Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/strategy/liquidation/FlashLiquidatorUnified.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import { PoolKey } from "@uniswap/v4-core/src/types/PoolKey.sol";
import { Currency } from "@uniswap/v4-core/src/types/Currency.sol";
import { AFlashLoan } from "../../flashloan/AFlashLoan.sol";
import { ISwapper } from "../../swaps/uniswap/ISwapper.sol";
// --- Minimal interfaces ---
interface IPriceOracleGetterLike {
function getAssetPrice(address asset) external view returns (uint256);
}
interface IPoolAddressesProviderLike {
function getPriceOracle() external view returns (address);
function getPoolDataProvider() external view returns (address);
}
interface IProtocolDataProviderLike {
function getReserveTokensAddresses(
address asset
) external view returns (
address aTokenAddress,
address stableDebtTokenAddress,
address variableDebtTokenAddress
);
function getUserReserveData(
address asset,
address user
) external view returns (
uint256 currentATokenBalance,
uint256 currentStableDebt,
uint256 currentVariableDebt,
uint256 principalStableDebt,
uint256 scaledVariableDebt,
uint256 stableBorrowRate,
uint256 liquidityRate,
uint40 stableRateLastUpdated,
bool usageAsCollateralEnabled
);
function getReserveConfigurationData(address asset) external view returns (
uint256 decimals,
uint256 ltv,
uint256 liquidationThreshold,
uint256 liquidationBonus,
uint256 reserveFactor,
bool usageAsCollateralEnabled,
bool borrowingEnabled,
bool isStableBorrowRateEnabled,
bool isPaused
);
function getLiquidationProtocolFee(address asset) external view returns (uint256);
}
/// @notice Uniswap V2 Router interface for exactOutput swaps
interface IUniswapV2Router02 {
/// @notice Swap tokens for an exact amount of output tokens
/// @param amountOut The exact amount of output tokens to receive
/// @param amountInMax The maximum amount of input tokens to spend
/// @param path Array of token addresses representing the swap path
/// @param to Recipient address
/// @param deadline Unix timestamp after which the transaction will revert
/// @return amounts Array of input/output amounts for each pair in the path
function swapTokensForExactTokens(
uint256 amountOut,
uint256 amountInMax,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
}
/// @notice Uniswap V3 SwapRouter interface for encoded path swaps
interface ISwapRouter {
struct ExactOutputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountOut;
uint256 amountInMaximum;
}
/// @notice Swap with encoded path (supports multi-hop)
/// @param params The parameters necessary for the swap
/// @return amountIn The amount of input token actually used
function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
}
/// @title FlashLiquidatorUnified
/// @notice Unified liquidator supporting Uniswap V2, V3, and V4 protocols
/// @dev Routes are passed as calldata - no on-chain route storage
contract FlashLiquidatorUnified is AFlashLoan, ReentrancyGuard {
using SafeERC20 for IERC20;
/// @notice Supported Uniswap protocol versions
enum Protocol {
V2, // Uniswap V2 with address[] paths
V3, // Uniswap V3 with encoded paths
V4 // Uniswap V4 with PoolKey structures
}
/// @notice Route data for a specific protocol
struct SwapRoute {
Protocol protocol; // Which Uniswap version to use
bytes data; // Protocol-specific encoded route data
}
/// @dev Uniswap V2 Router for simple token swaps
IUniswapV2Router02 public immutable SWAP_ROUTER_V2;
/// @dev Uniswap V3 SwapRouter for multi-hop swaps
ISwapRouter public immutable SWAP_ROUTER_V3;
/// @dev Uniswap V4 Swapper for PoolKey-based swaps
ISwapper public immutable SWAPPER_V4;
/// @dev Config values (modifiable by owner)
uint16 public defaultCloseFactorBps = 5000; // 50% when HF ∈ [threshold, 1)
uint16 public maxCloseFactorBps = 10_000; // 100% when HF < threshold
uint256 public closeFactorHfThresholdWad = 950_000_000_000_000_000; // 0.95e18
uint16 public flashFeeBps = 10; // conservative est. for profitability calc
uint16 public slippageBps = 50; // 0.50% conservative haircut
mapping(address => uint16) public liquidationBonusBps; // optional override per collateral
address public DATA_PROVIDER;
/// @dev New security parameters
uint256 public swapDeadline = 120; // 2 minutes default for swap deadline
uint256 public maxFlashFeeBps = 50; // 0.5% maximum acceptable flash loan fee
/// @dev Temporary job slot used across the flash-loan callback
struct Job {
address user; // Account to liquidate
address collateralToken; // Collateral to seize
address debtToken; // Debt asset to repay (and flash-borrow)
uint256 repayAmount; // Amount of debt to cover
SwapRoute route; // Route for swapping collateral -> debt
}
Job private _job;
bool private _inFlash;
uint256 private _minProfit = 0; // Default: no minimum profit requirement
event LiquidationPlanned(address indexed user, address indexed collateral, address indexed debt, uint256 repayAmount, Protocol protocol);
event LiquidationExecuted(address indexed user, uint256 collateralSeized, uint256 debtRepaid, uint256 premiumPaid, uint256 collateralLeftover);
event LiquidationSwap(address indexed collateral, address indexed debt, Protocol protocol, uint256 exactOut, uint256 amountInUsed, uint256 seized, uint256 netLeftover);
event EmergencyWithdrawal(address indexed token, address indexed to, uint256 amount);
event MinProfitUpdated(uint256 oldValue, uint256 newValue);
event SlippageBpsUpdated(uint16 oldValue, uint16 newValue);
event SwapDeadlineUpdated(uint256 oldValue, uint256 newValue);
event MaxFlashFeeBpsUpdated(uint256 oldValue, uint256 newValue);
constructor(
address _addressesProvider,
address _swapRouterV2,
address _swapRouterV3,
address _swapperV4
) AFlashLoan(_addressesProvider) {
require(_swapRouterV2 != address(0), "swapRouterV2=0");
require(_swapRouterV3 != address(0), "swapRouterV3=0");
require(_swapperV4 != address(0), "swapperV4=0");
SWAP_ROUTER_V2 = IUniswapV2Router02(_swapRouterV2);
SWAP_ROUTER_V3 = ISwapRouter(_swapRouterV3);
SWAPPER_V4 = ISwapper(_swapperV4);
}
/// @notice Initiates a flash-loan powered liquidation on `user`
/// @param user Account to liquidate
/// @param collateralToken Collateral asset to seize
/// @param debtToken Debt asset to repay
/// @param repayAmount Amount of debt to cover (≤ close factor)
/// @param route Swap route with protocol and encoded data
function liquidate(
address user,
address collateralToken,
address debtToken,
uint256 repayAmount,
SwapRoute calldata route
) public onlyOwner nonReentrant {
require(user != address(0) && collateralToken != address(0) && debtToken != address(0), "zero address");
require(repayAmount > 0, "zero repay amount");
require(route.data.length > 0, "empty route data");
// Validate user is liquidatable (health factor < 1)
if (DATA_PROVIDER != address(0)) {
(, uint256 totalDebt,,,, uint256 healthFactor) =
POOL.getUserAccountData(user);
require(healthFactor < 1e18, "user not liquidatable");
require(totalDebt > 0, "no debt to liquidate");
}
// Validate route based on protocol
if (collateralToken != debtToken) {
_validateRoute(collateralToken, debtToken, route);
}
_job = Job({
user: user,
collateralToken: collateralToken,
debtToken: debtToken,
repayAmount: repayAmount,
route: route
});
emit LiquidationPlanned(user, collateralToken, debtToken, repayAmount, route.protocol);
_inFlash = true;
// Borrow the debt asset to perform the liquidation
requestFlashLoan(debtToken, repayAmount);
_inFlash = false;
// Clear job to avoid stale reuse
delete _job;
}
/// @inheritdoc AFlashLoan
function executeStrategy(
address asset,
uint256 amount,
uint256 premium,
address /*initiator*/,
bytes calldata /*params*/
) internal override returns (uint256) {
require(_inFlash, "not in flash");
Job memory j = _job;
require(asset == j.debtToken, "flash!=debt");
require(amount == j.repayAmount, "amt mismatch");
// Validate flash loan fee is within acceptable range
uint256 actualFeeBps = (premium * 10_000) / amount;
require(actualFeeBps <= maxFlashFeeBps, "flash fee too high");
// 1) Approve Pool to pull debt for liquidation
IERC20(asset).forceApprove(address(POOL), amount);
// 2) Liquidate target account; receive underlying collateral (not aTokens)
uint256 collBefore = IERC20(j.collateralToken).balanceOf(address(this));
POOL.liquidationCall(j.collateralToken, j.debtToken, j.user, amount, false);
uint256 collAfter = IERC20(j.collateralToken).balanceOf(address(this));
require(collAfter >= collBefore, "collateral balance decreased");
uint256 seized = collAfter - collBefore;
require(seized > 0, "no collateral seized");
uint256 exactOut = amount + premium;
require(exactOut <= type(uint128).max, "amount too big");
require(seized <= type(uint128).max, "seized too big");
uint256 amountInUsed;
uint256 netLeftover;
if (j.collateralToken == j.debtToken) {
// Same-asset case: no swap needed
require(seized >= exactOut, "seized<repay");
netLeftover = seized - exactOut;
require(netLeftover >= _minProfit, "insufficient profit same-asset");
amountInUsed = exactOut;
} else {
// Execute swap based on protocol
uint256 maxAmountIn = seized;
// Apply slippage protection
if (slippageBps > 0) {
// Calculate minimum expected proceeds after slippage
uint256 minProfit = (seized * uint256(slippageBps)) / 10_000;
// Seized collateral must cover: debt repayment + flash fee + min profit
uint256 minRequired = exactOut + minProfit;
require(seized > minRequired, "insufficient collateral for profitable liquidation");
// Max amount we can spend on swap (reserve minProfit as safety buffer)
maxAmountIn = seized - minProfit;
}
require(maxAmountIn >= exactOut, "max collateral < debt owed");
require(maxAmountIn <= type(uint128).max, "maxAmountIn overflow");
// Route to appropriate swap handler
amountInUsed = _executeSwap(
j.collateralToken,
j.debtToken,
exactOut,
maxAmountIn,
j.route
);
netLeftover = seized > amountInUsed ? (seized - amountInUsed) : 0;
emit LiquidationSwap(j.collateralToken, j.debtToken, j.route.protocol, exactOut, amountInUsed, seized, netLeftover);
}
_requireMinProfit(netLeftover);
emit LiquidationExecuted(j.user, seized, amount, premium, netLeftover);
return amount + premium;
}
// --- Protocol-specific swap handlers ---
/// @notice Execute swap based on protocol
/// @param tokenIn Collateral token (input)
/// @param tokenOut Debt token (output)
/// @param amountOut Exact amount of debt token needed
/// @param maxAmountIn Maximum collateral to spend
/// @param route Swap route with protocol and data
/// @return amountIn Actual amount of collateral used
function _executeSwap(
address tokenIn,
address tokenOut,
uint256 amountOut,
uint256 maxAmountIn,
SwapRoute memory route
) internal returns (uint256 amountIn) {
// Record balance before swap for verification
uint256 debtBalanceBefore = IERC20(tokenOut).balanceOf(address(this));
if (route.protocol == Protocol.V2) {
amountIn = _swapV2(tokenIn, amountOut, maxAmountIn, route.data);
} else if (route.protocol == Protocol.V3) {
amountIn = _swapV3(tokenIn, amountOut, maxAmountIn, route.data);
} else if (route.protocol == Protocol.V4) {
amountIn = _swapV4(tokenIn, tokenOut, amountOut, maxAmountIn, route.data);
} else {
revert("Invalid protocol");
}
// Verify we actually received the expected debt tokens
uint256 debtBalanceAfter = IERC20(tokenOut).balanceOf(address(this));
uint256 received = debtBalanceAfter - debtBalanceBefore;
require(received >= amountOut, "swap output mismatch");
}
/// @notice Execute V2 swap using address array path
/// @param tokenIn Collateral token (input)
/// @param amountOut Exact amount of debt token needed (output)
/// @param maxAmountIn Maximum collateral to spend
/// @param encodedPath ABI-encoded address[] path (collateral -> debt)
/// @return amountIn Actual amount of collateral used
function _swapV2(
address tokenIn,
uint256 amountOut,
uint256 maxAmountIn,
bytes memory encodedPath
) internal returns (uint256 amountIn) {
// Decode the address array
address[] memory path = abi.decode(encodedPath, (address[]));
// Validate path
require(path.length >= 2, "V2: path too short");
require(path[0] == tokenIn, "V2: path start mismatch");
// Approve V2 router to spend collateral
_ensureMaxApproval(IERC20(tokenIn), address(SWAP_ROUTER_V2));
// Execute V2 swapTokensForExactTokens
// Swap UP TO maxAmountIn of tokenIn to get EXACTLY amountOut of tokenOut
uint256[] memory amounts = SWAP_ROUTER_V2.swapTokensForExactTokens(
amountOut, // amountOut: exact amount we need
maxAmountIn, // amountInMax: maximum we're willing to spend
path, // path: [tokenIn, ..., tokenOut]
address(this), // to: this contract receives the tokens
block.timestamp + swapDeadline // deadline: configurable
);
// amounts[0] is the actual amount of tokenIn used
amountIn = amounts[0];
// Verify we didn't exceed max (should be guaranteed by router)
require(amountIn <= maxAmountIn, "V2: excessive input amount");
}
/// @notice Execute V3 swap using encoded path
/// @param tokenIn Collateral token
/// @param amountOut Exact amount of debt token needed
/// @param maxAmountIn Maximum collateral to spend
/// @param encodedPath V3 encoded path (debt -> collateral for exactOutput)
/// @return amountIn Actual amount of collateral used
function _swapV3(
address tokenIn,
uint256 amountOut,
uint256 maxAmountIn,
bytes memory encodedPath
) internal returns (uint256 amountIn) {
// Approve V3 router to spend collateral
_ensureMaxApproval(IERC20(tokenIn), address(SWAP_ROUTER_V3));
// Execute V3 exactOutput swap
amountIn = SWAP_ROUTER_V3.exactOutput(
ISwapRouter.ExactOutputParams({
path: encodedPath,
recipient: address(this),
deadline: block.timestamp + swapDeadline, // configurable deadline
amountOut: amountOut,
amountInMaximum: maxAmountIn
})
);
}
/// @notice Execute V4 swap using PoolKey
/// @param tokenIn Collateral token
/// @param tokenOut Debt token
/// @param amountOut Exact amount of debt token needed
/// @param maxAmountIn Maximum collateral to spend
/// @param poolKeyData Encoded PoolKey and direction flag
/// @return amountIn Actual amount of collateral used
function _swapV4(
address tokenIn,
address tokenOut,
uint256 amountOut,
uint256 maxAmountIn,
bytes memory poolKeyData
) internal returns (uint256 amountIn) {
// Decode PoolKey and direction flag
(PoolKey memory key, bool collateralIsToken0) = abi.decode(poolKeyData, (PoolKey, bool));
// Validate PoolKey matches tokens
address t0 = Currency.unwrap(key.currency0);
address t1 = Currency.unwrap(key.currency1);
require(
(tokenIn == t0 && tokenOut == t1) || (tokenIn == t1 && tokenOut == t0),
"V4: key tokens mismatch"
);
require(collateralIsToken0 == (tokenIn == t0), "V4: direction mismatch");
// Validate no overflow on uint128 cast
require(amountOut <= type(uint128).max, "V4: amountOut overflow");
require(maxAmountIn <= type(uint128).max, "V4: maxAmountIn overflow");
// Approve V4 swapper to spend collateral
_ensureMaxApproval(IERC20(tokenIn), address(SWAPPER_V4));
// Execute V4 exactOutput swap
amountIn = SWAPPER_V4.swapExactOutputSingle(
key,
uint128(amountOut),
uint128(maxAmountIn),
collateralIsToken0,
false, // zeroForOne is derived from collateralIsToken0
block.timestamp + swapDeadline, // configurable deadline
address(this)
);
}
// --- Route validation ---
/// @notice Validate route data matches collateral/debt pair
/// @param collateralToken Expected collateral token
/// @param debtToken Expected debt token
/// @param route Swap route to validate
function _validateRoute(
address collateralToken,
address debtToken,
SwapRoute calldata route
) internal pure {
if (route.protocol == Protocol.V2) {
_validateV2Path(collateralToken, debtToken, route.data);
} else if (route.protocol == Protocol.V3) {
_validateV3Path(collateralToken, debtToken, route.data);
} else if (route.protocol == Protocol.V4) {
_validateV4PoolKey(collateralToken, debtToken, route.data);
}
}
/// @notice Validate V2 path
/// @dev For exactOutput, path goes: collateral (input) -> debt (output)
/// @param collateralToken Expected collateral token (path start)
/// @param debtToken Expected debt token (path end)
/// @param encodedPath ABI-encoded address[] path
function _validateV2Path(
address collateralToken,
address debtToken,
bytes calldata encodedPath
) internal pure {
address[] memory path = abi.decode(encodedPath, (address[]));
require(path.length >= 2, "V2: path too short");
// Path starts with collateral token (what we spend)
require(path[0] == collateralToken, "V2: path doesn't start with collateral token");
// Path ends with debt token (what we receive)
require(path[path.length - 1] == debtToken, "V2: path doesn't end with debt token");
}
/// @notice Validate V3 encoded path
/// @dev For exactOutput, path is reversed: debt (output) -> collateral (input)
/// @param collateralToken Expected collateral token (path end)
/// @param debtToken Expected debt token (path start)
/// @param path Encoded V3 path
function _validateV3Path(
address collateralToken,
address debtToken,
bytes calldata path
) internal pure {
require(path.length >= 43, "V3: path too short"); // Minimum: 20 + 3 + 20 bytes
// Path starts with debt token (what we need to receive)
address pathStart = address(uint160(bytes20(path[0:20])));
require(pathStart == debtToken, "V3: path doesn't start with debt token");
// Path ends with collateral token (what we spend)
address pathEnd = address(uint160(bytes20(path[path.length - 20:])));
require(pathEnd == collateralToken, "V3: path doesn't end with collateral token");
}
/// @notice Validate V4 PoolKey
/// @param collateralToken Expected collateral token
/// @param debtToken Expected debt token
/// @param poolKeyData Encoded PoolKey and direction flag
function _validateV4PoolKey(
address collateralToken,
address debtToken,
bytes calldata poolKeyData
) internal pure {
(PoolKey memory key, bool collateralIsToken0) = abi.decode(poolKeyData, (PoolKey, bool));
address t0 = Currency.unwrap(key.currency0);
address t1 = Currency.unwrap(key.currency1);
// Validate pool key tokens are non-zero
require(t0 != address(0) && t1 != address(0), "V4: zero pool token");
// Validate tokens match the pool key
require(
(collateralToken == t0 && debtToken == t1) || (collateralToken == t1 && debtToken == t0),
"V4: key tokens mismatch"
);
// Validate direction flag matches actual token positions
require(collateralIsToken0 == (collateralToken == t0), "V4: direction mismatch");
// Validate token ordering in pool key (Uniswap v4 requires token0 < token1)
require(t0 < t1, "V4: invalid pool key ordering");
}
// --- Internal helpers ---
function _ensureMaxApproval(IERC20 token, address spender) internal {
if (token.allowance(address(this), spender) < type(uint256).max) {
token.forceApprove(spender, type(uint256).max);
}
}
function _requireMinProfit(uint256 leftover) internal view {
require(leftover >= _minProfit, "profit below minimum threshold");
}
// --- Config management ---
function setMinProfit(uint256 minProfit) external onlyOwner {
uint256 oldValue = _minProfit;
_minProfit = minProfit;
emit MinProfitUpdated(oldValue, minProfit);
}
function setDataProvider(address dataProvider) external onlyOwner {
require(dataProvider != address(0), "zero address");
DATA_PROVIDER = dataProvider;
}
function setDefaultCloseFactorBps(uint16 bps) external onlyOwner {
require(bps <= 10_000, "invalid bps");
defaultCloseFactorBps = bps;
}
function setMaxCloseFactorBps(uint16 bps) external onlyOwner {
require(bps <= 10_000, "invalid bps");
maxCloseFactorBps = bps;
}
function setCloseFactorHfThresholdWad(uint256 wad) external onlyOwner {
require(wad <= 1e20, "invalid threshold");
closeFactorHfThresholdWad = wad;
}
function setCloseFactorBps(uint16 bps) external onlyOwner {
require(bps <= 10_000, "invalid bps");
defaultCloseFactorBps = bps;
}
function setSlippageBps(uint16 bps) external onlyOwner {
require(bps <= 1_000, "invalid slippage");
uint16 oldValue = slippageBps;
slippageBps = bps;
emit SlippageBpsUpdated(oldValue, bps);
}
function setSwapDeadline(uint256 _seconds) external onlyOwner {
require(_seconds >= 60 && _seconds <= 600, "deadline out of range");
uint256 oldValue = swapDeadline;
swapDeadline = _seconds;
emit SwapDeadlineUpdated(oldValue, _seconds);
}
function setMaxFlashFeeBps(uint256 bps) external onlyOwner {
require(bps <= 100, "max fee too high");
uint256 oldValue = maxFlashFeeBps;
maxFlashFeeBps = bps;
emit MaxFlashFeeBpsUpdated(oldValue, bps);
}
/// @notice Emergency withdrawal for owner (only when not in flash loan)
/// @dev Use with extreme caution - only for recovering stuck funds
function emergencyWithdraw(
address token,
address to,
uint256 amount
) external onlyOwner {
require(!_inFlash, "cannot withdraw during flash loan");
require(to != address(0), "zero address");
IERC20(token).safeTransfer(to, amount);
emit EmergencyWithdrawal(token, to, amount);
}
function setFlashFeeBps(uint16 bps) external onlyOwner {
require(bps <= 1000, "invalid flash fee");
flashFeeBps = bps;
}
function setLiquidationBonusBps(address collateral, uint16 bps) external onlyOwner {
require(bps >= 10_000, "bonus below 100%");
liquidationBonusBps[collateral] = bps;
}
function resetApproval(address token, address spender) external onlyOwner {
IERC20(token).forceApprove(spender, 0);
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
if (!_safeTransfer(token, to, value, true)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
if (!_safeTransferFrom(token, from, to, value, true)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _safeTransfer(token, to, value, false);
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _safeTransferFrom(token, from, to, value, false);
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
if (!_safeApprove(token, spender, value, false)) {
if (!_safeApprove(token, spender, 0, true)) revert SafeERC20FailedOperation(address(token));
if (!_safeApprove(token, spender, value, true)) revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that relies on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that relies on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Oppositely, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity `token.transfer(to, value)` call, relaxing the requirement on the return value: the
* return value is optional (but if data is returned, it must not be false).
*
* @param token The token targeted by the call.
* @param to The recipient of the tokens
* @param value The amount of token to transfer
* @param bubble Behavior switch if the transfer call reverts: bubble the revert reason or return a false boolean.
*/
function _safeTransfer(IERC20 token, address to, uint256 value, bool bubble) private returns (bool success) {
bytes4 selector = IERC20.transfer.selector;
assembly ("memory-safe") {
let fmp := mload(0x40)
mstore(0x00, selector)
mstore(0x04, and(to, shr(96, not(0))))
mstore(0x24, value)
success := call(gas(), token, 0, 0x00, 0x44, 0x00, 0x20)
// if call success and return is true, all is good.
// otherwise (not success or return is not true), we need to perform further checks
if iszero(and(success, eq(mload(0x00), 1))) {
// if the call was a failure and bubble is enabled, bubble the error
if and(iszero(success), bubble) {
returndatacopy(fmp, 0x00, returndatasize())
revert(fmp, returndatasize())
}
// if the return value is not true, then the call is only successful if:
// - the token address has code
// - the returndata is empty
success := and(success, and(iszero(returndatasize()), gt(extcodesize(token), 0)))
}
mstore(0x40, fmp)
}
}
/**
* @dev Imitates a Solidity `token.transferFrom(from, to, value)` call, relaxing the requirement on the return
* value: the return value is optional (but if data is returned, it must not be false).
*
* @param token The token targeted by the call.
* @param from The sender of the tokens
* @param to The recipient of the tokens
* @param value The amount of token to transfer
* @param bubble Behavior switch if the transfer call reverts: bubble the revert reason or return a false boolean.
*/
function _safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value,
bool bubble
) private returns (bool success) {
bytes4 selector = IERC20.transferFrom.selector;
assembly ("memory-safe") {
let fmp := mload(0x40)
mstore(0x00, selector)
mstore(0x04, and(from, shr(96, not(0))))
mstore(0x24, and(to, shr(96, not(0))))
mstore(0x44, value)
success := call(gas(), token, 0, 0x00, 0x64, 0x00, 0x20)
// if call success and return is true, all is good.
// otherwise (not success or return is not true), we need to perform further checks
if iszero(and(success, eq(mload(0x00), 1))) {
// if the call was a failure and bubble is enabled, bubble the error
if and(iszero(success), bubble) {
returndatacopy(fmp, 0x00, returndatasize())
revert(fmp, returndatasize())
}
// if the return value is not true, then the call is only successful if:
// - the token address has code
// - the returndata is empty
success := and(success, and(iszero(returndatasize()), gt(extcodesize(token), 0)))
}
mstore(0x40, fmp)
mstore(0x60, 0)
}
}
/**
* @dev Imitates a Solidity `token.approve(spender, value)` call, relaxing the requirement on the return value:
* the return value is optional (but if data is returned, it must not be false).
*
* @param token The token targeted by the call.
* @param spender The spender of the tokens
* @param value The amount of token to transfer
* @param bubble Behavior switch if the transfer call reverts: bubble the revert reason or return a false boolean.
*/
function _safeApprove(IERC20 token, address spender, uint256 value, bool bubble) private returns (bool success) {
bytes4 selector = IERC20.approve.selector;
assembly ("memory-safe") {
let fmp := mload(0x40)
mstore(0x00, selector)
mstore(0x04, and(spender, shr(96, not(0))))
mstore(0x24, value)
success := call(gas(), token, 0, 0x00, 0x44, 0x00, 0x20)
// if call success and return is true, all is good.
// otherwise (not success or return is not true), we need to perform further checks
if iszero(and(success, eq(mload(0x00), 1))) {
// if the call was a failure and bubble is enabled, bubble the error
if and(iszero(success), bubble) {
returndatacopy(fmp, 0x00, returndatasize())
revert(fmp, returndatasize())
}
// if the return value is not true, then the call is only successful if:
// - the token address has code
// - the returndata is empty
success := and(success, and(iszero(returndatasize()), gt(extcodesize(token), 0)))
}
mstore(0x40, fmp)
}
}
}
"
},
"lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*
* IMPORTANT: Deprecated. This storage-based reentrancy guard will be removed and replaced
* by the {ReentrancyGuardTransient} variant in v6.0.
*
* @custom:stateless
*/
abstract contract ReentrancyGuard {
using StorageSlot for bytes32;
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant REENTRANCY_GUARD_STORAGE =
0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_reentrancyGuardStorageSlot().getUint256Slot().value = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
/**
* @dev A `view` only version of {nonReentrant}. Use to block view functions
* from being called, preventing reading from inconsistent contract state.
*
* CAUTION: This is a "view" modifier and does not change the reentrancy
* status. Use it only on view functions. For payable or non-payable functions,
* use the standard {nonReentrant} modifier instead.
*/
modifier nonReentrantView() {
_nonReentrantBeforeView();
_;
}
function _nonReentrantBeforeView() private view {
if (_reentrancyGuardEntered()) {
revert ReentrancyGuardReentrantCall();
}
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
_nonReentrantBeforeView();
// Any calls to nonReentrant after this point will fail
_reentrancyGuardStorageSlot().getUint256Slot().value = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_reentrancyGuardStorageSlot().getUint256Slot().value = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _reentrancyGuardStorageSlot().getUint256Slot().value == ENTERED;
}
function _reentrancyGuardStorageSlot() internal pure virtual returns (bytes32) {
return REENTRANCY_GUARD_STORAGE;
}
}
"
},
"lib/v4-core/src/types/PoolKey.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Currency} from "./Currency.sol";
import {IHooks} from "../interfaces/IHooks.sol";
import {PoolIdLibrary} from "./PoolId.sol";
using PoolIdLibrary for PoolKey global;
/// @notice Returns the key for identifying a pool
struct PoolKey {
/// @notice The lower currency of the pool, sorted numerically
Currency currency0;
/// @notice The higher currency of the pool, sorted numerically
Currency currency1;
/// @notice The pool LP fee, capped at 1_000_000. If the highest bit is 1, the pool has a dynamic fee and must be exactly equal to 0x800000
uint24 fee;
/// @notice Ticks that involve positions must be a multiple of tick spacing
int24 tickSpacing;
/// @notice The hooks of the pool
IHooks hooks;
}
"
},
"lib/v4-core/src/types/Currency.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IERC20Minimal} from "../interfaces/external/IERC20Minimal.sol";
import {CustomRevert} from "../libraries/CustomRevert.sol";
type Currency is address;
using {greaterThan as >, lessThan as <, greaterThanOrEqualTo as >=, equals as ==} for Currency global;
using CurrencyLibrary for Currency global;
function equals(Currency currency, Currency other) pure returns (bool) {
return Currency.unwrap(currency) == Currency.unwrap(other);
}
function greaterThan(Currency currency, Currency other) pure returns (bool) {
return Currency.unwrap(currency) > Currency.unwrap(other);
}
function lessThan(Currency currency, Currency other) pure returns (bool) {
return Currency.unwrap(currency) < Currency.unwrap(other);
}
function greaterThanOrEqualTo(Currency currency, Currency other) pure returns (bool) {
return Currency.unwrap(currency) >= Currency.unwrap(other);
}
/// @title CurrencyLibrary
/// @dev This library allows for transferring and holding native tokens and ERC20 tokens
library CurrencyLibrary {
/// @notice Additional context for ERC-7751 wrapped error when a native transfer fails
error NativeTransferFailed();
/// @notice Additional context for ERC-7751 wrapped error when an ERC20 transfer fails
error ERC20TransferFailed();
/// @notice A constant to represent the native currency
Currency public constant ADDRESS_ZERO = Currency.wrap(address(0));
function transfer(Currency currency, address to, uint256 amount) internal {
// altered from https://github.com/transmissions11/solmate/blob/44a9963d4c78111f77caa0e65d677b8b46d6f2e6/src/utils/SafeTransferLib.sol
// modified custom error selectors
bool success;
if (currency.isAddressZero()) {
assembly ("memory-safe") {
// Transfer the ETH and revert if it fails.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
// revert with NativeTransferFailed, containing the bubbled up error as an argument
if (!success) {
CustomRevert.bubbleUpAndRevertWith(to, bytes4(0), NativeTransferFailed.selector);
}
} else {
assembly ("memory-safe") {
// Get a pointer to some free memory.
let fmp := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(fmp, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(fmp, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(fmp, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success :=
and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), currency, 0, fmp, 68, 0, 32)
)
// Now clean the memory we used
mstore(fmp, 0) // 4 byte `selector` and 28 bytes of `to` were stored here
mstore(add(fmp, 0x20), 0) // 4 bytes of `to` and 28 bytes of `amount` were stored here
mstore(add(fmp, 0x40), 0) // 4 bytes of `amount` were stored here
}
// revert with ERC20TransferFailed, containing the bubbled up error as an argument
if (!success) {
CustomRevert.bubbleUpAndRevertWith(
Currency.unwrap(currency), IERC20Minimal.transfer.selector, ERC20TransferFailed.selector
);
}
}
}
function balanceOfSelf(Currency currency) internal view returns (uint256) {
if (currency.isAddressZero()) {
return address(this).balance;
} else {
return IERC20Minimal(Currency.unwrap(currency)).balanceOf(address(this));
}
}
function balanceOf(Currency currency, address owner) internal view returns (uint256) {
if (currency.isAddressZero()) {
return owner.balance;
} else {
return IERC20Minimal(Currency.unwrap(currency)).balanceOf(owner);
}
}
function isAddressZero(Currency currency) internal pure returns (bool) {
return Currency.unwrap(currency) == Currency.unwrap(ADDRESS_ZERO);
}
function toId(Currency currency) internal pure returns (uint256) {
return uint160(Currency.unwrap(currency));
}
// If the upper 12 bytes are non-zero, they will be zero-ed out
// Therefore, fromId() and toId() are not inverses of each other
function fromId(uint256 id) internal pure returns (Currency) {
return Currency.wrap(address(uint160(id)));
}
}
"
},
"contracts/flashloan/AFlashLoan.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@protocol-v3/contracts/flashloan/base/FlashLoanSimpleReceiverBase.sol";
import "@protocol-v3/contracts/interfaces/IPoolAddressesProvider.sol";
import "../ownership/MultiOwnable.sol";
/**
* @title FlashLoan
* @author antonis@typesystem.xyz
* @notice This contract is a simple example of how to receive a flash loan from Aave V3.
* It is not meant to be used in production without extensive testing and security audits.
* This version uses MultiOwnable to support multiple owners.
*/
abstract contract AFlashLoan is FlashLoanSimpleReceiverBase, MultiOwnable {
using SafeERC20 for IERC20;
error OnlyPool();
error InvalidInitiator();
event FlashLoanReceived(address indexed asset, uint256 amount, uint256 premium);
event FlashLoanRepaid(address indexed asset, uint256 amountOwed);
error EtherTransferFailed();
/**
* @dev The constructor sets the owner of the contract and the Aave Pool Addresses Provider.
* @param _addressProvider The address of the Aave V3 PoolAddressesProvider contract.
* This can be found in the Aave developer documentation for the specific network.
*/
constructor(address _addressProvider)
FlashLoanSimpleReceiverBase(IPoolAddressesProvider(_addressProvider))
{}
/**
* @dev This is the function that is called by the Aave Pool to execute the flash loan.
* @param asset The address of the asset being flash loaned.
* @param amount The amount of the asset being flash loaned.
* @param premium The fee required to be paid for the flash loan.
* @param initiator The address that initiated the flash loan.
* @param params Additional data passed to the flash loan.
* @return A boolean indicating if the flash loan was successful.
*/
function executeOperation(
address asset,
uint256 amount,
uint256 premium,
address initiator,
bytes calldata params
) external override returns (bool) {
// Ensure this is Aave Pool calling
if (msg.sender != address(POOL)) revert OnlyPool();
// Ensure we only honor loans we initiated ourselves
if (initiator != address(this)) revert InvalidInitiator();
emit FlashLoanReceived(asset, amount, premium);
// Calculate the total amount to be repaid (loaned amount + premium)
uint256 amountOwed = executeStrategy(asset, amount, premium, initiator, params);
// Expect this contract to be pre-funded to cover amount + premium.
// Approve the Aave Pool to pull the funds from this contract to repay the loan
IERC20(asset).forceApprove(address(POOL), amountOwed);
emit FlashLoanRepaid(asset, amountOwed);
return true;
}
/**
* @dev This function is meant to be implemented by child contracts.
* @param asset The address of the asset being flash loaned.
* @param amount The amount of the asset being flash loaned.
* @param premium The fee required to be paid for the flash loan.
* @param initiator The address that initiated the flash loan.
* @param params Additional data passed to the flash loan.
* @return A uint256 of the amount owed.
*/
function executeStrategy(address asset, uint256 amount, uint256 premium, address initiator, bytes calldata params) internal virtual returns (uint256);
/**
* @dev Initiates a flash loan.
* @param _token The address of the ERC20 token to be loaned.
* @param _amount The amount of the token to be loaned.
*/
function requestFlashLoan(address _token, uint256 _amount) internal onlyOwner {
// No external payer; params left empty.
bytes memory params = "";
POOL.flashLoanSimple(address(this), _token, _amount, params, 0);
}
/**
* @dev Allows the owner to withdraw any profits (in the form of the specified ERC20 token)
* from this contract.
* @param _tokenAddress The address of the ERC20 token to withdraw.
*/
function withdraw(address _tokenAddress) external onlyOwner {
address to = owners[0];
IERC20 token = IERC20(_tokenAddress);
token.safeTransfer(to, token.balanceOf(address(this)));
}
/**
* @dev Allows the owner to withdraw any ETH profits from this contract.
*/
function withdrawEth() external onlyOwner {
address payable to = payable(owners[0]);
(bool ok, ) = to.call{value: address(this).balance}("");
if (!ok) revert EtherTransferFailed();
}
/**
* @dev Receive function to accept ETH.
*/
receive() external payable {}
}
"
},
"contracts/swaps/uniswap/ISwapper.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import { PoolKey } from "@uniswap/v4-core/src/types/PoolKey.sol";
import { ISignatureTransfer } from "@uniswap/permit2/src/interfaces/ISignatureTransfer.sol";
/// @title ISwapper
/// @notice Interface mirroring all public/external methods exposed by UniswapV4Swapper
interface ISwapper {
/// @notice Approve Permit2 to pull `token` from this contract, and allow Universal Router via Permit2
function approveTokenWithPermit2(address token, uint160 amount, uint48 expiration) external;
/// @notice Swap exact input for >= min output (single v4 pool)
function swapExactInputSingle(
PoolKey memory key,
uint128 amountIn,
uint128 minAmountOut,
bool zeroForOne,
uint256 deadline,
address recipient
) external returns (uint256 amountOut);
/// @notice Swap up to `amountInMaximum` to receive exactly `amountOut` (single v4 pool)
function swapExactOutputSingle(
PoolKey memory key,
uint128 amountOut,
uint128 amountInMaximum,
bool zeroForOne,
bool unwrapOutput,
uint256 deadline,
address recipient
) external returns (uint256 amountIn);
/// @notice Simplified overload: swap exact input by providing tokens and pool params
function swapExactInputSingle(
address tokenIn,
address tokenOut,
uint24 fee,
int24 tickSpacing,
address hooks,
uint128 amountIn,
uint128 minAmountOut,
uint256 deadline,
address recipient
) external returns (uint256 amountOut);
/// @notice Simplified overload: swap exact output by providing tokens and pool params
function swapExactOutputSingle(
address tokenIn,
address tokenOut,
uint24 fee,
int24 tickSpacing,
address hooks,
uint128 amountOut,
uint128 amountInMaximum,
uint256 deadline,
address recipient
) external returns (uint256 amountIn);
/// @notice Swap exact input ETH for >= min output (wraps to WETH internally)
function swapExactInputSingleETH(
PoolKey memory key,
uint128 minAmountOut,
bool zeroForOne,
uint256 deadline,
address recipient
) external payable returns (uint256 amountOut);
/// @notice Swap up to `amountInMaximum` ETH to receive exactly `amountOut` (wraps to WETH internally)
function swapExactOutputSingleETH(
PoolKey memory key,
uint128 amountOut,
uint128 amountInMaximum,
bool zeroForOne,
uint256 deadline,
address recipient,
bool unwrap
) external payable returns (uint256 amountIn);
/// @notice Swap exact input using Permit2 for token transfer
function swapExactInputSingleWithPermit2(
PoolKey memory key,
uint128 amountIn,
uint128 minAmountOut,
bool zeroForOne,
uint256 deadline,
address recipient,
ISignatureTransfer.PermitTransferFrom calldata permit,
bytes calldata signature
) external returns (uint256 amountOut);
/// @notice Swap exact output using Permit2 for token transfer
function swapExactOutputSingleWithPermit2(
PoolKey memory key,
uint128 amountOut,
uint128 amountInMaximum,
bool zeroForOne,
uint256 deadline,
address recipient,
ISignatureTransfer.PermitTransferFrom calldata permit,
bytes calldata signature
) external returns (uint256 amountIn);
}"
},
"lib/openzeppelin-contracts/contracts/interfaces/IERC1363.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)
pragma solidity >=0.6.2;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transfer
Submitted on: 2025-10-24 11:16:02
Comments
Log in to comment.
No comments yet.