UsycRedemption

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "contracts/extensions/redemption/UsycRedemption.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity =0.8.18;

import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol";
import "../../interfaces/IRedemption.sol";
import "../../interfaces/IPriceFeed.sol";
import "./LiquidityController.sol";

error StalePrice(uint256 updatedAt, uint256 maxAge);
error InvalidPrice(int256 price);
error InsufficientUSDCReceived(uint256 received, uint256 required);
error ExcessiveSellFee(uint256 feeRate);
error LiquidityControllerNotSet();

interface IUsycHelper {
    /**
     * @notice Sell USYC tokens and receive USDC
     * @param amount Amount of USYC tokens to sell
     * @param recipient Address to receive USDC
     * @return Amount of USDC received

     */
    function sellFor(uint256 amount, address recipient) external returns (uint256);

    /**
     * @notice Preview a sale of Yield Token
     * @dev Produces the anticipated payout and fees using a price.
     *      Total amount of yield token is rounded down to 2 decimals (cents)
     *      sending more precision will not be used in payout calculation
     * @param amount is the amount of Yield Token to sell
     * @return payout amount of stablecoin received
     * @return fee taken
     * @return price used in conversion
     */
    function sellPreview(uint256 amount) external view returns (uint256 payout, uint256 fee, int256 price);

    /**
     * @notice Check if selling is currently paused
     * @return true if selling is paused, false otherwise
     */
    function sellPaused() external view returns (bool);

    function sellFee() external view returns (uint256);

    function oracle() external view returns (address);
}

/**
 * @title UsycRedemption
 * @dev Implements instant redemption of USYC tokens to USDC using USYC's sell function
 * @dev Pausable by the owner
 * @dev Asset token (USDC) is ERC20-compatible
 * @dev USYC token implements IUsyc interface with sell function
 * @dev Upgradeable using UUPS pattern
 */
contract UsycRedemption is IRedemption, OwnableUpgradeable, UUPSUpgradeable {
    using SafeERC20Upgradeable for IERC20Upgradeable;
    using MathUpgradeable for uint256;

    uint256 public minPrice;
    uint256 public scaleFactor;
    uint8 public usycDecimals;
    uint8 public usdcDecimals;

    address public usyc;
    address public usdc;
    address public helper;
    address public caller;
    address public usycTreasury;
    address public liquidityController;
    uint256 public RESERVE2;
    uint256 public maxSellFeeRate;

    uint256 public maxPriceAge;

    uint256 public constant FEE_MULTIPLIER = 10 ** 18;
    uint256 public constant HUNDRED_PCT = 100 * FEE_MULTIPLIER;

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    /**
     * @notice Initialize the contract
     * @param _usyc USYC token address
     * @param _usdc USDC token address
     * @param _helper USYC helper contract address
     * @param _caller Authorized caller address
     * @param _usycTreasury USYC treasury address
     * @param _liquidityController LiquidityController contract address (optional)
     */
    function initialize(
        address _usyc,
        address _usdc,
        address _helper,
        address _caller,
        address _usycTreasury,
        address _liquidityController
    ) public initializer {
        __Ownable_init();
        __UUPSUpgradeable_init();

        usyc = _usyc;
        usdc = _usdc;
        helper = _helper;
        caller = _caller;
        usycTreasury = _usycTreasury;
        liquidityController = _liquidityController;

        // Get decimals from both tokens
        usycDecimals = IERC20MetadataUpgradeable(_usyc).decimals();
        usdcDecimals = IERC20MetadataUpgradeable(_usdc).decimals();

        scaleFactor = 10 ** IPriceFeed(IUsycHelper(helper).oracle()).decimals();
        minPrice = 1 * scaleFactor;
        maxPriceAge = 3 days; // Default: 3-day buffer
    }

    /**
     * @notice Set the maximum price age (only owner)
     * @param _maxPriceAge Maximum age for price data in seconds
     */
    function setMaxPriceAge(uint256 _maxPriceAge) external onlyOwner {
        maxPriceAge = _maxPriceAge;
    }

    /**
     * @notice Set the maximum sell fee rate (only owner)
     * @param _maxRate Maximum sell fee rate
     */
    function setMaxSellFeeRate(uint256 _maxRate) external onlyOwner {
        maxSellFeeRate = _maxRate;
    }

    /**
     * @notice Set liquidity controller contract (only owner)
     * @param _liquidityController LiquidityController contract address
     */
    function setLiquidityController(address _liquidityController) external onlyOwner {
        liquidityController = _liquidityController;
    }

    /**
     * @notice Redeem USYC tokens for USDC using USYC's sell function
     * @param _amount Amount of USDC desired to receive
     * @return payout usdc amount
     * @return fee charged by usdc amount
     * @return price used in conversion
     */
    function redeem(uint256 _amount) external override returns (uint256 payout, uint256 fee, int256 price) {
        return _redeem(address(0), _amount);
    }

    function redeemFor(
        address user,
        uint256 _amount
    ) external override returns (uint256 payout, uint256 fee, int256 price) {
        return _redeem(user, _amount);
    }

    function _redeem(address user, uint256 _amount) internal returns (uint256 payout, uint256 fee, int256 price) {
        if (msg.sender != caller) revert UnauthorizedCaller();
        if (liquidityController == address(0)) revert LiquidityControllerNotSet();

        uint256 sellFeeRate = IUsycHelper(helper).sellFee();
        if (sellFeeRate > maxSellFeeRate) revert ExcessiveSellFee(sellFeeRate);

        uint256 usycAmount = convertUsdcToToken(_amount);

        // Reserve liquidity if user-specific quota is being used
        if (user != address(0)) {
            // This will revert if user doesn't have sufficient quota
            LiquidityController(liquidityController).reserveLiquidity(user, usycAmount);
        }

        SafeERC20Upgradeable.safeTransferFrom(IERC20Upgradeable(usyc), usycTreasury, address(this), usycAmount);
        SafeERC20Upgradeable.safeIncreaseAllowance(IERC20Upgradeable(usyc), helper, usycAmount);

        payout = IUsycHelper(helper).sellFor(usycAmount, address(caller));

        (, fee, price) = IUsycHelper(helper).sellPreview(usycAmount);
    }

    /**
     * @notice Preview a redemption without executing it
     * @param _amount Amount of USDC desired to receive
     * @return payout USDC amount that would be received
     * @return fee Fee that would be charged in USDC
     * @return price Price used in conversion
     */
    function previewRedeem(uint256 _amount) external view override returns (uint256 payout, uint256 fee, int256 price) {
        uint256 sellFeeRate = IUsycHelper(helper).sellFee();
        if (sellFeeRate > maxSellFeeRate) revert ExcessiveSellFee(sellFeeRate);

        uint256 usycAmount = convertUsdcToToken(_amount);
        (payout, fee, price) = IUsycHelper(helper).sellPreview(usycAmount);
    }

    /**
     * @notice Check the available liquidity for instant redeem.
     * @return liquidity The available liquidity from the redemption contract.
     * @return tAllowance The redemption token allowance for the vault.
     * @return tBalance The redemption token balance in the Treasury.
     * @return tAllowanceInUsdc The redemption token allowance in USDC.
     * @return tBalanceInUsdc The redemption token balance in USDC.
     * @return minimumInUsdc The minimum of liquidity, tAllowanceInUsdc, and tBalanceInUsdc.
     */
    function checkLiquidity()
        public
        view
        override
        returns (
            uint256 liquidity,
            uint256 tAllowance,
            uint256 tBalance,
            uint256 tAllowanceInUsdc,
            uint256 tBalanceInUsdc,
            uint256 minimumInUsdc
        )
    {
        liquidity = IERC20Upgradeable(usdc).balanceOf(helper);

        tAllowance = IERC20Upgradeable(usyc).allowance(usycTreasury, address(this));
        tAllowanceInUsdc = convertTokenToUsdc(tAllowance);

        tBalance = IERC20Upgradeable(usyc).balanceOf(usycTreasury);
        tBalanceInUsdc = convertTokenToUsdc(tBalance);

        minimumInUsdc = liquidity.min(tAllowanceInUsdc.min(tBalanceInUsdc));
    }

    /**
     * @notice Check liquidity available for a specific user
     * @param user User address to check
     * @return userUsdcLiquidity Available liquidity for this user in USDC
     * @return totalUsdcLiquidity Total available liquidity in USDC
     * @return userUsycQuota User's available quota in USYC
     */
    function checkUserLiquidity(
        address user
    ) external view returns (uint256 userUsdcLiquidity, uint256 totalUsdcLiquidity, uint256 userUsycQuota) {
        // Get base liquidity
        (, , , , , uint256 baseLiquidity) = checkLiquidity();
        totalUsdcLiquidity = baseLiquidity;

        if (liquidityController == address(0)) {
            userUsdcLiquidity = 0;
            userUsycQuota = 0;
        } else {
            // Get user-specific available quota (total quota - used)
            (uint256 availableQuota, , ) = LiquidityController(liquidityController).checkUserLiquidity(user);
            userUsycQuota = availableQuota;

            // User liquidity is minimum of available quota and total liquidity
            uint256 quotaInUsdc = convertTokenToUsdc(availableQuota);
            userUsdcLiquidity = totalUsdcLiquidity.min(quotaInUsdc);
        }
    }

    /**
     * @notice Check if USYC selling is currently available
     * @return false if USYC can be sold, true otherwise
     */
    function checkPaused() external view returns (bool) {
        return IUsycHelper(helper).sellPaused();
    }

    function getPrice(address _oracle) public view returns (uint256) {
        (uint80 roundId, int256 price, , uint256 updatedAt, uint80 answeredInRound) = IPriceFeed(_oracle)
            .latestRoundData();

        // Check if the price data is not older than maxPriceAge
        if (block.timestamp - updatedAt > maxPriceAge) {
            revert StalePrice(updatedAt, maxPriceAge);
        }

        // Check for incomplete round data
        if (answeredInRound < roundId) {
            revert StalePrice(updatedAt, maxPriceAge);
        }

        if (price <= 0 || uint256(price) < minPrice) revert InvalidPrice(price);

        return uint256(price);
    }

    function convertUsdcToToken(uint256 _amount) public view returns (uint256) {
        uint256 price = getPrice(IUsycHelper(helper).oracle());
        // Convert USDC amount to USYC token amount accounting for decimal differences
        // Formula: (usdcAmount * 10^usycDecimals * scaleFactor) / (price * 10^usdcDecimals)
        return
            _amount.mulDiv(10 ** usycDecimals * scaleFactor, price * 10 ** usdcDecimals, MathUpgradeable.Rounding.Up);
    }

    function convertTokenToUsdc(uint256 _amount) public view returns (uint256) {
        uint256 price = getPrice(IUsycHelper(helper).oracle());
        // Convert USYC token amount to USDC amount accounting for decimal differences
        // Formula: (usycAmount * price * 10^usdcDecimals) / (scaleFactor * 10^usycDecimals)
        return
            _amount.mulDiv(price * 10 ** usdcDecimals, scaleFactor * 10 ** usycDecimals, MathUpgradeable.Rounding.Down);
    }

    /**
     * @notice Set the caller address (only owner)
     * @param _caller Address of the caller
     */
    function setCaller(address _caller) external onlyOwner {
        if (_caller == address(0)) revert ZeroAddress();
        caller = _caller;
    }

    /**
     * @notice Set the USYC treasury address (only owner)
     * @param _usycTreasury Address of the USYC treasury
     */
    function setUsycTreasury(address _usycTreasury) external onlyOwner {
        if (_usycTreasury == address(0)) revert ZeroAddress();
        usycTreasury = _usycTreasury;
    }

    /**
     * @notice Emergency withdraw function for owner to withdraw stuck tokens
     * @param token Token address to withdraw
     * @param amount Amount to withdraw
     */
    function emergencyWithdraw(address token, uint256 amount) external onlyOwner {
        if (token == address(0)) revert ZeroAddress();
        SafeERC20Upgradeable.safeTransfer(IERC20Upgradeable(token), owner(), amount);
    }

    /**
     * @notice Required by the OZ UUPS module
     * @dev Only owner can upgrade the contract
     */
    function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}
"
    },
    "contracts/extensions/redemption/LiquidityController.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity =0.8.18;

import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";

error QuotaExceedsTotal(uint256 userQuota, uint256 totalLiquidity);
error QuotaExceedsUsed(uint256 newQuota, uint256 usedAmount);
error InsufficientTotalLiquidity(uint256 available, uint256 requested);
error UnauthorizedCaller();
error ZeroAddress();
error ZeroAmount();
error UserNotFound(address user);
error InsufficientUserQuota(address user, uint256 available, uint256 requested);

/**
 * @title LiquidityController
 * @dev Manages user-specific liquidity quotas for redemption operations
 * @dev Tracks allocations and enforces limits per user and globally
 * @dev Integrates with redemption contracts to validate liquidity access
 */
contract LiquidityController is OwnableUpgradeable, UUPSUpgradeable {
    using MathUpgradeable for uint256;

    // Events
    event QuotaSet(address indexed user, uint256 quota);
    event TotalLiquidityUpdated(uint256 newTotal);
    event QuotaUsed(address indexed user, uint256 amount, uint256 remainingQuota);
    event QuotaRestored(address indexed user, uint256 amount, uint256 remainingQuota);
    event CallerUpdated(address indexed newCaller);

    // State variables
    mapping(address => uint256) public userQuotas;
    mapping(address => uint256) public usedQuotas;
    mapping(address => bool) public authorizedUsers;
    mapping(address => bool) private userExists;

    address[] public users;
    address public caller;
    uint256 public totalLiquidity;

    // Track total allocated across all users
    uint256 public totalAllocated;

    // Track total used across all users
    uint256 public totalUsed;

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    /**
     * @notice Initialize the contract
     * @param _caller Authorized caller address (typically the redemption contract)
     * @param _totalLiquidity Total available liquidity pool
     */
    function initialize(address _caller, uint256 _totalLiquidity) public initializer {
        if (_caller == address(0)) revert ZeroAddress();

        __Ownable_init();
        __UUPSUpgradeable_init();

        caller = _caller;
        totalLiquidity = _totalLiquidity;
        totalAllocated = 0;
        totalUsed = 0;

        emit TotalLiquidityUpdated(_totalLiquidity);
        emit CallerUpdated(_caller);
    }

    /**
     * @notice Set quota for a specific user
     * @param user User address
     * @param quota Quota amount in underlying token (USYC)
     */
    function setUserQuota(address user, uint256 quota) external onlyOwner {
        uint256 oldQuota = userQuotas[user];
        uint256 usedQuota = usedQuotas[user];

        // Update total allocated accounting
        if (oldQuota > 0) {
            totalAllocated = totalAllocated - oldQuota;
        }

        if (quota > 0) {
            // Check that new quota isn't less than already used amount
            if (quota < usedQuota) {
                revert QuotaExceedsUsed(quota, usedQuota);
            }

            // Check if new allocation fits within total liquidity
            if (totalAllocated + quota > totalLiquidity) {
                revert QuotaExceedsTotal(quota, totalLiquidity - totalAllocated);
            }

            totalAllocated = totalAllocated + quota;

            // Add to users array if new user
            if (!userExists[user]) {
                users.push(user);
                userExists[user] = true;
            }
            authorizedUsers[user] = true;
        } else {
            // Removing quota - require no active usage
            if (usedQuota > 0) {
                revert QuotaExceedsUsed(0, usedQuota);
            }
            authorizedUsers[user] = false;
        }

        userQuotas[user] = quota;

        emit QuotaSet(user, quota);
    }

    /**
     * @notice Reserve liquidity for a user (consumes quota)
     * @param user User address
     * @param amount Amount to reserve
     */
    function reserveLiquidity(address user, uint256 amount) external {
        if (msg.sender != caller) revert UnauthorizedCaller();
        if (amount == 0) revert ZeroAmount();

        uint256 quota = userQuotas[user];
        if (quota == 0) revert UserNotFound(user);

        uint256 used = usedQuotas[user];
        uint256 availableQuota = quota > used ? quota - used : 0;

        if (amount > availableQuota) {
            revert InsufficientUserQuota(user, availableQuota, amount);
        }

        // Check total liquidity constraint
        uint256 totalAvailable = totalLiquidity > totalUsed ? totalLiquidity - totalUsed : 0;
        if (amount > totalAvailable) {
            revert InsufficientTotalLiquidity(totalAvailable, amount);
        }

        usedQuotas[user] = used + amount;
        totalUsed = totalUsed + amount;

        emit QuotaUsed(user, amount, quota > usedQuotas[user] ? quota - usedQuotas[user] : 0);
    }

    /**
     * @notice Restore liquidity for a user (releases quota back)
     * @param user User address
     * @param amount Amount to restore
     */
    function restoreLiquidity(address user, uint256 amount) external onlyOwner {
        if (amount == 0) revert ZeroAmount();

        uint256 used = usedQuotas[user];
        uint256 toRestore = amount > used ? used : amount;

        if (toRestore > 0) {
            usedQuotas[user] = used - toRestore;
            totalUsed = totalUsed - toRestore;

            uint256 quota = userQuotas[user];
            emit QuotaRestored(user, toRestore, quota > usedQuotas[user] ? quota - usedQuotas[user] : 0);
        }
    }

    /**
     * @notice Check if user has sufficient quota for amount
     * @param user User address
     * @param amount Amount to validate
     * @return allowed Whether the amount is within user's available quota
     * @return quota User's total quota
     */
    function validateUserQuota(address user, uint256 amount) external view returns (bool allowed, uint256 quota) {
        quota = userQuotas[user];
        uint256 used = usedQuotas[user];

        if (quota == 0) {
            allowed = false; // User has no quota
        } else {
            uint256 availableQuota = quota > used ? quota - used : 0;
            allowed = amount <= availableQuota; // Check: amount <= remaining quota
        }
    }

    /**
     * @notice Check total liquidity status
     * @return totalAvailable Total unallocated liquidity
     * @return totalReserved Total allocated across all users
     * @return totalConsumed Total used across all users
     * @return poolBalance Total liquidity pool
     */
    function checkTotalLiquidity()
        external
        view
        returns (uint256 totalAvailable, uint256 totalReserved, uint256 totalConsumed, uint256 poolBalance)
    {
        totalReserved = totalAllocated;
        totalConsumed = totalUsed;
        totalAvailable = totalLiquidity > totalAllocated ? totalLiquidity - totalAllocated : 0;
        poolBalance = totalLiquidity;
    }

    /**
     * @notice Check liquidity status for a specific user
     * @param user User address
     * @return available Available quota for this user
     * @return total Total quota for this user
     * @return used Used quota for this user
     */
    function checkUserLiquidity(address user) external view returns (uint256 available, uint256 total, uint256 used) {
        total = userQuotas[user];
        used = usedQuotas[user];
        available = total > used ? total - used : 0;
    }

    /**
     * @notice Check if a user is authorized and their quota status
     * @param user User address
     * @return hasQuota Whether user has a quota
     * @return quota User's total quota
     * @return available User's available quota
     */
    function isUserAuthorized(address user) external view returns (bool hasQuota, uint256 quota, uint256 available) {
        quota = userQuotas[user];
        hasQuota = quota > 0 && authorizedUsers[user];
        uint256 used = usedQuotas[user];
        available = quota > used ? quota - used : 0;
    }

    /**
     * @notice Update total liquidity pool (owner only)
     * @param newTotal New total liquidity amount
     */
    function updateTotalLiquidity(uint256 newTotal) external onlyOwner {
        if (newTotal < totalAllocated) {
            revert InsufficientTotalLiquidity(totalAllocated, newTotal);
        }

        totalLiquidity = newTotal;
        emit TotalLiquidityUpdated(newTotal);
    }

    /**
     * @notice Update authorized caller address (owner only)
     * @param newCaller New caller address
     */
    function updateCaller(address newCaller) external onlyOwner {
        if (newCaller == address(0)) revert ZeroAddress();

        caller = newCaller;
        emit CallerUpdated(newCaller);
    }

    /**
     * @notice Get list of all users with active quotas
     * @return activeUsers Array of user addresses with active quotas
     */
    function getAllUsers() external view returns (address[] memory activeUsers) {
        uint256 activeCount = 0;

        // Count active users
        for (uint256 i = 0; i < users.length; i++) {
            if (authorizedUsers[users[i]] && userQuotas[users[i]] > 0) {
                activeCount++;
            }
        }

        // Build active user list
        activeUsers = new address[](activeCount);
        uint256 index = 0;

        for (uint256 i = 0; i < users.length; i++) {
            if (authorizedUsers[users[i]] && userQuotas[users[i]] > 0) {
                activeUsers[index] = users[i];
                index++;
            }
        }
    }

    /**
     * @notice Required by the OZ UUPS module
     */
    function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}
"
    },
    "contracts/interfaces/IPriceFeed.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity =0.8.18;

interface IPriceFeed {
    function decimals() external view returns (uint8);

    function latestAnswer() external view returns (uint256);

    function latestRoundData()
        external
        view
        returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}
"
    },
    "contracts/interfaces/IRedemption.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity =0.8.18;

interface IRedemption {
    function checkLiquidity() external view returns (uint256, uint256, uint256, uint256, uint256, uint256);

    function checkPaused() external view returns (bool);

    function redeem(uint256 amount) external returns (uint256 payout, uint256 fee, int256 price);

    function redeemFor(address user, uint256 amount) external returns (uint256 payout, uint256 fee, int256 price);

    function previewRedeem(uint256 amount) external view returns (uint256 payout, uint256 fee, int256 price);
}
"
    },
    "node_modules/@openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library MathUpgradeable {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
"
    },
    "node_modules/@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.0;

import "../../interfaces/draft-IERC1822Upgradeable.sol";
import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
import {Initializable} from "./Initializable.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 *
 * _Available since v4.1._
 */
abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
    address private immutable __self = address(this);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        require(address(this) != __self, "Function must be called through delegatecall");
        require(_getImplementation() == __self, "Function must be called through active proxy");
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
        _;
    }

    function __UUPSUpgradeable_init() internal onlyInitializing {
    }

    function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
        return _IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeTo(address newImplementation) public virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data, true);
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeTo} and {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal override onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}
"
    },
    "node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal onlyInitializing {
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal onlyInitializing {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}
"
    },
    "node_modules/@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";
import "../extensions/IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20Upgradeable {
    using AddressUpgradeable for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20PermitUpgradeable token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20Upgradeable token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && AddressUpgradeable.isContract(address(token));
    }
}
"
    },
    "node_modules/@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20MetadataUpgradeable is IERC20Upgradeable {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
"
    },
    "node_modules/@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
"
    },
    "node_modules/@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, retu

Tags:
ERC20, Multisig, Liquidity, Yield, Upgradeable, Multi-Signature, Factory, Oracle|addr:0x05e3c471a6c04c88200be624ad36281dd3225ded|verified:true|block:23647106|tx:0xed4492be2281a494ecbc056754b8664f982df3eea5ce9c2430f3e8580c4e9c2a|first_check:1761328030

Submitted on: 2025-10-24 19:47:11

Comments

Log in to comment.

No comments yet.