Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/extensions/redemption/UsycRedemption.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity =0.8.18;
import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol";
import "../../interfaces/IRedemption.sol";
import "../../interfaces/IPriceFeed.sol";
import "./LiquidityController.sol";
error StalePrice(uint256 updatedAt, uint256 maxAge);
error InvalidPrice(int256 price);
error InsufficientUSDCReceived(uint256 received, uint256 required);
error ExcessiveSellFee(uint256 feeRate);
error LiquidityControllerNotSet();
interface IUsycHelper {
/**
* @notice Sell USYC tokens and receive USDC
* @param amount Amount of USYC tokens to sell
* @param recipient Address to receive USDC
* @return Amount of USDC received
*/
function sellFor(uint256 amount, address recipient) external returns (uint256);
/**
* @notice Preview a sale of Yield Token
* @dev Produces the anticipated payout and fees using a price.
* Total amount of yield token is rounded down to 2 decimals (cents)
* sending more precision will not be used in payout calculation
* @param amount is the amount of Yield Token to sell
* @return payout amount of stablecoin received
* @return fee taken
* @return price used in conversion
*/
function sellPreview(uint256 amount) external view returns (uint256 payout, uint256 fee, int256 price);
/**
* @notice Check if selling is currently paused
* @return true if selling is paused, false otherwise
*/
function sellPaused() external view returns (bool);
function sellFee() external view returns (uint256);
function oracle() external view returns (address);
}
/**
* @title UsycRedemption
* @dev Implements instant redemption of USYC tokens to USDC using USYC's sell function
* @dev Pausable by the owner
* @dev Asset token (USDC) is ERC20-compatible
* @dev USYC token implements IUsyc interface with sell function
* @dev Upgradeable using UUPS pattern
*/
contract UsycRedemption is IRedemption, OwnableUpgradeable, UUPSUpgradeable {
using SafeERC20Upgradeable for IERC20Upgradeable;
using MathUpgradeable for uint256;
uint256 public minPrice;
uint256 public scaleFactor;
uint8 public usycDecimals;
uint8 public usdcDecimals;
address public usyc;
address public usdc;
address public helper;
address public caller;
address public usycTreasury;
address public liquidityController;
uint256 public RESERVE2;
uint256 public maxSellFeeRate;
uint256 public maxPriceAge;
uint256 public constant FEE_MULTIPLIER = 10 ** 18;
uint256 public constant HUNDRED_PCT = 100 * FEE_MULTIPLIER;
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
/**
* @notice Initialize the contract
* @param _usyc USYC token address
* @param _usdc USDC token address
* @param _helper USYC helper contract address
* @param _caller Authorized caller address
* @param _usycTreasury USYC treasury address
* @param _liquidityController LiquidityController contract address (optional)
*/
function initialize(
address _usyc,
address _usdc,
address _helper,
address _caller,
address _usycTreasury,
address _liquidityController
) public initializer {
__Ownable_init();
__UUPSUpgradeable_init();
usyc = _usyc;
usdc = _usdc;
helper = _helper;
caller = _caller;
usycTreasury = _usycTreasury;
liquidityController = _liquidityController;
// Get decimals from both tokens
usycDecimals = IERC20MetadataUpgradeable(_usyc).decimals();
usdcDecimals = IERC20MetadataUpgradeable(_usdc).decimals();
scaleFactor = 10 ** IPriceFeed(IUsycHelper(helper).oracle()).decimals();
minPrice = 1 * scaleFactor;
maxPriceAge = 3 days; // Default: 3-day buffer
}
/**
* @notice Set the maximum price age (only owner)
* @param _maxPriceAge Maximum age for price data in seconds
*/
function setMaxPriceAge(uint256 _maxPriceAge) external onlyOwner {
maxPriceAge = _maxPriceAge;
}
/**
* @notice Set the maximum sell fee rate (only owner)
* @param _maxRate Maximum sell fee rate
*/
function setMaxSellFeeRate(uint256 _maxRate) external onlyOwner {
maxSellFeeRate = _maxRate;
}
/**
* @notice Set liquidity controller contract (only owner)
* @param _liquidityController LiquidityController contract address
*/
function setLiquidityController(address _liquidityController) external onlyOwner {
liquidityController = _liquidityController;
}
/**
* @notice Redeem USYC tokens for USDC using USYC's sell function
* @param _amount Amount of USDC desired to receive
* @return payout usdc amount
* @return fee charged by usdc amount
* @return price used in conversion
*/
function redeem(uint256 _amount) external override returns (uint256 payout, uint256 fee, int256 price) {
return _redeem(address(0), _amount);
}
function redeemFor(
address user,
uint256 _amount
) external override returns (uint256 payout, uint256 fee, int256 price) {
return _redeem(user, _amount);
}
function _redeem(address user, uint256 _amount) internal returns (uint256 payout, uint256 fee, int256 price) {
if (msg.sender != caller) revert UnauthorizedCaller();
if (liquidityController == address(0)) revert LiquidityControllerNotSet();
uint256 sellFeeRate = IUsycHelper(helper).sellFee();
if (sellFeeRate > maxSellFeeRate) revert ExcessiveSellFee(sellFeeRate);
uint256 usycAmount = convertUsdcToToken(_amount);
// Reserve liquidity if user-specific quota is being used
if (user != address(0)) {
// This will revert if user doesn't have sufficient quota
LiquidityController(liquidityController).reserveLiquidity(user, usycAmount);
}
SafeERC20Upgradeable.safeTransferFrom(IERC20Upgradeable(usyc), usycTreasury, address(this), usycAmount);
SafeERC20Upgradeable.safeIncreaseAllowance(IERC20Upgradeable(usyc), helper, usycAmount);
payout = IUsycHelper(helper).sellFor(usycAmount, address(caller));
(, fee, price) = IUsycHelper(helper).sellPreview(usycAmount);
}
/**
* @notice Preview a redemption without executing it
* @param _amount Amount of USDC desired to receive
* @return payout USDC amount that would be received
* @return fee Fee that would be charged in USDC
* @return price Price used in conversion
*/
function previewRedeem(uint256 _amount) external view override returns (uint256 payout, uint256 fee, int256 price) {
uint256 sellFeeRate = IUsycHelper(helper).sellFee();
if (sellFeeRate > maxSellFeeRate) revert ExcessiveSellFee(sellFeeRate);
uint256 usycAmount = convertUsdcToToken(_amount);
(payout, fee, price) = IUsycHelper(helper).sellPreview(usycAmount);
}
/**
* @notice Check the available liquidity for instant redeem.
* @return liquidity The available liquidity from the redemption contract.
* @return tAllowance The redemption token allowance for the vault.
* @return tBalance The redemption token balance in the Treasury.
* @return tAllowanceInUsdc The redemption token allowance in USDC.
* @return tBalanceInUsdc The redemption token balance in USDC.
* @return minimumInUsdc The minimum of liquidity, tAllowanceInUsdc, and tBalanceInUsdc.
*/
function checkLiquidity()
public
view
override
returns (
uint256 liquidity,
uint256 tAllowance,
uint256 tBalance,
uint256 tAllowanceInUsdc,
uint256 tBalanceInUsdc,
uint256 minimumInUsdc
)
{
liquidity = IERC20Upgradeable(usdc).balanceOf(helper);
tAllowance = IERC20Upgradeable(usyc).allowance(usycTreasury, address(this));
tAllowanceInUsdc = convertTokenToUsdc(tAllowance);
tBalance = IERC20Upgradeable(usyc).balanceOf(usycTreasury);
tBalanceInUsdc = convertTokenToUsdc(tBalance);
minimumInUsdc = liquidity.min(tAllowanceInUsdc.min(tBalanceInUsdc));
}
/**
* @notice Check liquidity available for a specific user
* @param user User address to check
* @return userUsdcLiquidity Available liquidity for this user in USDC
* @return totalUsdcLiquidity Total available liquidity in USDC
* @return userUsycQuota User's available quota in USYC
*/
function checkUserLiquidity(
address user
) external view returns (uint256 userUsdcLiquidity, uint256 totalUsdcLiquidity, uint256 userUsycQuota) {
// Get base liquidity
(, , , , , uint256 baseLiquidity) = checkLiquidity();
totalUsdcLiquidity = baseLiquidity;
if (liquidityController == address(0)) {
userUsdcLiquidity = 0;
userUsycQuota = 0;
} else {
// Get user-specific available quota (total quota - used)
(uint256 availableQuota, , ) = LiquidityController(liquidityController).checkUserLiquidity(user);
userUsycQuota = availableQuota;
// User liquidity is minimum of available quota and total liquidity
uint256 quotaInUsdc = convertTokenToUsdc(availableQuota);
userUsdcLiquidity = totalUsdcLiquidity.min(quotaInUsdc);
}
}
/**
* @notice Check if USYC selling is currently available
* @return false if USYC can be sold, true otherwise
*/
function checkPaused() external view returns (bool) {
return IUsycHelper(helper).sellPaused();
}
function getPrice(address _oracle) public view returns (uint256) {
(uint80 roundId, int256 price, , uint256 updatedAt, uint80 answeredInRound) = IPriceFeed(_oracle)
.latestRoundData();
// Check if the price data is not older than maxPriceAge
if (block.timestamp - updatedAt > maxPriceAge) {
revert StalePrice(updatedAt, maxPriceAge);
}
// Check for incomplete round data
if (answeredInRound < roundId) {
revert StalePrice(updatedAt, maxPriceAge);
}
if (price <= 0 || uint256(price) < minPrice) revert InvalidPrice(price);
return uint256(price);
}
function convertUsdcToToken(uint256 _amount) public view returns (uint256) {
uint256 price = getPrice(IUsycHelper(helper).oracle());
// Convert USDC amount to USYC token amount accounting for decimal differences
// Formula: (usdcAmount * 10^usycDecimals * scaleFactor) / (price * 10^usdcDecimals)
return
_amount.mulDiv(10 ** usycDecimals * scaleFactor, price * 10 ** usdcDecimals, MathUpgradeable.Rounding.Up);
}
function convertTokenToUsdc(uint256 _amount) public view returns (uint256) {
uint256 price = getPrice(IUsycHelper(helper).oracle());
// Convert USYC token amount to USDC amount accounting for decimal differences
// Formula: (usycAmount * price * 10^usdcDecimals) / (scaleFactor * 10^usycDecimals)
return
_amount.mulDiv(price * 10 ** usdcDecimals, scaleFactor * 10 ** usycDecimals, MathUpgradeable.Rounding.Down);
}
/**
* @notice Set the caller address (only owner)
* @param _caller Address of the caller
*/
function setCaller(address _caller) external onlyOwner {
if (_caller == address(0)) revert ZeroAddress();
caller = _caller;
}
/**
* @notice Set the USYC treasury address (only owner)
* @param _usycTreasury Address of the USYC treasury
*/
function setUsycTreasury(address _usycTreasury) external onlyOwner {
if (_usycTreasury == address(0)) revert ZeroAddress();
usycTreasury = _usycTreasury;
}
/**
* @notice Emergency withdraw function for owner to withdraw stuck tokens
* @param token Token address to withdraw
* @param amount Amount to withdraw
*/
function emergencyWithdraw(address token, uint256 amount) external onlyOwner {
if (token == address(0)) revert ZeroAddress();
SafeERC20Upgradeable.safeTransfer(IERC20Upgradeable(token), owner(), amount);
}
/**
* @notice Required by the OZ UUPS module
* @dev Only owner can upgrade the contract
*/
function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
"
},
"contracts/extensions/redemption/LiquidityController.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity =0.8.18;
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
error QuotaExceedsTotal(uint256 userQuota, uint256 totalLiquidity);
error QuotaExceedsUsed(uint256 newQuota, uint256 usedAmount);
error InsufficientTotalLiquidity(uint256 available, uint256 requested);
error UnauthorizedCaller();
error ZeroAddress();
error ZeroAmount();
error UserNotFound(address user);
error InsufficientUserQuota(address user, uint256 available, uint256 requested);
/**
* @title LiquidityController
* @dev Manages user-specific liquidity quotas for redemption operations
* @dev Tracks allocations and enforces limits per user and globally
* @dev Integrates with redemption contracts to validate liquidity access
*/
contract LiquidityController is OwnableUpgradeable, UUPSUpgradeable {
using MathUpgradeable for uint256;
// Events
event QuotaSet(address indexed user, uint256 quota);
event TotalLiquidityUpdated(uint256 newTotal);
event QuotaUsed(address indexed user, uint256 amount, uint256 remainingQuota);
event QuotaRestored(address indexed user, uint256 amount, uint256 remainingQuota);
event CallerUpdated(address indexed newCaller);
// State variables
mapping(address => uint256) public userQuotas;
mapping(address => uint256) public usedQuotas;
mapping(address => bool) public authorizedUsers;
mapping(address => bool) private userExists;
address[] public users;
address public caller;
uint256 public totalLiquidity;
// Track total allocated across all users
uint256 public totalAllocated;
// Track total used across all users
uint256 public totalUsed;
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
/**
* @notice Initialize the contract
* @param _caller Authorized caller address (typically the redemption contract)
* @param _totalLiquidity Total available liquidity pool
*/
function initialize(address _caller, uint256 _totalLiquidity) public initializer {
if (_caller == address(0)) revert ZeroAddress();
__Ownable_init();
__UUPSUpgradeable_init();
caller = _caller;
totalLiquidity = _totalLiquidity;
totalAllocated = 0;
totalUsed = 0;
emit TotalLiquidityUpdated(_totalLiquidity);
emit CallerUpdated(_caller);
}
/**
* @notice Set quota for a specific user
* @param user User address
* @param quota Quota amount in underlying token (USYC)
*/
function setUserQuota(address user, uint256 quota) external onlyOwner {
uint256 oldQuota = userQuotas[user];
uint256 usedQuota = usedQuotas[user];
// Update total allocated accounting
if (oldQuota > 0) {
totalAllocated = totalAllocated - oldQuota;
}
if (quota > 0) {
// Check that new quota isn't less than already used amount
if (quota < usedQuota) {
revert QuotaExceedsUsed(quota, usedQuota);
}
// Check if new allocation fits within total liquidity
if (totalAllocated + quota > totalLiquidity) {
revert QuotaExceedsTotal(quota, totalLiquidity - totalAllocated);
}
totalAllocated = totalAllocated + quota;
// Add to users array if new user
if (!userExists[user]) {
users.push(user);
userExists[user] = true;
}
authorizedUsers[user] = true;
} else {
// Removing quota - require no active usage
if (usedQuota > 0) {
revert QuotaExceedsUsed(0, usedQuota);
}
authorizedUsers[user] = false;
}
userQuotas[user] = quota;
emit QuotaSet(user, quota);
}
/**
* @notice Reserve liquidity for a user (consumes quota)
* @param user User address
* @param amount Amount to reserve
*/
function reserveLiquidity(address user, uint256 amount) external {
if (msg.sender != caller) revert UnauthorizedCaller();
if (amount == 0) revert ZeroAmount();
uint256 quota = userQuotas[user];
if (quota == 0) revert UserNotFound(user);
uint256 used = usedQuotas[user];
uint256 availableQuota = quota > used ? quota - used : 0;
if (amount > availableQuota) {
revert InsufficientUserQuota(user, availableQuota, amount);
}
// Check total liquidity constraint
uint256 totalAvailable = totalLiquidity > totalUsed ? totalLiquidity - totalUsed : 0;
if (amount > totalAvailable) {
revert InsufficientTotalLiquidity(totalAvailable, amount);
}
usedQuotas[user] = used + amount;
totalUsed = totalUsed + amount;
emit QuotaUsed(user, amount, quota > usedQuotas[user] ? quota - usedQuotas[user] : 0);
}
/**
* @notice Restore liquidity for a user (releases quota back)
* @param user User address
* @param amount Amount to restore
*/
function restoreLiquidity(address user, uint256 amount) external onlyOwner {
if (amount == 0) revert ZeroAmount();
uint256 used = usedQuotas[user];
uint256 toRestore = amount > used ? used : amount;
if (toRestore > 0) {
usedQuotas[user] = used - toRestore;
totalUsed = totalUsed - toRestore;
uint256 quota = userQuotas[user];
emit QuotaRestored(user, toRestore, quota > usedQuotas[user] ? quota - usedQuotas[user] : 0);
}
}
/**
* @notice Check if user has sufficient quota for amount
* @param user User address
* @param amount Amount to validate
* @return allowed Whether the amount is within user's available quota
* @return quota User's total quota
*/
function validateUserQuota(address user, uint256 amount) external view returns (bool allowed, uint256 quota) {
quota = userQuotas[user];
uint256 used = usedQuotas[user];
if (quota == 0) {
allowed = false; // User has no quota
} else {
uint256 availableQuota = quota > used ? quota - used : 0;
allowed = amount <= availableQuota; // Check: amount <= remaining quota
}
}
/**
* @notice Check total liquidity status
* @return totalAvailable Total unallocated liquidity
* @return totalReserved Total allocated across all users
* @return totalConsumed Total used across all users
* @return poolBalance Total liquidity pool
*/
function checkTotalLiquidity()
external
view
returns (uint256 totalAvailable, uint256 totalReserved, uint256 totalConsumed, uint256 poolBalance)
{
totalReserved = totalAllocated;
totalConsumed = totalUsed;
totalAvailable = totalLiquidity > totalAllocated ? totalLiquidity - totalAllocated : 0;
poolBalance = totalLiquidity;
}
/**
* @notice Check liquidity status for a specific user
* @param user User address
* @return available Available quota for this user
* @return total Total quota for this user
* @return used Used quota for this user
*/
function checkUserLiquidity(address user) external view returns (uint256 available, uint256 total, uint256 used) {
total = userQuotas[user];
used = usedQuotas[user];
available = total > used ? total - used : 0;
}
/**
* @notice Check if a user is authorized and their quota status
* @param user User address
* @return hasQuota Whether user has a quota
* @return quota User's total quota
* @return available User's available quota
*/
function isUserAuthorized(address user) external view returns (bool hasQuota, uint256 quota, uint256 available) {
quota = userQuotas[user];
hasQuota = quota > 0 && authorizedUsers[user];
uint256 used = usedQuotas[user];
available = quota > used ? quota - used : 0;
}
/**
* @notice Update total liquidity pool (owner only)
* @param newTotal New total liquidity amount
*/
function updateTotalLiquidity(uint256 newTotal) external onlyOwner {
if (newTotal < totalAllocated) {
revert InsufficientTotalLiquidity(totalAllocated, newTotal);
}
totalLiquidity = newTotal;
emit TotalLiquidityUpdated(newTotal);
}
/**
* @notice Update authorized caller address (owner only)
* @param newCaller New caller address
*/
function updateCaller(address newCaller) external onlyOwner {
if (newCaller == address(0)) revert ZeroAddress();
caller = newCaller;
emit CallerUpdated(newCaller);
}
/**
* @notice Get list of all users with active quotas
* @return activeUsers Array of user addresses with active quotas
*/
function getAllUsers() external view returns (address[] memory activeUsers) {
uint256 activeCount = 0;
// Count active users
for (uint256 i = 0; i < users.length; i++) {
if (authorizedUsers[users[i]] && userQuotas[users[i]] > 0) {
activeCount++;
}
}
// Build active user list
activeUsers = new address[](activeCount);
uint256 index = 0;
for (uint256 i = 0; i < users.length; i++) {
if (authorizedUsers[users[i]] && userQuotas[users[i]] > 0) {
activeUsers[index] = users[i];
index++;
}
}
}
/**
* @notice Required by the OZ UUPS module
*/
function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
"
},
"contracts/interfaces/IPriceFeed.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity =0.8.18;
interface IPriceFeed {
function decimals() external view returns (uint8);
function latestAnswer() external view returns (uint256);
function latestRoundData()
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}
"
},
"contracts/interfaces/IRedemption.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity =0.8.18;
interface IRedemption {
function checkLiquidity() external view returns (uint256, uint256, uint256, uint256, uint256, uint256);
function checkPaused() external view returns (bool);
function redeem(uint256 amount) external returns (uint256 payout, uint256 fee, int256 price);
function redeemFor(address user, uint256 amount) external returns (uint256 payout, uint256 fee, int256 price);
function previewRedeem(uint256 amount) external view returns (uint256 payout, uint256 fee, int256 price);
}
"
},
"node_modules/@openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library MathUpgradeable {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
"
},
"node_modules/@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.0;
import "../../interfaces/draft-IERC1822Upgradeable.sol";
import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
import {Initializable} from "./Initializable.sol";
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*
* _Available since v4.1._
*/
abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
address private immutable __self = address(this);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
require(address(this) != __self, "Function must be called through delegatecall");
require(_getImplementation() == __self, "Function must be called through active proxy");
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
_;
}
function __UUPSUpgradeable_init() internal onlyInitializing {
}
function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
}
/**
* @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
return _IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeTo(address newImplementation) public virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data, true);
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeTo} and {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal override onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
"
},
"node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal onlyInitializing {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
"
},
"node_modules/@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20Upgradeable.sol";
import "../extensions/IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20Upgradeable {
using AddressUpgradeable for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20PermitUpgradeable token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20Upgradeable token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && AddressUpgradeable.isContract(address(token));
}
}
"
},
"node_modules/@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20Upgradeable.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20MetadataUpgradeable is IERC20Upgradeable {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
"
},
"node_modules/@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20Upgradeable {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
"
},
"node_modules/@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, retu
Submitted on: 2025-10-24 19:47:11
Comments
Log in to comment.
No comments yet.