MintManager

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/MintManager.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {MerkleProof} from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";

interface IERC1155MinterTokenId {
    function externalMintWithTokenId(
        address to,
        uint256 amount,
        uint256 tokenId
    ) external payable;
}

interface IERC1155MinterPhaseId {
    function externalMintWithPhaseId(
        address to,
        uint256 amount,
        uint256 phaseId
    ) external payable;
}

contract MintManager is Ownable, AccessControl, ReentrancyGuard {
    enum MinterMode {
        TokenId,
        PhaseId
    }

    address public immutable nft1155;
    address payable public treasury;
    MinterMode public immutable mode;
    bool public paused;
    // Optional per-id pause. When true, that id is paused regardless of global pause.
    mapping(uint256 => bool) public pausedForId;
    // If true for an id, addresses that already hold that id in the target
    // ERC1155 cannot mint more via this manager (1-wallet-only rule).
    mapping(uint256 => bool) public enforceNoHoldOnce;

    // tokenId or phaseId key depending on mode
    mapping(uint256 => bool) public saleEnabled;
    mapping(uint256 => uint256) public price; // wei per unit
    mapping(uint256 => uint256) public maxSupply; // 0 = unlimited
    mapping(uint256 => uint256) public minted; // manager-side accounting
    mapping(uint256 => uint256) public saleStart; // 0 = no lower bound
    mapping(uint256 => uint256) public saleEnd; // 0 = no upper bound
    mapping(uint256 => uint256) public maxPerWallet; // 0 = unlimited
    mapping(uint256 => mapping(address => uint256)) public walletMinted;
    mapping(uint256 => bytes32) public merkleRoot; // 0x0 = AL disabled
    // Batch DoS guards (0 = unlimited)
    uint256 public maxBatchItems;
    uint256 public maxBatchQuantity;

    event Minted(
        address indexed to,
        uint256 indexed tokenId,
        uint256 amount,
        uint256 value
    );
    event BatchMinted(
        address indexed to,
        uint256[] tokenIds,
        uint256[] amounts,
        uint256 value
    );
    event Withdraw(address indexed to, uint256 amount);
    event TreasuryUpdated(address indexed treasury);
    event PausedSet(bool paused);
    event PausedForIdSet(uint256 indexed tokenId, bool paused);
    event SaleEnabledSet(uint256 indexed tokenId, bool enabled);
    event PriceSet(uint256 indexed tokenId, uint256 price);
    event MaxSupplySet(uint256 indexed tokenId, uint256 maxSupply);
    event MaxPerWalletSet(uint256 indexed tokenId, uint256 maxPerWallet);
    event SaleWindowSet(uint256 indexed tokenId, uint256 start, uint256 end);
    event MerkleRootSet(uint256 indexed tokenId, bytes32 root);
    event EnforceNoHoldSet(uint256 indexed tokenId, bool enabled);
    event BatchLimitsSet(uint256 items, uint256 quantity);
    event MintedSeeded(uint256 indexed tokenId, uint256 amount);

    // Roles (owner always has implicit permission via onlyOwnerOrRole)
    bytes32 public constant ADMIN = keccak256("ADMIN");
    bytes32 public constant AIRDROP_ROLE = keccak256("AIRDROP_ROLE");
    bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");

    modifier onlyOwnerOrRole(bytes32 role) {
        require(
            msg.sender == owner() || hasRole(role, msg.sender),
            "unauthorized"
        );
        _;
    }

    constructor(
        address _nft1155,
        address payable _treasury,
        MinterMode _mode
    ) Ownable(msg.sender) {
        require(_nft1155 != address(0), "nft required");
        require(_treasury != address(0), "treasury required");
        nft1155 = _nft1155;
        treasury = _treasury;
        mode = _mode;

        // Grant roles to deployer by default
        _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
        _grantRole(ADMIN, msg.sender);
        _grantRole(AIRDROP_ROLE, msg.sender);
        _grantRole(MINTER_ROLE, msg.sender);
    }

    // ------------------ Admin ------------------
    function setTreasury(
        address payable _treasury
    ) external onlyOwnerOrRole(ADMIN) {
        require(_treasury != address(0), "treasury required");
        treasury = _treasury;
        emit TreasuryUpdated(_treasury);
    }

    function pause() external onlyOwnerOrRole(ADMIN) {
        paused = true;
        emit PausedSet(true);
    }
    function unpause() external onlyOwnerOrRole(ADMIN) {
        paused = false;
        emit PausedSet(false);
    }

    function setPausedForId(
        uint256 tokenId,
        bool _paused
    ) external onlyOwnerOrRole(ADMIN) {
        pausedForId[tokenId] = _paused;
        emit PausedForIdSet(tokenId, _paused);
    }

    function setSaleEnabled(
        uint256 tokenId,
        bool enabled
    ) external onlyOwnerOrRole(ADMIN) {
        saleEnabled[tokenId] = enabled;
        emit SaleEnabledSet(tokenId, enabled);
    }

    function setPrice(
        uint256 tokenId,
        uint256 value
    ) external onlyOwnerOrRole(ADMIN) {
        price[tokenId] = value;
        emit PriceSet(tokenId, value);
    }
    function setMaxSupply(
        uint256 tokenId,
        uint256 value
    ) external onlyOwnerOrRole(ADMIN) {
        // 0 means unlimited; otherwise cannot set below already minted
        if (value != 0) {
            require(value >= minted[tokenId], "below minted");
        }
        maxSupply[tokenId] = value;
        emit MaxSupplySet(tokenId, value);
    }
    function setMaxPerWallet(
        uint256 tokenId,
        uint256 value
    ) external onlyOwnerOrRole(ADMIN) {
        maxPerWallet[tokenId] = value;
        emit MaxPerWalletSet(tokenId, value);
    }
    function setSaleWindow(
        uint256 tokenId,
        uint256 start,
        uint256 end
    ) external onlyOwnerOrRole(ADMIN) {
        require(end == 0 || start == 0 || end > start, "invalid window");
        saleStart[tokenId] = start;
        saleEnd[tokenId] = end;
        emit SaleWindowSet(tokenId, start, end);
    }
    function setMerkleRoot(
        uint256 tokenId,
        bytes32 root
    ) external onlyOwnerOrRole(ADMIN) {
        merkleRoot[tokenId] = root;
        emit MerkleRootSet(tokenId, root);
    }
    function setEnforceNoHoldOnce(
        uint256 tokenId,
        bool enabled
    ) external onlyOwnerOrRole(ADMIN) {
        enforceNoHoldOnce[tokenId] = enabled;
        emit EnforceNoHoldSet(tokenId, enabled);
    }

    function mintByRole(
        address to,
        uint256 tokenId,
        uint256 amount,
        uint256 maxAllowance,
        bytes32[] calldata proof
    ) external onlyOwnerOrRole(MINTER_ROLE) nonReentrant {
        _validateCommon(to, tokenId, amount);
        _validateAllowlist(to, tokenId, amount, maxAllowance, proof);

        minted[tokenId] += amount;
        walletMinted[tokenId][to] += amount;

        _callExternalMint(to, tokenId, amount);

        emit Minted(to, tokenId, amount, 0);
    }

    function setMinted(
        uint256 tokenId,
        uint256 amount
    ) external onlyOwnerOrRole(ADMIN) {
        uint256 ms = maxSupply[tokenId];
        if (ms != 0) require(amount <= ms, "supply");
        minted[tokenId] = amount;
        emit MintedSeeded(tokenId, amount);
    }

    // View helper: returns true if not paused and current time is within window for tokenId
    function isSaleActive(uint256 tokenId) external view returns (bool) {
        if (paused) return false;
        if (pausedForId[tokenId]) return false;
        if (!saleEnabled[tokenId]) return false;
        uint256 start = saleStart[tokenId];
        uint256 end = saleEnd[tokenId];
        if (start != 0 && block.timestamp < start) return false;
        if (end != 0 && block.timestamp > end) return false;
        return true;
    }

    // Convenience: set multiple fields at once
    function updateConfig(
        uint256 tokenId,
        uint256 price_,
        uint256 maxSupply_,
        uint256 maxPerWallet_,
        uint256 start_,
        uint256 end_,
        bytes32 root_,
        bool enforceNoHold_
    ) external onlyOwnerOrRole(ADMIN) {
        // price can be zero
        price[tokenId] = price_;
        emit PriceSet(tokenId, price_);

        // max supply guard (0 = unlimited)
        if (maxSupply_ != 0) {
            require(maxSupply_ >= minted[tokenId], "below minted");
        }
        maxSupply[tokenId] = maxSupply_;
        emit MaxSupplySet(tokenId, maxSupply_);

        // per wallet (0 = unlimited)
        maxPerWallet[tokenId] = maxPerWallet_;
        emit MaxPerWalletSet(tokenId, maxPerWallet_);

        // window validation and set
        require(end_ == 0 || start_ == 0 || end_ > start_, "invalid window");
        saleStart[tokenId] = start_;
        saleEnd[tokenId] = end_;
        emit SaleWindowSet(tokenId, start_, end_);

        // merkle root
        merkleRoot[tokenId] = root_;
        emit MerkleRootSet(tokenId, root_);

        // enforce no-hold flag
        enforceNoHoldOnce[tokenId] = enforceNoHold_;
        emit EnforceNoHoldSet(tokenId, enforceNoHold_);
    }

    function setMaxBatchItems(uint256 value) external onlyOwnerOrRole(ADMIN) {
        maxBatchItems = value;
        emit BatchLimitsSet(maxBatchItems, maxBatchQuantity);
    }

    function setMaxBatchQuantity(
        uint256 value
    ) external onlyOwnerOrRole(ADMIN) {
        maxBatchQuantity = value;
        emit BatchLimitsSet(maxBatchItems, maxBatchQuantity);
    }

    // ------------------ Public mint ------------------
    // If AL is enabled (merkleRoot[tokenId] != 0), caller must provide maxAllowance and a valid proof of keccak256(abi.encodePacked(to, tokenId, maxAllowance)).
    function mint(
        address to,
        uint256 tokenId,
        uint256 amount,
        uint256 maxAllowance,
        bytes32[] calldata proof
    ) external payable nonReentrant {
        _validateCommon(to, tokenId, amount);
        _validateAllowlist(to, tokenId, amount, maxAllowance, proof);

        uint256 expected = price[tokenId] * amount;
        require(msg.value == expected, "bad value");

        // Effects
        minted[tokenId] += amount;
        walletMinted[tokenId][to] += amount;

        // Interactions
        _callExternalMint(to, tokenId, amount);

        emit Minted(to, tokenId, amount, msg.value);
    }

    function mintBatch(
        address to,
        uint256[] calldata tokenIds,
        uint256[] calldata amounts,
        uint256[] calldata maxAllowances,
        bytes32[][] calldata proofs
    ) external payable nonReentrant {
        uint256 n = tokenIds.length;
        uint256 mbi = maxBatchItems;
        if (mbi != 0) require(n <= mbi, "too many items");
        require(
            n == amounts.length &&
                n == proofs.length &&
                n == maxAllowances.length,
            "length mismatch"
        );
        require(n > 0, "empty");

        uint256 totalCost;
        uint256 totalAmt;

        // Validate first to avoid partial state changes
        for (uint256 i = 0; i < n; i++) {
            uint256 id = tokenIds[i];
            uint256 amt = amounts[i];
            _validateCommon(to, id, amt);
            _validateAllowlist(to, id, amt, maxAllowances[i], proofs[i]);
            totalCost += price[id] * amt;
            totalAmt += amt;
        }

        require(msg.value == totalCost, "bad value");
        uint256 mbq = maxBatchQuantity;
        if (mbq != 0) require(totalAmt <= mbq, "too many qty");

        // Effects
        for (uint256 i = 0; i < n; i++) {
            uint256 id = tokenIds[i];
            uint256 amt = amounts[i];
            minted[id] += amt;
            walletMinted[id][to] += amt;
        }

        // Interactions
        for (uint256 i = 0; i < n; i++) {
            _callExternalMint(to, tokenIds[i], amounts[i]);
        }

        emit BatchMinted(to, tokenIds, amounts, msg.value);
    }

    // ------------------ Airdrop ------------------
    // Free mint by admin. Respects maxSupply but bypasses price/period/AL and does not count towards walletMinted.
    function airdrop(
        address[] calldata recipients,
        uint256 tokenId,
        uint256[] calldata amounts
    ) external onlyOwnerOrRole(AIRDROP_ROLE) nonReentrant {
        require(recipients.length == amounts.length, "length mismatch");
        uint256 total;
        for (uint256 i = 0; i < recipients.length; i++) {
            uint256 amt = amounts[i];
            require(amt > 0, "zero amt");
            total += amt;
        }
        uint256 ms = maxSupply[tokenId];
        if (ms != 0) require(minted[tokenId] + total <= ms, "supply");

        minted[tokenId] += total;

        for (uint256 i = 0; i < recipients.length; i++) {
            _callExternalMint(recipients[i], tokenId, amounts[i]);
        }
    }

    // ------------------ Withdraw ------------------
    function withdrawAll() external onlyOwnerOrRole(ADMIN) nonReentrant {
        uint256 bal = address(this).balance;
        _payout(bal);
    }

    function _payout(uint256 amount) internal {
        require(amount <= address(this).balance, "insufficient");
        (bool ok, ) = treasury.call{value: amount}("");
        require(ok, "transfer fail");
        emit Withdraw(treasury, amount);
    }

    // ------------------ Internals ------------------
    function _validateCommon(
        address to,
        uint256 tokenId,
        uint256 amount
    ) internal view {
        require(!paused, "paused");
        require(!pausedForId[tokenId], "paused");
        require(saleEnabled[tokenId], "disabled");
        require(to != address(0), "to");
        require(amount > 0, "amount");

        uint256 start = saleStart[tokenId];
        if (start != 0) require(block.timestamp >= start, "not started");
        uint256 end = saleEnd[tokenId];
        if (end != 0) require(block.timestamp <= end, "ended");

        uint256 ms = maxSupply[tokenId];
        if (ms != 0) require(minted[tokenId] + amount <= ms, "supply");

        uint256 mpw = maxPerWallet[tokenId];
        if (mpw != 0)
            require(walletMinted[tokenId][to] + amount <= mpw, "per wallet");

        if (enforceNoHoldOnce[tokenId]) {
            // Query target ERC1155 balance to ensure the address is not already a holder
            (bool ok, bytes memory ret) = nft1155.staticcall(
                abi.encodeWithSignature(
                    "balanceOf(address,uint256)",
                    to,
                    tokenId
                )
            );
            require(ok && ret.length >= 32, "bal fail");
            uint256 bal = abi.decode(ret, (uint256));
            require(bal == 0, "already holder");
        }
    }

    function _validateAllowlist(
        address to,
        uint256 tokenId,
        uint256 amount,
        uint256 maxAllowance,
        bytes32[] calldata proof
    ) internal view {
        bytes32 root = merkleRoot[tokenId];
        if (root == bytes32(0)) return; // AL disabled

        bytes32 leaf = keccak256(abi.encodePacked(to, tokenId, maxAllowance));
        require(MerkleProof.verify(proof, root, leaf), "al");
        require(walletMinted[tokenId][to] + amount <= maxAllowance, "al limit");
    }

    function _callExternalMint(
        address to,
        uint256 id,
        uint256 amount
    ) internal {
        if (mode == MinterMode.TokenId) {
            IERC1155MinterTokenId(nft1155).externalMintWithTokenId(
                to,
                amount,
                id
            );
        } else {
            IERC1155MinterPhaseId(nft1155).externalMintWithPhaseId(
                to,
                amount,
                id
            );
        }
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/access/Ownable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/access/AccessControl.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {IERC165, ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 *
 * IMPORTANT: Deprecated. This storage-based reentrancy guard will be removed and replaced
 * by the {ReentrancyGuardTransient} variant in v6.0.
 */
abstract contract ReentrancyGuard {
    using StorageSlot for bytes32;

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant REENTRANCY_GUARD_STORAGE =
        0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _reentrancyGuardStorageSlot().getUint256Slot().value = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    /**
     * @dev A `view` only version of {nonReentrant}. Use to block view functions
     * from being called, preventing reading from inconsistent contract state.
     *
     * CAUTION: This is a "view" modifier and does not change the reentrancy
     * status. Use it only on view functions. For payable or non-payable functions,
     * use the standard {nonReentrant} modifier instead.
     */
    modifier nonReentrantView() {
        _nonReentrantBeforeView();
        _;
    }

    function _nonReentrantBeforeView() private view {
        if (_reentrancyGuardEntered()) {
            revert ReentrancyGuardReentrantCall();
        }
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        _nonReentrantBeforeView();

        // Any calls to nonReentrant after this point will fail
        _reentrancyGuardStorageSlot().getUint256Slot().value = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _reentrancyGuardStorageSlot().getUint256Slot().value = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _reentrancyGuardStorageSlot().getUint256Slot().value == ENTERED;
    }

    function _reentrancyGuardStorageSlot() internal pure virtual returns (bytes32) {
        return REENTRANCY_GUARD_STORAGE;
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.

pragma solidity ^0.8.20;

import {Hashes} from "./Hashes.sol";

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 *
 * IMPORTANT: Consider memory side-effects when using custom hashing functions
 * that access memory in an unsafe way.
 *
 * NOTE: This library supports proof verification for merkle trees built using
 * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
 * leaf inclusion in trees built using non-commutative hashing functions requires
 * additional logic that is not supported by this library.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProof(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function processProof(
        bytes32[] memory proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProofCalldata(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function processProofCalldata(
        bytes32[] calldata proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProof(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/access/IAccessControl.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/IAccessControl.sol)

pragma solidity >=0.8.4;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted to signal this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/introspection/ERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/StorageSlot.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            

Tags:
ERC165, Multisig, Upgradeable, Multi-Signature, Factory|addr:0xc08073c7c2fbdd181c2727c05e626693e9bf749e|verified:true|block:23402983|tx:0x839469e7a9a35b312d252ed3bae6ab66aa287976514b220fabc671398fe72283|first_check:1758371453

Submitted on: 2025-09-20 14:30:55

Comments

Log in to comment.

No comments yet.