode(
_delegateCall(abi.encodeCall(ITokenizedStrategy(address(this)).deposit, (assets, receiver))), (uint256)
);
_postDepositHook(assets, shares, receiver);
}
/**
* @notice Mint shares by depositing assets
* @param shares Amount of shares to mint
* @param receiver Address to receive the shares
* @return assets Amount of assets deposited
*/
function mint(uint256 shares, address receiver) external virtual returns (uint256 assets) {
_preDepositHook(assets, shares, receiver);
assets = abi.decode(
_delegateCall(abi.encodeCall(ITokenizedStrategy(address(this)).mint, (shares, receiver))), (uint256)
);
_postDepositHook(assets, shares, receiver);
}
/**
* @notice Withdraw assets by burning shares
* @param assets Amount of assets to withdraw
* @param receiver Address to receive the assets
* @param owner Address whose shares are burned
* @return shares Amount of shares burned
*/
function withdraw(uint256 assets, address receiver, address owner) external virtual returns (uint256 shares) {
return withdraw(assets, receiver, owner, 0);
}
/**
* @notice Withdraw assets with custom max loss
* @param assets Amount of assets to withdraw
* @param receiver Address to receive the assets
* @param owner Address whose shares are burned
* @param maxLoss Maximum acceptable loss in basis points
* @return shares Amount of shares burned
*/
function withdraw(uint256 assets, address receiver, address owner, uint256 maxLoss)
public
virtual
returns (uint256 shares)
{
_preWithdrawHook(assets, shares, receiver, owner, maxLoss);
shares = abi.decode(
_delegateCall(
abi.encodeWithSelector(ITokenizedStrategy.withdraw.selector, assets, receiver, owner, maxLoss)
),
(uint256)
);
_postWithdrawHook(assets, shares, receiver, owner, maxLoss);
}
/**
* @notice Redeem shares for assets
* @param shares Amount of shares to redeem
* @param receiver Address to receive the assets
* @param owner Address whose shares are burned
* @return assets Amount of assets withdrawn
*/
function redeem(uint256 shares, address receiver, address owner) external virtual returns (uint256 assets) {
return redeem(shares, receiver, owner, MAX_BPS);
}
/**
* @notice Redeem shares with custom max loss
* @param shares Amount of shares to redeem
* @param receiver Address to receive the assets
* @param owner Address whose shares are burned
* @param maxLoss Maximum acceptable loss in basis points
* @return assets Amount of assets withdrawn
*/
function redeem(uint256 shares, address receiver, address owner, uint256 maxLoss)
public
virtual
returns (uint256 assets)
{
_preWithdrawHook(assets, shares, receiver, owner, maxLoss);
assets = abi.decode(
_delegateCall(abi.encodeWithSelector(ITokenizedStrategy.redeem.selector, shares, receiver, owner, maxLoss)),
(uint256)
);
_postWithdrawHook(assets, shares, receiver, owner, maxLoss);
}
/**
* @notice Transfer shares to another address
* @param to Address to receive the shares
* @param amount Amount of shares to transfer
* @return success Whether the transfer succeeded
*/
function transfer(address to, uint256 amount) external virtual returns (bool) {
_preTransferHook(msg.sender, to, amount);
bool success =
abi.decode(_delegateCall(abi.encodeCall(ITokenizedStrategy(address(this)).transfer, (to, amount))), (bool));
_postTransferHook(msg.sender, to, amount, success);
return success;
}
/**
* @notice Transfer shares from one address to another
* @param from Address to transfer from
* @param to Address to transfer to
* @param amount Amount of shares to transfer
* @return success Whether the transfer succeeded
*/
function transferFrom(address from, address to, uint256 amount) external virtual returns (bool) {
_preTransferHook(from, to, amount);
bool success = abi.decode(
_delegateCall(abi.encodeCall(ITokenizedStrategy(address(this)).transferFrom, (from, to, amount))), (bool)
);
_postTransferHook(from, to, amount, success);
return success;
}
/**
* @notice Report profit and loss
* @return profit Amount of profit generated
* @return loss Amount of loss incurred
*/
function report() external virtual returns (uint256 profit, uint256 loss) {
_preReportHook();
(profit, loss) =
abi.decode(_delegateCall(abi.encodeCall(ITokenizedStrategy(address(this)).report, ())), (uint256, uint256));
_postReportHook(profit, loss);
}
}
"
},
"lib/tokenized-strategy-periphery/lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
"
},
"lib/openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.p
Submitted on: 2025-10-23 16:04:27
Comments
Log in to comment.
No comments yet.