Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/YoSecondaryVault.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Errors} from "./libraries/Errors.sol";
import {YoVault} from "./YoVault.sol";
// __ __ ____ _ _
// \ \ / /__ | _ \ _ __ ___ | |_ ___ ___ ___ | |
// \ V / _ \| |_) | '__/ _ \| __/ _ \ / __/ _ \| |
// | | (_) | __/| | | (_) | || (_) | (_| (_) | |
// |_|\___/|_| |_| \___/ \__\___/ \___\___/|_|
contract YoSecondaryVault is YoVault {
using Math for uint256;
event SharePriceUpdated(uint256 lastSharePrice, uint256 newSharePrice);
function initializeV2(uint256 _lastPricePerShare) public reinitializer(2) {
lastPricePerShare = _lastPricePerShare;
aggregatedUnderlyingBalances = 0;
}
function onUnderlyingBalanceUpdate(uint256 newUnderlyingBalance) external override requiresAuth {
revert Errors.UseOnSharePriceUpdate();
}
/// @dev Can be called only once per block.
/// @param newSharePrice The new share price shared between all deposit vaults.
function onSharePriceUpdate(uint256 newSharePrice) external requiresAuth {
require(block.number > lastBlockUpdated, Errors.UpdateAlreadyCompletedInThisBlock());
uint256 percentageChange = _calculatePercentageChange(lastPricePerShare, newSharePrice);
/// @dev Pause the vault if the percentage change is greater than the threshold (works in both directions)
if (percentageChange > maxPercentageChange) {
_pause();
return;
}
emit SharePriceUpdated(lastPricePerShare, newSharePrice);
lastPricePerShare = newSharePrice;
lastBlockUpdated = block.number;
}
/// @dev Converts assets to shares using the last price per share directly, ignoring the total assets and total
/// supply (shares)
function _convertToShares(uint256 assets, Math.Rounding rounding) internal view override returns (uint256) {
return assets.mulDiv(10 ** decimals(), lastPricePerShare, rounding);
}
/// @dev Converts assets to shares using the last price per share directly, ignoring the total assets and total
/// supply (shares)
function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view override returns (uint256) {
return shares.mulDiv(lastPricePerShare, 10 ** decimals(), rounding);
}
}
"
},
"node_modules/@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
"
},
"src/libraries/Errors.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
library Errors {
//============================== GENERICS ===============================
/// @notice Thrown when an unauthorized method to a target is called.
/// @dev The method must be authorized by setUserRole and setRoleCapability from RolesAuthority
error TargetMethodNotAuthorized(address target, bytes4 functionSig);
/// @notice Thrown when insufficient shares balance is available to complete the operation.
error InsufficientShares();
/// @notice Thrown when the operation is called by a user that is not the owner of the shares.
error NotSharesOwner();
/// @notice Thrown when the input shares amount is zero.
error SharesAmountZero();
/// @notice Thrown when a claim request is fulfilled with an invalid shares amount.
error InvalidSharesAmount();
/// @notice Thrown when a withdraw is attempted with an amount different than the claimable assets.
error InvalidAssetsAmount();
/// @notice Thrown when the new max percentage is greater than the current max percentage.
error InvalidMaxPercentage();
/// @notice Thrown when the new fee is greater than the max allowed fee.
error InvalidFee();
/// @notice Thrown when the underlying balance has already been updated in the current block.
error UpdateAlreadyCompletedInThisBlock();
/// @notice Thrown when redeem() or withdraw() is called
error UseRequestRedeem();
error UseOnSharePriceUpdate();
/// @notice Thrown when msg.sender is not the vault
error Escrow__OnlyVault();
/// @notice Thrown when the requested amount of assets is zero
error Escrow__AmountZero();
/// @notice Thrown when the vault address is zero
error Registry__VaultAddressZero();
/// @notice Thrown when the vault already exists
error Registry__VaultAlreadyExists(address vaultAddress);
/// @notice Thrown when the vault does not exist
error Registry__VaultNotExists(address vaultAddress);
/// @notice Thrown when the vault is not allowed
error Gateway__VaultNotAllowed();
/// @notice Thrown when the amount is zero
error Gateway__ZeroAmount();
/// @notice Thrown when the receiver is zero
error Gateway__ZeroReceiver();
/// @notice Thrown when the shares out is less than the minimum shares out
error Gateway__InsufficientSharesOut(uint256 sharesOut, uint256 minSharesOut);
/// @notice Thrown when the owner of the shares is zero
error Gateway__ZeroOwner();
/// @notice Thrown when the assets out is less than the minimum assets out
error Gateway__InsufficientAssetsOut(uint256 assetsOut, uint256 minAssetsOut);
}
"
},
"src/YoVault.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {Errors} from "./libraries/Errors.sol";
import {IYoVault} from "./interfaces/IYoVault.sol";
import {Compatible} from "./base/Compatible.sol";
import {AuthUpgradeable, Authority} from "./base/AuthUpgradeable.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {ERC4626Upgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC4626Upgradeable.sol";
import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol";
// __ __ ____ _ _
// \ \ / /__ | _ \ _ __ ___ | |_ ___ ___ ___ | |
// \ V / _ \| |_) | '__/ _ \| __/ _ \ / __/ _ \| |
// | | (_) | __/| | | (_) | || (_) | (_| (_) | |
// |_|\___/|_| |_| \___/ \__\___/ \___\___/|_|
/// @title yoVault - A simple vault contract that allows for an operator to manage the vault.
/// @dev This contract is based on the ERC4626 standard and uses the Auth contract for access control.
/// It provides an asynchronous redeem mechanism that allows users to request a redeem and the operator to fulfill it.
/// This would allow the operator to move funds to a different chain or strategy before the user can claim the assets.
/// If the vault has enough assets to fulfill the request, the assets are withdrawn and returned to the owner
/// immediately. Otherwise, the assets are transferred to the vault and the request is stored until the operator
/// fulfills it.
contract YoVault is ERC4626Upgradeable, Compatible, IYoVault, AuthUpgradeable, PausableUpgradeable {
using Math for uint256;
using Address for address;
using SafeERC20 for IERC20;
/// @dev Assume requests are non-fungible and all have ID = 0, so we can differentiate between a request ID and the
/// assets amount.
uint256 internal constant REQUEST_ID = 0;
/// @dev The denominator used for precision calculations.
uint256 internal constant DENOMINATOR = 1e18;
/// @dev The maximum fee that can be set for the vault operations. 1e17 = 10%.
uint256 internal constant MAX_FEE = 1e17;
/// @dev The maximum percentage that can be set as a threshold for the percentage change. 1e17 = 10%
uint256 internal constant MAX_PERCENTAGE_THRESHOLD = 1e17;
/// @dev the aggregated underlying balances across all strategies/chains, reported by an oracle
uint256 public aggregatedUnderlyingBalances;
/// @dev the last block number when the aggregated underlying balances were updated
uint256 public lastBlockUpdated;
/// @dev the last price per share calculated after the aggregated underlying balances are reported
uint256 public lastPricePerShare;
/// @dev the total amount of assets that are pending redemption
uint256 public totalPendingAssets;
/// @dev the maximum percentage change allowed before the vault is paused. It can be updated by the owner.
/// 1e18 = 100%. It's value depends on the frequency of the oracle updates.
uint256 public maxPercentageChange;
/// @dev the fee charged for the withdraws, it's a percentage of the assets redeemed
uint256 public feeOnWithdraw;
/// @dev the fee charged for the deposits, it's a percentage of the assets deposited
uint256 public feeOnDeposit;
/// @dev the address that receives the fees for the vault operations, if it's zero, no fees are charged
address public feeRecipient;
/// @dev used to store the amount of shares that are pending redemption, it must be fulfilled by the vault operator
mapping(address user => PendingRedeem redeem) internal _pendingRedeem;
//============================== CONSTRUCTOR ===============================
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
//============================== INITIALIZER ===============================
function initialize(IERC20 _asset, address _owner, string memory _name, string memory _symbol) public initializer {
__Context_init();
__ERC20_init(_name, _symbol);
__ERC4626_init(_asset);
__Auth_init(_owner, Authority(address(0)));
__Pausable_init();
maxPercentageChange = 1e16; // 1%
}
// ========================================= PUBLIC FUNCTIONS =========================================
/// @notice Allows the vault operator to manage the vault.
/// @param target The target contract to make a call to.
/// @param data The data to send to the target contract.
/// @param value The amount of native assets to send with the call.
function manage(
address target,
bytes calldata data,
uint256 value
) external requiresAuth returns (bytes memory result) {
bytes4 functionSig = bytes4(data);
require(
authority().canCall(msg.sender, target, functionSig),
Errors.TargetMethodNotAuthorized(target, functionSig)
);
result = target.functionCallWithValue(data, value);
}
/// @notice Same as `manage` but allows for multiple calls in a single transaction.
/// @param targets The target contracts to make calls to.
/// @param data The data to send to the target contracts.
/// @param values The amounts of native assets to send with the calls.
function manage(
address[] calldata targets,
bytes[] calldata data,
uint256[] calldata values
) external requiresAuth returns (bytes[] memory results) {
uint256 targetsLength = targets.length;
results = new bytes[](targetsLength);
for (uint256 i; i < targetsLength; ++i) {
bytes4 functionSig = bytes4(data[i]);
require(
authority().canCall(msg.sender, targets[i], functionSig),
Errors.TargetMethodNotAuthorized(targets[i], functionSig)
);
results[i] = targets[i].functionCallWithValue(data[i], values[i]);
}
}
/// @notice Pause the contract to prevent any further deposits, withdrawals, or transfers.
function pause() public requiresAuth {
_pause();
}
/// @notice Unpause the contract to allow deposits, withdrawals, and transfers.
function unpause() public requiresAuth {
_unpause();
}
/// @notice If the vault has enough assets to fulfill the request,
/// withdraw the assets and return them to the owner.
/// Otherwise, transfer the shares to the vault and store the request.
/// The shares are burned when the request is fulfilled and the assets are transferred to the owner.
/// @param shares The amount of shares to redeem.
/// @param receiver The address of the receiver of the assets.
/// @param owner The address of the owner.
/// @return The ID of the request which is always 0 or the assets amount if the request is immediately
/// processed.
function requestRedeem(uint256 shares, address receiver, address owner) public whenNotPaused returns (uint256) {
require(shares > 0, Errors.SharesAmountZero());
require(owner == msg.sender, Errors.NotSharesOwner());
require(balanceOf(owner) >= shares, Errors.InsufficientShares());
uint256 assetsWithFee = super.previewRedeem(shares);
// instant redeem if the vault has enough assets
if (_getAvailableBalance() >= assetsWithFee) {
_withdraw(owner, receiver, owner, assetsWithFee, shares);
emit RedeemRequest(receiver, owner, assetsWithFee, shares, true);
return assetsWithFee;
}
emit RedeemRequest(receiver, owner, assetsWithFee, shares, false);
// transfer the shares to the vault and store the request
_transfer(owner, address(this), shares);
totalPendingAssets += assetsWithFee;
PendingRedeem storage pending = _pendingRedeem[receiver];
pending.shares += shares;
pending.assets += assetsWithFee;
return REQUEST_ID;
}
/// @notice The operator can fulfill a redeem request. Requires authorization.
/// @param receiver The address of the receiver of the assets.
/// @param shares The amount of shares to fulfil.
/// @param assetsWithFee The amount of assets to fulfil including the fee.
function fulfillRedeem(address receiver, uint256 shares, uint256 assetsWithFee) external requiresAuth {
PendingRedeem storage pending = _pendingRedeem[receiver];
require(pending.shares != 0 && shares <= pending.shares, Errors.InvalidSharesAmount());
require(pending.assets != 0 && assetsWithFee <= pending.assets, Errors.InvalidAssetsAmount());
pending.shares -= shares;
pending.assets -= assetsWithFee;
totalPendingAssets -= assetsWithFee;
emit RequestFulfilled(receiver, shares, assetsWithFee);
// burn the shares from the vault and transfer the assets to the receiver
_withdraw(address(this), receiver, address(this), assetsWithFee, shares);
}
/// @notice The operator can cancel a redeem request in case of an black swan event.
/// @param receiver The address of the receiver of the assets.
/// @param shares The amount of shares to cancel.
/// @param assetsWithFee The amount of assets to cancel including the fee.
function cancelRedeem(address receiver, uint256 shares, uint256 assetsWithFee) external requiresAuth {
PendingRedeem storage pending = _pendingRedeem[receiver];
require(pending.shares != 0 && shares <= pending.shares, Errors.InvalidSharesAmount());
require(pending.assets != 0 && assetsWithFee <= pending.assets, Errors.InvalidAssetsAmount());
pending.shares -= shares;
pending.assets -= assetsWithFee;
totalPendingAssets -= assetsWithFee;
emit RequestCancelled(receiver, shares, assetsWithFee);
// transfer the shares back to the owner
_transfer(address(this), receiver, shares);
}
/// @notice The oracle can update the aggregated underlying balances across all strategies/chains.
/// @dev Can be called only once per block to prevent oracle abuse and flash loan attacks.
/// @param newAggregatedBalance The new aggregated underlying balances.
function onUnderlyingBalanceUpdate(uint256 newAggregatedBalance) external virtual requiresAuth {
require(block.number > lastBlockUpdated, Errors.UpdateAlreadyCompletedInThisBlock());
/// @dev the price per share is calculated taking into account the new aggregated underlying balances
uint256 newPricePerShare = _totalAssets(newAggregatedBalance).mulDiv(DENOMINATOR, totalSupply());
uint256 percentageChange = _calculatePercentageChange(lastPricePerShare, newPricePerShare);
/// @dev Pause the vault if the percentage change is greater than the threshold (works in both directions)
if (percentageChange > maxPercentageChange) {
_pause();
return;
}
emit UnderlyingBalanceUpdated(aggregatedUnderlyingBalances, newAggregatedBalance);
aggregatedUnderlyingBalances = newAggregatedBalance;
lastPricePerShare = newPricePerShare;
lastBlockUpdated = block.number;
}
/// @notice Update the maximum percentage change allowed before the vault is paused.
/// @param newMaxPercentageChange The new maximum percentage change. Max value is 1e17 (10%).
function updateMaxPercentageChange(uint256 newMaxPercentageChange) external requiresAuth {
require(newMaxPercentageChange < MAX_PERCENTAGE_THRESHOLD, Errors.InvalidMaxPercentage());
emit MaxPercentageUpdated(maxPercentageChange, newMaxPercentageChange);
maxPercentageChange = newMaxPercentageChange;
}
/// @notice Update the fee charged for the vault operations.
/// @param newFee The new fee charged for the vault operations.
function updateWithdrawFee(uint256 newFee) external requiresAuth {
require(newFee < MAX_FEE, Errors.InvalidFee());
emit WithdrawFeeUpdated(feeOnWithdraw, newFee);
feeOnWithdraw = newFee;
}
/// @notice Update the fee charged for the vault operations.
/// @param newFee The new fee charged for the vault operations.
function updateDepositFee(uint256 newFee) external requiresAuth {
require(newFee < MAX_FEE, Errors.InvalidFee());
emit DepositFeeUpdated(feeOnDeposit, newFee);
feeOnDeposit = newFee;
}
/// @notice Update the address that receives the fees for the vault operations.
/// @param newFeeRecipient The new address that receives the fees for the vault operations.
function updateFeeRecipient(address newFeeRecipient) external requiresAuth {
emit FeeRecipientUpdated(feeRecipient, newFeeRecipient);
feeRecipient = newFeeRecipient;
}
//============================== VIEW FUNCTIONS ===============================
/// @notice Get the amount of assets and shares that are pending redemption.
/// @param user The address of the user.
function pendingRedeemRequest(address user) public view returns (uint256 assets, uint256 pendingShares) {
return (_pendingRedeem[user].assets, _pendingRedeem[user].shares);
}
//============================== OVERRIDES ===============================
/// @notice Override the default `totalAssets` function to return the total assets held by the vault and the
/// aggregated underlying balances across all strategies/chains.
function totalAssets() public view override returns (uint256) {
return _totalAssets(aggregatedUnderlyingBalances);
}
/// @dev Override the default `deposit` function to add the `whenNotPaused` modifier.
function deposit(uint256 assets, address receiver) public override whenNotPaused returns (uint256) {
return super.deposit(assets, receiver);
}
/// @dev Override the default `mint` function to add the `whenNotPaused` modifier.
function mint(uint256 shares, address receiver) public override whenNotPaused returns (uint256) {
return super.mint(shares, receiver);
}
/// @notice This method is disabled. Use `requestRedeem` or `redeem`instead.
function withdraw(uint256, address, address) public override whenNotPaused returns (uint256) {
revert Errors.UseRequestRedeem();
}
function redeem(uint256 shares, address receiver, address owner) public override whenNotPaused returns (uint256) {
return requestRedeem(shares, receiver, owner);
}
/// @dev Override the default `_update` function to add the `whenNotPaused` modifier.
/// The _update function is called on all transfers, mints and burns.
function _update(address from, address to, uint256 value) internal override whenNotPaused {
super._update(from, to, value);
}
/// @dev Preview taking an entry fee on deposit. See {IERC4626-previewDeposit}.
function previewDeposit(uint256 assets) public view virtual override returns (uint256) {
uint256 fee = _feeOnTotal(assets, feeOnDeposit);
return super.previewDeposit(assets - fee);
}
/// @dev Preview adding an entry fee on mint. See {IERC4626-previewMint}.
function previewMint(uint256 shares) public view virtual override returns (uint256) {
uint256 assets = super.previewMint(shares);
return assets + _feeOnRaw(assets, feeOnDeposit);
}
/// @dev Preview adding an exit fee on withdraw. See {IERC4626-previewWithdraw}.
function previewWithdraw(uint256 assets) public view virtual override returns (uint256) {
uint256 fee = _feeOnRaw(assets, feeOnWithdraw);
return super.previewWithdraw(assets + fee);
}
/// @dev Preview taking an exit fee on redeem. See {IERC4626-previewRedeem}.
function previewRedeem(uint256 shares) public view virtual override returns (uint256) {
uint256 assets = super.previewRedeem(shares);
return assets - _feeOnTotal(assets, feeOnWithdraw);
}
function maxDeposit(address receiver) public view virtual override returns (uint256) {
if (paused()) {
return 0;
}
return super.maxDeposit(receiver);
}
function maxMint(address receiver) public view virtual override returns (uint256) {
if (paused()) {
return 0;
}
return super.maxMint(receiver);
}
function maxWithdraw(address owner) public view virtual override returns (uint256) {
if (paused()) {
return 0;
}
return super.maxWithdraw(owner);
}
function maxRedeem(address owner) public view virtual override returns (uint256) {
if (paused()) {
return 0;
}
return super.maxRedeem(owner);
}
/// @dev Account for the fee charged for the vault operations if the fee recipient and fee are set.
function _withdraw(
address caller,
address receiver,
address owner,
uint256 assetsWithFee,
uint256 shares
) internal override {
uint256 feeAmount = _feeOnTotal(assetsWithFee, feeOnWithdraw);
uint256 assets = assetsWithFee - feeAmount;
address recipient = feeRecipient;
super._withdraw(caller, receiver, owner, assets, shares);
if (feeAmount > 0 && recipient != address(0)) {
IERC20(asset()).safeTransfer(recipient, feeAmount);
}
}
function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal override {
uint256 feeAmount = _feeOnTotal(assets, feeOnDeposit);
address recipient = feeRecipient;
super._deposit(caller, receiver, assets, shares);
if (feeAmount > 0 && recipient != address(0)) {
IERC20(asset()).safeTransfer(recipient, feeAmount);
}
}
function _totalAssets(uint256 _underlyingBalances) internal view returns (uint256) {
return IERC20(asset()).balanceOf(address(this)) + _underlyingBalances;
}
//============================== PRIVATE FUNCTIONS ===============================
/// @dev Used to calculate the percentage change between two prices. 1e18 = 100%.
/// @param oldPrice The old price.
/// @param newPrice The new price.
/// @return The percentage change. 1e18 = 100%.
function _calculatePercentageChange(uint256 oldPrice, uint256 newPrice) internal pure returns (uint256) {
if (oldPrice == 0) {
return 0;
}
uint256 diff = newPrice > oldPrice ? newPrice - oldPrice : oldPrice - newPrice;
return diff.mulDiv(DENOMINATOR, oldPrice, Math.Rounding.Ceil);
}
/// @dev Calculates the fees that should be added to an amount `assets` that does not already include fees.
/// Used in {IERC4626-mint} and {IERC4626-withdraw} operations.
function _feeOnRaw(uint256 assets, uint256 feeBasisPoints) private pure returns (uint256) {
return assets.mulDiv(feeBasisPoints, DENOMINATOR, Math.Rounding.Ceil);
}
/// @dev Calculates the fee part of an amount `assets` that already includes fees.
/// Used in {IERC4626-deposit} and {IERC4626-redeem} operations.
function _feeOnTotal(uint256 assets, uint256 feeBasisPoints) private pure returns (uint256) {
return assets.mulDiv(feeBasisPoints, feeBasisPoints + DENOMINATOR, Math.Rounding.Ceil);
}
/// @dev The available balance is the balance of the vault minus the total pending assets.
/// @return The available balance.
function _getAvailableBalance() internal view returns (uint256) {
uint256 balance = IERC20(asset()).balanceOf(address(this));
return balance > totalPendingAssets ? balance - totalPendingAssets : 0;
}
}
"
},
"node_modules/@openzeppelin/contracts/utils/Panic.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
"
},
"node_modules/@openzeppelin/contracts/utils/math/SafeCast.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is great
Submitted on: 2025-10-24 19:13:20
Comments
Log in to comment.
No comments yet.