stOLAS

Description:

Decentralized Finance (DeFi) protocol contract providing Staking, Factory functionality.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "contracts/l1/stOLAS.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;

import {ERC20, ERC4626, FixedPointMathLib} from "../../lib/solmate/src/tokens/ERC4626.sol";

/// @dev Provided zero address.
error ZeroAddress();

/// @dev Provided zero value.
error ZeroValue();

/// @dev Value overflow.
/// @param provided Overflow value.
/// @param max Maximum possible value.
error Overflow(uint256 provided, uint256 max);

/// @dev The contract is already initialized.
error AlreadyInitialized();

/// @dev Only `treasury` has a privilege, but the `sender` was provided.
/// @param sender Sender address.
/// @param treasury Required sender address as a treasury.
error TreasuryOnly(address sender, address treasury);

/// @dev Only `depository` has a privilege, but the `sender` was provided.
/// @param sender Sender address.
/// @param depository Required sender address as a depository.
error DepositoryOnly(address sender, address depository);

/// @dev Only `distributor` has a privilege, but the `sender` was provided.
/// @param sender Sender address.
/// @param distributor Required sender address as a distributor.
error DistributorOnly(address sender, address distributor);

/// @dev Only `unstakeRelayer` has a privilege, but the `sender` was provided.
/// @param sender Sender address.
/// @param unstakeRelayer Required sender address as an unstakeRelayer.
error UnstakeRelayerOnly(address sender, address unstakeRelayer);

/// @dev The function is not implemented.
error NotImplemented();

/// @title stOLAS - Smart contract for the stOLAS token.
contract stOLAS is ERC4626 {
    using FixedPointMathLib for uint256;

    event Initialized(
        address indexed treasury, address indexed depository, address indexed dstributor, address unstakeRelayer
    );
    event TotalReservesUpdated(
        uint256 stakedBalance, uint256 vaultBalance, uint256 reserveBalance, uint256 totalReserves
    );

    // Staked balance: funds allocated for staking contracts on different chains
    uint256 public stakedBalance;
    // Vault balance: Distributor and other possible deposits
    uint256 public vaultBalance;
    // Reserve balance: Depository incoming funds that are still not utilized
    uint256 public reserveBalance;
    // Total OLAS reserves that include staked, vault and reserve balance
    uint256 public totalReserves;

    // Treasury address
    address public treasury;
    // Depository address
    address public depository;
    // Distributor address
    address public distributor;
    // Unstake relayer address for retired model funds
    address public unstakeRelayer;

    /// @dev stOLAS constructor.
    /// @param _olas OLAS token address.
    constructor(ERC20 _olas) ERC4626(_olas, "Staked OLAS", "stOLAS") {}

    /// @dev Initializes stOLAS with various managing contract addresses.
    /// @notice The initialization is checked offchain before integration with other contracts.
    /// @param _treasury Treasury address.
    /// @param _depository Depository address.
    /// @param _distributor Distributor address.
    /// @param _unstakeRelayer UnstakeRelayer address.
    function initialize(address _treasury, address _depository, address _distributor, address _unstakeRelayer)
        external
    {
        // Check for already being initialized
        if (treasury != address(0)) {
            revert AlreadyInitialized();
        }

        // Check for zero addresses
        if (
            _treasury == address(0) || _depository == address(0) || _distributor == address(0)
                || _unstakeRelayer == address(0)
        ) {
            revert ZeroAddress();
        }

        // Set managing contract addresses
        treasury = _treasury;
        depository = _depository;
        distributor = _distributor;
        unstakeRelayer = _unstakeRelayer;

        emit Initialized(_treasury, _depository, _distributor, _unstakeRelayer);
    }

    /// @dev Deposits OLAS in exchange for stOLAS tokens.
    /// @param assets OLAS amount.
    /// @param receiver Receiver account address.
    /// @return shares stOLAS amount.
    function deposit(uint256 assets, address receiver) public override returns (uint256 shares) {
        // Check for access
        if (msg.sender != depository) {
            revert DepositoryOnly(msg.sender, depository);
        }

        // Check for zero balance
        if (assets == 0) {
            revert ZeroValue();
        }

        // Calculate shares
        shares = totalSupply;
        shares = shares == 0 ? assets : assets.mulDivDown(shares, totalReserves);

        // Check for rounding error since we round down in mulDivDown
        if (shares == 0) {
            revert ZeroValue();
        }

        _mint(receiver, shares);

        emit Deposit(msg.sender, receiver, assets, shares);
    }

    /// @dev Redeems OLAS in exchange for stOLAS tokens.
    /// @param shares stOLAS amount.
    /// @param receiver Receiver account address.
    /// @param tokenOwner Token owner account address.
    /// @return assets OLAS amount.
    function redeem(uint256 shares, address receiver, address tokenOwner) public override returns (uint256 assets) {
        // Check for access
        if (msg.sender != treasury) {
            revert TreasuryOnly(msg.sender, treasury);
        }

        (uint256 curStakedBalance, uint256 curVaultBalance, uint256 curReserveBalance, uint256 curTotalReserves) =
            calculateCurrentBalances();

        // Calculate assets
        assets = totalSupply;
        assets = assets == 0 ? shares : shares.mulDivDown(curTotalReserves, assets);

        // Check for rounding error since we round down in mulDivDown
        if (assets == 0) {
            revert ZeroValue();
        }

        _burn(tokenOwner, shares);

        // Update total assets
        uint256 transferAmount;

        uint256 vaultAndReserveBalance = curVaultBalance + curReserveBalance;
        // Shuffle balances depending on how many tokens are requested for redeem
        if (vaultAndReserveBalance >= assets) {
            // Vault and reserves have enough assets to cover requested amount
            transferAmount = assets;

            // Check if reserve balance can fully cover requested amount
            if (curReserveBalance >= assets) {
                curReserveBalance -= assets;
            } else {
                // Otherwise fully utilize reserve balance and use the rest from vault balance
                curVaultBalance = vaultAndReserveBalance - assets;
                curReserveBalance = 0;
            }
        } else {
            // If vault and reserve does not have enough balance, use it all and take rest from staked
            transferAmount = vaultAndReserveBalance;
            uint256 remainingAmount = assets - vaultAndReserveBalance;

            // Check for overflow, must never happen
            if (remainingAmount > curStakedBalance) {
                revert Overflow(remainingAmount, curStakedBalance);
            }

            // Update required values: vault and reserve balances are depleted, staking balance refund will be requested
            curStakedBalance -= remainingAmount;
            stakedBalance = curStakedBalance;
            curVaultBalance = 0;
            curReserveBalance = 0;
        }

        // Recalculate balances
        reserveBalance = curReserveBalance;
        vaultBalance = curVaultBalance;
        curTotalReserves = curStakedBalance + curVaultBalance + curReserveBalance;
        totalReserves = curTotalReserves;

        if (transferAmount > 0) {
            asset.transfer(receiver, transferAmount);
        }

        emit TotalReservesUpdated(curStakedBalance, curVaultBalance, curReserveBalance, curTotalReserves);
        emit Withdraw(msg.sender, receiver, tokenOwner, assets, shares);
    }

    /// @dev Overrides mint function that is never used.
    function mint(uint256, address) public pure override returns (uint256) {
        revert NotImplemented();
    }

    /// @dev Overrides withdraw function that is never used.
    function withdraw(uint256, address, address) public pure override returns (uint256) {
        revert NotImplemented();
    }

    /// @dev Calculates reserve and stake balances, and top-ups stOLAS or Depository.
    /// @param reserveAmount Additional reserve OLAS amount.
    /// @param stakeAmount Additional stake OLAS amount.
    /// @param topUp Top up amount to be sent or received.
    /// @param direction To stOLAS, if true, and to Depository otherwise.
    function syncStakeBalances(uint256 reserveAmount, uint256 stakeAmount, uint256 topUp, bool direction) external {
        // Check for access
        if (msg.sender != depository) {
            revert DepositoryOnly(msg.sender, depository);
        }

        // Update balances accordingly
        // Reserve balance
        uint256 curReserveBalance = reserveBalance;
        if (curReserveBalance != reserveAmount) {
            curReserveBalance = reserveAmount;
            reserveBalance = reserveAmount;
        }

        // Staked balance
        uint256 curStakedBalance = stakedBalance;
        if (stakeAmount > 0) {
            curStakedBalance += stakeAmount;
            stakedBalance = curStakedBalance;
        }

        // Update total reserves, since either reserveAmount or stakeAmount are not zero
        // Current vault balance
        uint256 curVaultBalance = vaultBalance;
        // Total reserves
        uint256 curTotalReserves = curStakedBalance + curVaultBalance + curReserveBalance;
        totalReserves = curTotalReserves;

        // Direction is true if the transfer is from Depository to stOLAS, else the opposite direction
        if (direction == true) {
            // Pull OLAS from Depository
            asset.transferFrom(msg.sender, address(this), topUp);
        } else if (topUp > 0) {
            // Top-up can be zero in case when it is not transferred to stOLAS as it is fully utilized in Depository
            // Thus, no action is required and this block is skipped

            // Transfer OLAS to Depository
            asset.transfer(msg.sender, topUp);
        }

        emit TotalReservesUpdated(curStakedBalance, curVaultBalance, curReserveBalance, curTotalReserves);
    }

    /// @dev Top-ups vault balance via Distributor.
    /// @param amount OLAS amount.
    function topUpVaultBalance(uint256 amount) external {
        // Check for access
        if (msg.sender != distributor) {
            revert DistributorOnly(msg.sender, distributor);
        }

        // Update balances accordingly
        // Vault balance
        uint256 curVaultBalance = vaultBalance + amount;
        vaultBalance = curVaultBalance;
        // Total reserves
        uint256 curTotalReserves = totalReserves + amount;
        totalReserves = curTotalReserves;

        asset.transferFrom(msg.sender, address(this), amount);

        emit TotalReservesUpdated(stakedBalance, curVaultBalance, reserveBalance, curTotalReserves);
    }

    /// @dev Top-ups unstake balance from retired models via Depository: increase reserve balance and decrease staked one.
    /// @param amount OLAS amount.
    function topUpRetiredBalance(uint256 amount) external {
        // Check for access
        if (msg.sender != unstakeRelayer) {
            revert UnstakeRelayerOnly(msg.sender, unstakeRelayer);
        }

        // Update stakedBalance and possibly totalReserves
        uint256 curStakedBalance = stakedBalance;
        uint256 curTotalReserves = totalReserves;
        // This can only happen if OLAS funds have been additionally transferred to UnstakeRelayer contract
        // The leftover difference is passed to reserve balance
        if (amount > curStakedBalance) {
            // This needs totalReserves update for the amount exceeding stakedBalance
            uint256 overDeposit = amount - curStakedBalance;
            curTotalReserves += overDeposit;
            totalReserves = curTotalReserves;
            curStakedBalance = 0;
        } else {
            curStakedBalance -= amount;
        }
        stakedBalance = curStakedBalance;

        // Update reserve balance
        uint256 curReserveBalance = reserveBalance + amount;
        reserveBalance = curReserveBalance;

        asset.transferFrom(msg.sender, address(this), amount);

        emit TotalReservesUpdated(curStakedBalance, vaultBalance, curReserveBalance, curTotalReserves);
    }

    /// @dev Calculates current balances.
    /// @return curStakedBalance Current staked balance.
    /// @return curVaultBalance Current vault balance.
    /// @return curReserveBalance Current reserve balance.
    /// @return curTotalReserves Current total reserves.
    function calculateCurrentBalances()
        public
        view
        returns (uint256 curStakedBalance, uint256 curVaultBalance, uint256 curReserveBalance, uint256 curTotalReserves)
    {
        // Current staked balance
        curStakedBalance = stakedBalance;
        // Current vault balance
        curVaultBalance = vaultBalance;
        // Current reserve balance
        curReserveBalance = reserveBalance;

        // Total reserves
        curTotalReserves = curStakedBalance + curVaultBalance + curReserveBalance;
    }

    /// @dev Previews deposit assets to shares amount.
    /// @notice This function can only be used for a strict amount of provided assets value.
    ///       It might not correlate with the Depository's `deposit()` function since the provided amount
    ///       could be changed due to other input parameters. For accurate correspondence with the Depository's
    ///       `deposit()` function use its static call directly.
    /// @param assets Deposited assets amount.
    function previewDeposit(uint256 assets) public view override returns (uint256) {
        (,,, uint256 curTotalReserves) = calculateCurrentBalances();

        uint256 shares = totalSupply;
        return shares == 0 ? assets : assets.mulDivDown(shares, curTotalReserves);
    }

    /// @dev Previews redeem shares to assets amount.
    /// @param shares Redeemed shares amount.
    function previewRedeem(uint256 shares) public view override returns (uint256) {
        (,,, uint256 curTotalReserves) = calculateCurrentBalances();

        uint256 assets = totalSupply;
        return assets == 0 ? shares : shares.mulDivDown(curTotalReserves, assets);
    }

    /// @dev Gets total assets amount.
    function totalAssets() public view override returns (uint256) {
        return totalReserves;
    }

    /// @dev Overrides unused function return value.
    function maxMint(address) public pure override returns (uint256) {
        return 0;
    }

    /// @dev Overrides unused function return value.
    function maxWithdraw(address) public pure override returns (uint256) {
        return 0;
    }
}
"
    },
    "lib/solmate/src/tokens/ERC4626.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";
import {SafeTransferLib} from "../utils/SafeTransferLib.sol";
import {FixedPointMathLib} from "../utils/FixedPointMathLib.sol";

/// @notice Minimal ERC4626 tokenized Vault implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC4626.sol)
abstract contract ERC4626 is ERC20 {
    using SafeTransferLib for ERC20;
    using FixedPointMathLib for uint256;

    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Deposit(address indexed caller, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed caller,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /*//////////////////////////////////////////////////////////////
                               IMMUTABLES
    //////////////////////////////////////////////////////////////*/

    ERC20 public immutable asset;

    constructor(
        ERC20 _asset,
        string memory _name,
        string memory _symbol
    ) ERC20(_name, _symbol, _asset.decimals()) {
        asset = _asset;
    }

    /*//////////////////////////////////////////////////////////////
                        DEPOSIT/WITHDRAWAL LOGIC
    //////////////////////////////////////////////////////////////*/

    function deposit(uint256 assets, address receiver) public virtual returns (uint256 shares) {
        // Check for rounding error since we round down in previewDeposit.
        require((shares = previewDeposit(assets)) != 0, "ZERO_SHARES");

        // Need to transfer before minting or ERC777s could reenter.
        asset.safeTransferFrom(msg.sender, address(this), assets);

        _mint(receiver, shares);

        emit Deposit(msg.sender, receiver, assets, shares);

        afterDeposit(assets, shares);
    }

    function mint(uint256 shares, address receiver) public virtual returns (uint256 assets) {
        assets = previewMint(shares); // No need to check for rounding error, previewMint rounds up.

        // Need to transfer before minting or ERC777s could reenter.
        asset.safeTransferFrom(msg.sender, address(this), assets);

        _mint(receiver, shares);

        emit Deposit(msg.sender, receiver, assets, shares);

        afterDeposit(assets, shares);
    }

    function withdraw(
        uint256 assets,
        address receiver,
        address owner
    ) public virtual returns (uint256 shares) {
        shares = previewWithdraw(assets); // No need to check for rounding error, previewWithdraw rounds up.

        if (msg.sender != owner) {
            uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited approvals.

            if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed - shares;
        }

        beforeWithdraw(assets, shares);

        _burn(owner, shares);

        emit Withdraw(msg.sender, receiver, owner, assets, shares);

        asset.safeTransfer(receiver, assets);
    }

    function redeem(
        uint256 shares,
        address receiver,
        address owner
    ) public virtual returns (uint256 assets) {
        if (msg.sender != owner) {
            uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited approvals.

            if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed - shares;
        }

        // Check for rounding error since we round down in previewRedeem.
        require((assets = previewRedeem(shares)) != 0, "ZERO_ASSETS");

        beforeWithdraw(assets, shares);

        _burn(owner, shares);

        emit Withdraw(msg.sender, receiver, owner, assets, shares);

        asset.safeTransfer(receiver, assets);
    }

    /*//////////////////////////////////////////////////////////////
                            ACCOUNTING LOGIC
    //////////////////////////////////////////////////////////////*/

    function totalAssets() public view virtual returns (uint256);

    function convertToShares(uint256 assets) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? assets : assets.mulDivDown(supply, totalAssets());
    }

    function convertToAssets(uint256 shares) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? shares : shares.mulDivDown(totalAssets(), supply);
    }

    function previewDeposit(uint256 assets) public view virtual returns (uint256) {
        return convertToShares(assets);
    }

    function previewMint(uint256 shares) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? shares : shares.mulDivUp(totalAssets(), supply);
    }

    function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? assets : assets.mulDivUp(supply, totalAssets());
    }

    function previewRedeem(uint256 shares) public view virtual returns (uint256) {
        return convertToAssets(shares);
    }

    /*//////////////////////////////////////////////////////////////
                     DEPOSIT/WITHDRAWAL LIMIT LOGIC
    //////////////////////////////////////////////////////////////*/

    function maxDeposit(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    function maxMint(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    function maxWithdraw(address owner) public view virtual returns (uint256) {
        return convertToAssets(balanceOf[owner]);
    }

    function maxRedeem(address owner) public view virtual returns (uint256) {
        return balanceOf[owner];
    }

    /*//////////////////////////////////////////////////////////////
                          INTERNAL HOOKS LOGIC
    //////////////////////////////////////////////////////////////*/

    function beforeWithdraw(uint256 assets, uint256 shares) internal virtual {}

    function afterDeposit(uint256 assets, uint256 shares) internal virtual {}
}
"
    },
    "lib/solmate/src/tokens/ERC20.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            address recoveredAddress = ecrecover(
                keccak256(
                    abi.encodePacked(
                        "\x19\x01",
                        DOMAIN_SEPARATOR(),
                        keccak256(
                            abi.encode(
                                keccak256(
                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                ),
                                owner,
                                spender,
                                value,
                                nonces[owner]++,
                                deadline
                            )
                        )
                    )
                ),
                v,
                r,
                s
            );

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}
"
    },
    "lib/solmate/src/utils/SafeTransferLib.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
library SafeTransferLib {
    /*//////////////////////////////////////////////////////////////
                             ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address to, uint256 amount) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Transfer the ETH and store if it succeeded or not.
            success := call(gas(), to, amount, 0, 0, 0, 0)
        }

        require(success, "ETH_TRANSFER_FAILED");
    }

    /*//////////////////////////////////////////////////////////////
                            ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
            mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
            // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
            success := call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)

            // Set success to whether the call reverted, if not we check it either
            // returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
            if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
                success := iszero(or(iszero(extcodesize(token)), returndatasize())) 
            }
        }

        require(success, "TRANSFER_FROM_FAILED");
    }

    function safeTransfer(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
            // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
            success := call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)

            // Set success to whether the call reverted, if not we check it either
            // returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
            if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
                success := iszero(or(iszero(extcodesize(token)), returndatasize())) 
            }
        }

        require(success, "TRANSFER_FAILED");
    }

    function safeApprove(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
            // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
            success := call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)

            // Set success to whether the call reverted, if not we check it either
            // returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
            if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
                success := iszero(or(iszero(extcodesize(token)), returndatasize())) 
            }
        }

        require(success, "APPROVE_FAILED");
    }
}
"
    },
    "lib/solmate/src/utils/FixedPointMathLib.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant MAX_UINT256 = 2**256 - 1;

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // Divide x * y by the denominator.
            z := div(mul(x, y), denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // If x * y modulo the denominator is strictly greater than 0,
            // 1 is added to round up the division of x * y by the denominator.
            z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Mod x by y. Note this will return
            // 0 instead of reverting if y is zero.
            z := mod(x, y)
        }
    }

    function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Divide x by y. Note this will return
            // 0 instead of reverting if y is zero.
            r := div(x, y)
        }
    }

    function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Add 1 to x * y if x % y > 0. Note this will
            // return 0 instead of reverting if y is zero.
            z := add(gt(mod(x, y), 0), div(x, y))
        }
    }
}
"
    }
  },
  "settings": {
    "remappings": [
      "@gnosis.pm/=node_modules/@gnosis.pm/",
      "@layerzerolabs/oapp-evm/=lib/devtools/packages/oapp-evm/",
      "@layerzerolabs/lz-evm-protocol-v2/=lib/layerzero-v2/packages/layerzero-v2/evm/protocol/",
      "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
      "@registries/=lib/autonolas-registries/",
      "@solmate/=lib/solmate/",
      "autonolas-registries/=lib/autonolas-registries/",
      "devtools/=lib/devtools/packages/toolbox-foundry/src/",
      "ds-test/=lib/autonolas-registries/lib/forge-std/lib/ds-test/src/",
      "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
      "forge-std/=lib/autonolas-registries/lib/forge-std/src/",
      "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
      "layerzero-v2/=lib/layerzero-v2/",
      "openzeppelin-contracts/=lib/openzeppelin-contracts/",
      "solmate/=lib/solmate/src/"
    ],
    "optimizer": {
      "enabled": true,
      "runs": 1000000
    },
    "metadata": {
      "useLiteralContent": false,
      "bytecodeHash": "ipfs",
      "appendCBOR": true
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    },
    "evmVersion": "prague",
    "viaIR": true
  }
}}

Tags:
DeFi, Staking, Factory|addr:0xab4c5bb0797ca25e93a4af2e8fecd7fcac0f2c9b|verified:true|block:23632922|tx:0x3573d95930b5bfa6d3cd028304459c7791f37288cbc8bc021d4b52921721cea2|first_check:1761243114

Submitted on: 2025-10-23 20:11:57

Comments

Log in to comment.

No comments yet.