Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/DebtAllocator.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.18;
import {Strategy} from "./Strategy.sol";
import {IVault} from "../lib/tokenized-strategy-periphery/lib/yearn-vaults-v3/contracts/interfaces/IVault.sol";
import {Governance} from "@periphery/utils/Governance.sol";
contract DebtAllocator is Governance {
address public immutable vault;
address public immutable strategy;
constructor(address _governance, address _vault, address _strategy) Governance(_governance) {
vault = _vault;
strategy = _strategy;
}
function yeetIt(uint256 _amount) external onlyGovernance {
_yeet(_amount);
}
function _yeet(uint256 _amount) internal {
uint256 currentDebt = IVault(vault).strategies(strategy).current_debt;
IVault(vault).update_debt(strategy, currentDebt + _amount);
Strategy(strategy).yeet(_amount);
}
function yeetMany(uint256 _times) external onlyGovernance {
for (uint256 i = 0; i < _times; i++) {
_yeet(IVault(vault).totalIdle());
}
}
}"
},
"src/Strategy.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.18;
import {Base4626Compounder} from "@periphery/Bases/4626Compounder/Base4626Compounder.sol";
contract Strategy is Base4626Compounder {
constructor(
address _asset,
string memory _name,
address _vault
) Base4626Compounder(_asset, _name, _vault) {}
function _deployFunds(uint256 _amount) internal override {
return;
}
function yeet(uint256 _amount) external onlyKeepers {
vault.deposit(_amount, address(this));
}
}
"
},
"lib/tokenized-strategy-periphery/lib/yearn-vaults-v3/contracts/interfaces/IVault.sol": {
"content": "// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.8.18;
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
interface IVault is IERC4626 {
// STRATEGY EVENTS
event StrategyChanged(address indexed strategy, uint256 change_type);
event StrategyReported(
address indexed strategy,
uint256 gain,
uint256 loss,
uint256 current_debt,
uint256 protocol_fees,
uint256 total_fees,
uint256 total_refunds
);
// DEBT MANAGEMENT EVENTS
event DebtUpdated(
address indexed strategy,
uint256 current_debt,
uint256 new_debt
);
// ROLE UPDATES
event RoleSet(address indexed account, uint256 role);
event UpdateFutureRoleManager(address indexed future_role_manager);
event UpdateRoleManager(address indexed role_manager);
event UpdateAccountant(address indexed accountant);
event UpdateDefaultQueue(address[] new_default_queue);
event UpdateUseDefaultQueue(bool use_default_queue);
event UpdatedMaxDebtForStrategy(
address indexed sender,
address indexed strategy,
uint256 new_debt
);
event UpdateAutoAllocate(bool auto_allocate);
event UpdateDepositLimit(uint256 deposit_limit);
event UpdateMinimumTotalIdle(uint256 minimum_total_idle);
event UpdateProfitMaxUnlockTime(uint256 profit_max_unlock_time);
event DebtPurchased(address indexed strategy, uint256 amount);
event Shutdown();
struct StrategyParams {
uint256 activation;
uint256 last_report;
uint256 current_debt;
uint256 max_debt;
}
function FACTORY() external view returns (uint256);
function strategies(address) external view returns (StrategyParams memory);
function default_queue(uint256) external view returns (address);
function use_default_queue() external view returns (bool);
function auto_allocate() external view returns (bool);
function minimum_total_idle() external view returns (uint256);
function deposit_limit() external view returns (uint256);
function deposit_limit_module() external view returns (address);
function withdraw_limit_module() external view returns (address);
function accountant() external view returns (address);
function roles(address) external view returns (uint256);
function role_manager() external view returns (address);
function future_role_manager() external view returns (address);
function isShutdown() external view returns (bool);
function nonces(address) external view returns (uint256);
function initialize(
address,
string memory,
string memory,
address,
uint256
) external;
function setName(string memory) external;
function setSymbol(string memory) external;
function set_accountant(address new_accountant) external;
function set_default_queue(address[] memory new_default_queue) external;
function set_use_default_queue(bool) external;
function set_auto_allocate(bool) external;
function set_deposit_limit(uint256 deposit_limit) external;
function set_deposit_limit(
uint256 deposit_limit,
bool should_override
) external;
function set_deposit_limit_module(
address new_deposit_limit_module
) external;
function set_deposit_limit_module(
address new_deposit_limit_module,
bool should_override
) external;
function set_withdraw_limit_module(
address new_withdraw_limit_module
) external;
function set_minimum_total_idle(uint256 minimum_total_idle) external;
function setProfitMaxUnlockTime(
uint256 new_profit_max_unlock_time
) external;
function set_role(address account, uint256 role) external;
function add_role(address account, uint256 role) external;
function remove_role(address account, uint256 role) external;
function transfer_role_manager(address role_manager) external;
function accept_role_manager() external;
function unlockedShares() external view returns (uint256);
function pricePerShare() external view returns (uint256);
function get_default_queue() external view returns (address[] memory);
function process_report(
address strategy
) external returns (uint256, uint256);
function buy_debt(address strategy, uint256 amount) external;
function add_strategy(address new_strategy) external;
function revoke_strategy(address strategy) external;
function force_revoke_strategy(address strategy) external;
function update_max_debt_for_strategy(
address strategy,
uint256 new_max_debt
) external;
function update_debt(
address strategy,
uint256 target_debt
) external returns (uint256);
function update_debt(
address strategy,
uint256 target_debt,
uint256 max_loss
) external returns (uint256);
function shutdown_vault() external;
function totalIdle() external view returns (uint256);
function totalDebt() external view returns (uint256);
function apiVersion() external view returns (string memory);
function assess_share_of_unrealised_losses(
address strategy,
uint256 assets_needed
) external view returns (uint256);
function profitMaxUnlockTime() external view returns (uint256);
function fullProfitUnlockDate() external view returns (uint256);
function profitUnlockingRate() external view returns (uint256);
function lastProfitUpdate() external view returns (uint256);
//// NON-STANDARD ERC-4626 FUNCTIONS \\\\
function withdraw(
uint256 assets,
address receiver,
address owner,
uint256 max_loss
) external returns (uint256);
function withdraw(
uint256 assets,
address receiver,
address owner,
uint256 max_loss,
address[] memory strategies
) external returns (uint256);
function redeem(
uint256 shares,
address receiver,
address owner,
uint256 max_loss
) external returns (uint256);
function redeem(
uint256 shares,
address receiver,
address owner,
uint256 max_loss,
address[] memory strategies
) external returns (uint256);
function maxWithdraw(
address owner,
uint256 max_loss
) external view returns (uint256);
function maxWithdraw(
address owner,
uint256 max_loss,
address[] memory strategies
) external view returns (uint256);
function maxRedeem(
address owner,
uint256 max_loss
) external view returns (uint256);
function maxRedeem(
address owner,
uint256 max_loss,
address[] memory strategies
) external view returns (uint256);
//// NON-STANDARD ERC-20 FUNCTIONS \\\\
function DOMAIN_SEPARATOR() external view returns (bytes32);
function permit(
address owner,
address spender,
uint256 amount,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external returns (bool);
}
"
},
"lib/tokenized-strategy-periphery/src/utils/Governance.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
contract Governance {
/// @notice Emitted when the governance address is updated.
event GovernanceTransferred(
address indexed previousGovernance,
address indexed newGovernance
);
modifier onlyGovernance() {
_checkGovernance();
_;
}
/// @notice Checks if the msg sender is the governance.
function _checkGovernance() internal view virtual {
require(governance == msg.sender, "!governance");
}
/// @notice Address that can set the default base fee and provider
address public governance;
constructor(address _governance) {
governance = _governance;
emit GovernanceTransferred(address(0), _governance);
}
/**
* @notice Sets a new address as the governance of the contract.
* @dev Throws if the caller is not current governance.
* @param _newGovernance The new governance address.
*/
function transferGovernance(
address _newGovernance
) external virtual onlyGovernance {
require(_newGovernance != address(0), "ZERO ADDRESS");
address oldGovernance = governance;
governance = _newGovernance;
emit GovernanceTransferred(oldGovernance, _newGovernance);
}
}
"
},
"lib/tokenized-strategy-periphery/src/Bases/4626Compounder/Base4626Compounder.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
// We use the Tokenized Strategy interface.
import {IStrategy} from "@tokenized-strategy/interfaces/IStrategy.sol";
import {BaseHealthCheck, ERC20} from "../HealthCheck/BaseHealthCheck.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
/**
* @title Base4626Compounder
* @dev Can be used to make a simple strategy that compounds
* rewards for any 4626 vault.
*/
contract Base4626Compounder is BaseHealthCheck {
using SafeERC20 for ERC20;
IStrategy public immutable vault;
constructor(
address _asset,
string memory _name,
address _vault
) BaseHealthCheck(_asset, _name) {
require(IStrategy(_vault).asset() == _asset, "wrong vault");
vault = IStrategy(_vault);
asset.safeApprove(_vault, type(uint256).max);
}
/*//////////////////////////////////////////////////////////////
NEEDED TO BE OVERRIDDEN BY STRATEGIST
//////////////////////////////////////////////////////////////*/
/**
* @dev Should deploy up to '_amount' of 'asset' in the yield source.
*
* This function is called at the end of a {deposit} or {mint}
* call. Meaning that unless a whitelist is implemented it will
* be entirely permissionless and thus can be sandwiched or otherwise
* manipulated.
*
* @param _amount The amount of 'asset' that the strategy should attempt
* to deposit in the yield source.
*/
function _deployFunds(uint256 _amount) internal virtual override {
vault.deposit(_amount, address(this));
_stake();
}
/**
* @dev Will attempt to free the '_amount' of 'asset'.
*
* The amount of 'asset' that is already loose has already
* been accounted for.
*
* This function is called during {withdraw} and {redeem} calls.
* Meaning that unless a whitelist is implemented it will be
* entirely permissionless and thus can be sandwiched or otherwise
* manipulated.
*
* Should not rely on asset.balanceOf(address(this)) calls other than
* for diff accounting purposes.
*
* Any difference between `_amount` and what is actually freed will be
* counted as a loss and passed on to the withdrawer. This means
* care should be taken in times of illiquidity. It may be better to revert
* if withdraws are simply illiquid so not to realize incorrect losses.
*
* @param _amount, The amount of 'asset' to be freed.
*/
function _freeFunds(uint256 _amount) internal virtual override {
// Use previewWithdraw to round up.
uint256 shares = vault.previewWithdraw(_amount);
uint256 vaultBalance = balanceOfVault();
if (shares > vaultBalance) {
unchecked {
_unStake(shares - vaultBalance);
}
shares = Math.min(shares, balanceOfVault());
}
vault.redeem(shares, address(this), address(this));
}
/**
* @dev Internal function to harvest all rewards, redeploy any idle
* funds and return an accurate accounting of all funds currently
* held by the Strategy.
*
* This should do any needed harvesting, rewards selling, accrual,
* redepositing etc. to get the most accurate view of current assets.
*
* NOTE: All applicable assets including loose assets should be
* accounted for in this function.
*
* Care should be taken when relying on oracles or swap values rather
* than actual amounts as all Strategy profit/loss accounting will
* be done based on this returned value.
*
* This can still be called post a shutdown, a strategist can check
* `TokenizedStrategy.isShutdown()` to decide if funds should be
* redeployed or simply realize any profits/losses.
*
* @return _totalAssets A trusted and accurate account for the total
* amount of 'asset' the strategy currently holds including idle funds.
*/
function _harvestAndReport()
internal
virtual
override
returns (uint256 _totalAssets)
{
// Claim and sell any rewards.
_claimAndSellRewards();
// Return total balance
_totalAssets = balanceOfAsset() + valueOfVault();
}
/**
* @dev Override to stake loose vault tokens after they
* are deposited to the `vault`.
*/
function _stake() internal virtual {}
/**
* @dev If vault tokens are staked, override to unstake them before
* any withdraw or redeems.
* @param _amount The amount of vault tokens to unstake.
*/
function _unStake(uint256 _amount) internal virtual {}
/**
* @dev Called during reports to do any harvesting of rewards needed.
*/
function _claimAndSellRewards() internal virtual {}
/**
* @notice Return the current loose balance of this strategies `asset`.
*/
function balanceOfAsset() public view virtual returns (uint256) {
return asset.balanceOf(address(this));
}
/**
* @notice Return the current balance of the strategies vault shares.
*/
function balanceOfVault() public view virtual returns (uint256) {
return vault.balanceOf(address(this));
}
/**
* @notice If the vaults tokens are staked. To override and return the
* amount of vault tokens the strategy has staked.
*/
function balanceOfStake() public view virtual returns (uint256) {}
/**
* @notice The full value denominated in `asset` of the strategies vault
* tokens held both in the contract and staked.
*/
function valueOfVault() public view virtual returns (uint256) {
return vault.convertToAssets(balanceOfVault() + balanceOfStake());
}
/**
* @notice The max amount of `asset` than can be redeemed from the vault.
* @dev If the vault tokens are staked this needs to include the
* vault.maxRedeem(stakingContract) to be accurate.
*
* NOTE: This should use vault.convertToAssets(vault.maxRedeem(address));
* rather than vault.maxWithdraw(address);
*/
function vaultsMaxWithdraw() public view virtual returns (uint256) {
return vault.convertToAssets(vault.maxRedeem(address(this)));
}
/**
* @notice Gets the max amount of `asset` that an address can deposit.
* @dev Defaults to an unlimited amount for any address. But can
* be overridden by strategists.
*
* This function will be called before any deposit or mints to enforce
* any limits desired by the strategist. This can be used for either a
* traditional deposit limit or for implementing a whitelist etc.
*
* EX:
* if(isAllowed[_owner]) return super.availableDepositLimit(_owner);
*
* This does not need to take into account any conversion rates
* from shares to assets. But should know that any non max uint256
* amounts may be converted to shares. So it is recommended to keep
* custom amounts low enough as not to cause overflow when multiplied
* by `totalSupply`.
*
* @param . The address that is depositing into the strategy.
* @return . The available amount the `_owner` can deposit in terms of `asset`
*/
function availableDepositLimit(
address
) public view virtual override returns (uint256) {
// Return the max amount the vault will allow for deposits.
return vault.maxDeposit(address(this));
}
/**
* @notice Gets the max amount of `asset` that can be withdrawn.
* @dev Defaults to an unlimited amount for any address. But can
* be overridden by strategists.
*
* This function will be called before any withdraw or redeem to enforce
* any limits desired by the strategist. This can be used for illiquid
* or sandwichable strategies. It should never be lower than `totalIdle`.
*
* EX:
* return TokenIzedStrategy.totalIdle();
*
* This does not need to take into account the `_owner`'s share balance
* or conversion rates from shares to assets.
*
* @param . The address that is withdrawing from the strategy.
* @return . The available amount that can be withdrawn in terms of `asset`
*/
function availableWithdrawLimit(
address
) public view virtual override returns (uint256) {
// Return the loose balance of asset and the max we can withdraw from the vault
return balanceOfAsset() + vaultsMaxWithdraw();
}
/**
* @dev Optional function for a strategist to override that will
* allow management to manually withdraw deployed funds from the
* yield source if a strategy is shutdown.
*
* This should attempt to free `_amount`, noting that `_amount` may
* be more than is currently deployed.
*
* NOTE: This will not realize any profits or losses. A separate
* {report} will be needed in order to record any profit/loss. If
* a report may need to be called after a shutdown it is important
* to check if the strategy is shutdown during {_harvestAndReport}
* so that it does not simply re-deploy all funds that had been freed.
*
* EX:
* if(freeAsset > 0 && !TokenizedStrategy.isShutdown()) {
* depositFunds...
* }
*
* @param _amount The amount of asset to attempt to free.
*/
function _emergencyWithdraw(uint256 _amount) internal virtual override {
_freeFunds(Math.min(_amount, vaultsMaxWithdraw()));
}
}
"
},
"lib/openzeppelin-contracts/contracts/interfaces/IERC4626.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20.sol";
import "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*
* _Available since v4.7._
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}
"
},
"lib/tokenized-strategy/src/interfaces/IStrategy.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {ITokenizedStrategy} from "./ITokenizedStrategy.sol";
import {IBaseStrategy} from "./IBaseStrategy.sol";
interface IStrategy is IBaseStrategy, ITokenizedStrategy {}
"
},
"lib/tokenized-strategy-periphery/src/Bases/HealthCheck/BaseHealthCheck.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {BaseStrategy, ERC20} from "@tokenized-strategy/BaseStrategy.sol";
/**
* @title Base Health Check
* @author Yearn.finance
* @notice This contract can be inherited by any Yearn
* V3 strategy wishing to implement a health check during
* the `report` function in order to prevent any unexpected
* behavior from being permanently recorded as well as the
* `checkHealth` modifier.
*
* A strategist simply needs to inherit this contract. Set
* the limit ratios to the desired amounts and then
* override `_harvestAndReport()` just as they otherwise
* would. If the profit or loss that would be recorded is
* outside the acceptable bounds the tx will revert.
*
* The healthcheck does not prevent a strategy from reporting
* losses, but rather can make sure manual intervention is
* needed before reporting an unexpected loss or profit.
*/
abstract contract BaseHealthCheck is BaseStrategy {
// Can be used to determine if a healthcheck should be called.
// Defaults to true;
bool public doHealthCheck = true;
uint256 internal constant MAX_BPS = 10_000;
// Default profit limit to 100%.
uint16 private _profitLimitRatio = uint16(MAX_BPS);
// Defaults loss limit to 0.
uint16 private _lossLimitRatio;
constructor(
address _asset,
string memory _name
) BaseStrategy(_asset, _name) {}
/**
* @notice Returns the current profit limit ratio.
* @dev Use a getter function to keep the variable private.
* @return . The current profit limit ratio.
*/
function profitLimitRatio() public view returns (uint256) {
return _profitLimitRatio;
}
/**
* @notice Returns the current loss limit ratio.
* @dev Use a getter function to keep the variable private.
* @return . The current loss limit ratio.
*/
function lossLimitRatio() public view returns (uint256) {
return _lossLimitRatio;
}
/**
* @notice Set the `profitLimitRatio`.
* @dev Denominated in basis points. I.E. 1_000 == 10%.
* @param _newProfitLimitRatio The mew profit limit ratio.
*/
function setProfitLimitRatio(
uint256 _newProfitLimitRatio
) external onlyManagement {
_setProfitLimitRatio(_newProfitLimitRatio);
}
/**
* @dev Internally set the profit limit ratio. Denominated
* in basis points. I.E. 1_000 == 10%.
* @param _newProfitLimitRatio The mew profit limit ratio.
*/
function _setProfitLimitRatio(uint256 _newProfitLimitRatio) internal {
require(_newProfitLimitRatio > 0, "!zero profit");
require(_newProfitLimitRatio <= type(uint16).max, "!too high");
_profitLimitRatio = uint16(_newProfitLimitRatio);
}
/**
* @notice Set the `lossLimitRatio`.
* @dev Denominated in basis points. I.E. 1_000 == 10%.
* @param _newLossLimitRatio The new loss limit ratio.
*/
function setLossLimitRatio(
uint256 _newLossLimitRatio
) external onlyManagement {
_setLossLimitRatio(_newLossLimitRatio);
}
/**
* @dev Internally set the loss limit ratio. Denominated
* in basis points. I.E. 1_000 == 10%.
* @param _newLossLimitRatio The new loss limit ratio.
*/
function _setLossLimitRatio(uint256 _newLossLimitRatio) internal {
require(_newLossLimitRatio < MAX_BPS, "!loss limit");
_lossLimitRatio = uint16(_newLossLimitRatio);
}
/**
* @notice Turns the healthcheck on and off.
* @dev If turned off the next report will auto turn it back on.
* @param _doHealthCheck Bool if healthCheck should be done.
*/
function setDoHealthCheck(bool _doHealthCheck) public onlyManagement {
doHealthCheck = _doHealthCheck;
}
/**
* @notice OVerrides the default {harvestAndReport} to include a healthcheck.
* @return _totalAssets New totalAssets post report.
*/
function harvestAndReport()
external
override
onlySelf
returns (uint256 _totalAssets)
{
// Let the strategy report.
_totalAssets = _harvestAndReport();
// Run the healthcheck on the amount returned.
_executeHealthCheck(_totalAssets);
}
/**
* @dev To be called during a report to make sure the profit
* or loss being recorded is within the acceptable bound.
*
* @param _newTotalAssets The amount that will be reported.
*/
function _executeHealthCheck(uint256 _newTotalAssets) internal virtual {
if (!doHealthCheck) {
doHealthCheck = true;
return;
}
// Get the current total assets from the implementation.
uint256 currentTotalAssets = TokenizedStrategy.totalAssets();
if (_newTotalAssets > currentTotalAssets) {
require(
((_newTotalAssets - currentTotalAssets) <=
(currentTotalAssets * uint256(_profitLimitRatio)) /
MAX_BPS),
"healthCheck"
);
} else if (currentTotalAssets > _newTotalAssets) {
require(
(currentTotalAssets - _newTotalAssets <=
((currentTotalAssets * uint256(_lossLimitRatio)) /
MAX_BPS)),
"healthCheck"
);
}
}
}
"
},
"lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
"
},
"lib/tokenized-strategy/src/interfaces/ITokenizedStrategy.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
// Interface that implements the 4626 standard and the implementation functions
interface ITokenizedStrategy is IERC4626, IERC20Permit {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event StrategyShutdown();
event NewTokenizedStrategy(
address indexed strategy,
address indexed asset,
string apiVersion
);
event Reported(
uint256 profit,
uint256 loss,
uint256 protocolFees,
uint256 performanceFees
);
event UpdatePerformanceFeeRecipient(
address indexed newPerformanceFeeRecipient
);
event UpdateKeeper(address indexed newKeeper);
event UpdatePerformanceFee(uint16 newPerformanceFee);
event UpdateManagement(address indexed newManagement);
event UpdateEmergencyAdmin(address indexed newEmergencyAdmin);
event UpdateProfitMaxUnlockTime(uint256 newProfitMaxUnlockTime);
event UpdatePendingManagement(address indexed newPendingManagement);
/*//////////////////////////////////////////////////////////////
INITIALIZATION
//////////////////////////////////////////////////////////////*/
function initialize(
address _asset,
string memory _name,
Submitted on: 2025-10-24 09:31:29
Comments
Log in to comment.
No comments yet.