YieldModule

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/modules/YieldModule.sol": {
      "content": "// SPDX-License-Identifier: Apache-2.0

pragma solidity 0.8.20;

import {PausableUpgradeable} from "openzeppelin-contracts-upgradeable/utils/PausableUpgradeable.sol";
import {Math} from "openzeppelin-contracts/utils/math/Math.sol";
import {SafeCast} from "openzeppelin-contracts/utils/math/SafeCast.sol";
import {IERC20} from "openzeppelin-contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "openzeppelin-contracts/token/ERC20/extensions/IERC20Metadata.sol";

import {IAggregator} from "src/interfaces/oracles/IAggregator.sol";
import {IYieldModule} from "src/interfaces/modules/IYieldModule.sol";
import {IRegistryContract} from "src/interfaces/registry/IRegistryContract.sol";
import {IRegistryAccess} from "src/interfaces/registry/IRegistryAccess.sol";
import {CheckAccessControl} from "src/utils/CheckAccessControl.sol";
import {IOracle} from "src/interfaces/oracles/IOracle.sol";
import {ITokenMapping} from "src/interfaces/tokenManager/ITokenMapping.sol";
import {
    YIELD_MODULE_TOKENOMICS_OPERATOR_ROLE,
    YIELD_MODULE_SUPER_ADMIN_ROLE,
    YIELD_MODULE_P90_INTEREST_ROLE,
    YIELD_MODULE_MAX_DATA_AGE_ROLE,
    YIELD_MODULE_UPDATER_ROLE,
    PAUSING_CONTRACTS_ROLE,
    DEFAULT_ADMIN_ROLE,
    DEFAULT_YIELD_FEED_RATE,
    INITIAL_YIELD_MODULE_MAX_DATA_AGE,
    CONTRACT_REGISTRY_ACCESS,
    CONTRACT_ORACLE,
    CONTRACT_TOKEN_MAPPING,
    BASIS_POINT_BASE
} from "src/constants.sol";
import {
    YieldSourceNotFound,
    YieldSourceDataTooOld,
    YieldSourceAlreadyExists,
    NullContract,
    MaxDataAgeZero,
    InvalidFeed,
    NullAddress,
    SameValue,
    InvalidWeeklyInterestBps,
    TreasuryAlreadyExists,
    TreasuryNotFound,
    InvalidInput
} from "src/errors.sol";

/// @title Eur0 YieldModule
/// @notice Contract for blending various assets in treasury interest rates.
/// @dev Uses Chainlink V3 interfaces for oracle data and manual overrides for fallback
contract YieldModule is PausableUpgradeable, IYieldModule {
    using CheckAccessControl for IRegistryAccess;
    using SafeCast for int256;
    using SafeCast for uint256;

    /*//////////////////////////////////////////////////////////////
                                Events
    //////////////////////////////////////////////////////////////*/

    /// @notice Emitted when a new YieldSource is added.
    event YieldSourceAdded(
        address indexed asset, address indexed feedAddress, uint256 weeklyInterestBps
    );

    /// @notice Emitted when a YieldSource is removed.
    event YieldSourceRemoved(address indexed asset);

    /// @notice Emitted when a YieldSource interest rate is updated.
    event InterestRateUpdated(address indexed asset, uint256 weeklyInterestBps);

    /// @notice Emitted when a YieldSource interest rate is overridden.
    event InterestRateOverridden(address indexed asset, uint256 weeklyInterestBps);

    /// @notice Emitted when an YieldSource feed is updated.
    event FeedUpdated(address indexed asset, address indexed feedAddress);

    /// @notice Emitted when the maximum data age is set.
    event MaxDataAgeSet(uint256 maxDataAge);

    /// @notice Emitted when the P90 interest rate is set.
    event P90InterestRateSet(uint256 p90Rate);

    /// @notice Emitted when a treasury is removed.
    event TreasuryRemoved(address indexed treasury);

    /// @notice Emitted when a treasury is added.
    event TreasuryAdded(address indexed treasury);

    /*//////////////////////////////////////////////////////////////
                                STORAGE
    //////////////////////////////////////////////////////////////*/

    /// @custom:storage-location erc7201:YieldModule.storage.v0
    struct YieldModuleStorageV0 {
        /// The address of the registry contract.
        IRegistryContract registryContract;
        /// The address of the registry access contract.
        IRegistryAccess registryAccess;
        /// The address of the oracle contract.
        IOracle oracle;
        /// The address of the token mapping contract.
        ITokenMapping tokenMapping;
        /// Maximum data age
        uint256 maxDataAge;
        /// P90 interest rate
        uint256 p90Rate;
        /// Mapping of yield sources
        mapping(address => YieldSourceData) yieldSources;
        /// Array of treasury addresses
        address[] treasuries;
    }

    // keccak256(abi.encode(uint256(keccak256("YieldModule.storage.v0")) - 1)) & ~bytes32(uint256(0xff))
    // solhint-disable-next-line
    bytes32 public constant YieldModuleStorageV0Location =
        0x78c0d34884bf8d0cac6810bafad21ac3cbbe678f28b9d1e3ae3dde64377fa000;

    /*//////////////////////////////////////////////////////////////
                             Constructor
    //////////////////////////////////////////////////////////////*/

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    /// @notice Initializes the contract with a registry contract
    /// @param registryContract Address of the registry contract for contracts management.
    function initialize(address registryContract) public initializer {
        if (registryContract == address(0)) {
            revert NullContract();
        }

        if (INITIAL_YIELD_MODULE_MAX_DATA_AGE == 0) {
            revert MaxDataAgeZero();
        }

        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();

        __Pausable_init_unchained();

        $.registryContract = IRegistryContract(registryContract);
        $.registryAccess = IRegistryAccess($.registryContract.getContract(CONTRACT_REGISTRY_ACCESS));
        $.oracle = IOracle($.registryContract.getContract(CONTRACT_ORACLE));
        $.tokenMapping = ITokenMapping($.registryContract.getContract(CONTRACT_TOKEN_MAPPING));
        $.maxDataAge = INITIAL_YIELD_MODULE_MAX_DATA_AGE;
        emit MaxDataAgeSet($.maxDataAge);
    }

    /*//////////////////////////////////////////////////////////////
                                External
    //////////////////////////////////////////////////////////////*/

    /// @notice Pauses all yield module operations.
    /// @dev Can only be called by an account with the PAUSING_CONTRACTS_ROLE.
    function pause() external {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(PAUSING_CONTRACTS_ROLE);
        _pause();
    }

    /// @notice Unpauses all yield module operations.
    /// @dev Can only be called by an account with the DEFAULT_ADMIN_ROLE.
    function unpause() external {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(DEFAULT_ADMIN_ROLE);
        _unpause();
    }

    /// @inheritdoc IYieldModule
    function addYieldSourceWithFeed(address asset, address feedAddress) external whenNotPaused {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(YIELD_MODULE_TOKENOMICS_OPERATOR_ROLE);

        _validateFeedInterface(feedAddress);
        _validateAndCreateYieldSource(asset, feedAddress, DEFAULT_YIELD_FEED_RATE);
    }

    /// @inheritdoc IYieldModule
    function addYieldSourceWithWeeklyInterest(address asset, uint256 weeklyInterestBps)
        external
        whenNotPaused
    {
        if (weeklyInterestBps > BASIS_POINT_BASE) {
            revert InvalidWeeklyInterestBps();
        }
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(YIELD_MODULE_TOKENOMICS_OPERATOR_ROLE);

        _validateAndCreateYieldSource(asset, address(0), weeklyInterestBps);
    }

    /// @inheritdoc IYieldModule
    function removeYieldSource(address asset) external whenNotPaused {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(YIELD_MODULE_SUPER_ADMIN_ROLE);

        if ($.yieldSources[asset].lastUpdated == 0) {
            revert YieldSourceNotFound();
        }

        delete $.yieldSources[asset];

        emit YieldSourceRemoved(asset);
    }

    /// @inheritdoc IYieldModule
    function removeTreasury(address treasury) external whenNotPaused {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(YIELD_MODULE_SUPER_ADMIN_ROLE);

        bool found = false;
        for (uint256 i = 0; i < $.treasuries.length;) {
            if ($.treasuries[i] == treasury) {
                // Move last treasury to current position, treasury order is not important
                $.treasuries[i] = $.treasuries[$.treasuries.length - 1];
                $.treasuries.pop();
                emit TreasuryRemoved(treasury);
                found = true;
                break;
            }
            unchecked {
                ++i;
            }
        }

        if (!found) {
            revert TreasuryNotFound();
        }
    }

    /// @inheritdoc IYieldModule
    function addTreasury(address treasury) external whenNotPaused {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(YIELD_MODULE_SUPER_ADMIN_ROLE);
        if (treasury == address(0)) {
            revert NullAddress();
        }
        for (uint256 i = 0; i < $.treasuries.length;) {
            if ($.treasuries[i] == treasury) {
                revert TreasuryAlreadyExists();
            }
            unchecked {
                ++i;
            }
        }

        $.treasuries.push(treasury);
        emit TreasuryAdded(treasury);
    }

    /// @inheritdoc IYieldModule
    function updateInterestRate(address asset, uint256 weeklyInterestBps) external whenNotPaused {
        if (weeklyInterestBps > BASIS_POINT_BASE) {
            revert InvalidWeeklyInterestBps();
        }
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(YIELD_MODULE_UPDATER_ROLE);
        YieldSourceData storage source = _getYieldSource(asset);

        // If the yield source is using an oracle, we need to override the interest rate
        if (source.feed != IAggregator(address(0))) {
            source.weeklyInterestBps = weeklyInterestBps;
            source.lastUpdated = block.timestamp;
            source.feed = IAggregator(address(0)); // disable oracle until next manual update

            emit InterestRateOverridden(asset, source.weeklyInterestBps);
        } else {
            // If the yield source is using a manual rate (no oracle), update the interest rate
            source.weeklyInterestBps = weeklyInterestBps;
            source.lastUpdated = block.timestamp;

            emit InterestRateUpdated(asset, source.weeklyInterestBps);
        }
    }

    /// @inheritdoc IYieldModule
    function updateFeed(address asset, address feedAddress) external whenNotPaused {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(YIELD_MODULE_UPDATER_ROLE);

        YieldSourceData storage source = _getYieldSource(asset);
        _validateFeedInterface(feedAddress);

        source.feed = IAggregator(feedAddress);
        source.lastUpdated = block.timestamp;
        if (source.weeklyInterestBps != 0) {
            source.weeklyInterestBps = 0;
        }
        emit FeedUpdated(asset, feedAddress);
    }

    /// @inheritdoc IYieldModule
    function setMaxDataAge(uint256 maxDataAge) external whenNotPaused {
        if (maxDataAge == 0) revert MaxDataAgeZero();

        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(YIELD_MODULE_MAX_DATA_AGE_ROLE);
        if ($.maxDataAge == maxDataAge) revert SameValue();

        $.maxDataAge = maxDataAge;
        emit MaxDataAgeSet($.maxDataAge);
    }

    /// @inheritdoc IYieldModule
    function setP90InterestRate(uint256 p90Rate) external whenNotPaused {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        $.registryAccess.onlyMatchingRole(YIELD_MODULE_P90_INTEREST_ROLE);
        // P90 rate should be less than 10000 basis points
        if (p90Rate == 0 || p90Rate >= BASIS_POINT_BASE) {
            revert InvalidInput();
        }
        if ($.p90Rate == p90Rate) revert SameValue();

        $.p90Rate = p90Rate;

        emit P90InterestRateSet(p90Rate);
    }

    /// @inheritdoc IYieldModule
    function getMaxDataAge() external view returns (uint256) {
        return _yieldModuleStorageV0().maxDataAge;
    }

    /// @inheritdoc IYieldModule
    function getBlendedWeeklyInterest() public view whenNotPaused returns (uint256 blendedRate) {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        uint256 totalValue = 0;
        uint256 weightedSum = 0;

        address[] memory rwas = $.tokenMapping.getAllEur0CollateralTokens();
        // Iterate over each stored rwa/asset.
        for (uint256 i = 0; i < rwas.length;) {
            address rwa = rwas[i];
            // fetch the current interest rate from the oracle feed
            // go over all treasuries to calculate the total rwa balance across all treasuries
            (uint256 rate, uint256 balance) = _getYieldSourceRateAndAmount(rwa);
            if (balance > 0) {
                uint256 price = $.oracle.getPrice(rwa);
                uint8 decimals = IERC20Metadata(rwa).decimals();
                // update the totalValue in USD accordingly
                uint256 assetValue = Math.mulDiv(price, balance, 10 ** decimals);
                totalValue += assetValue;
                // Update the weightedSum accordingly.
                weightedSum += rate * assetValue;
            }

            unchecked {
                ++i;
            }
        }
        // calculate the weeklyBlendedInterestRate
        blendedRate =
            totalValue > 0 ? Math.mulDiv(weightedSum, 1, totalValue, Math.Rounding.Floor) : 0;

        if (blendedRate > BASIS_POINT_BASE) revert InvalidWeeklyInterestBps();
    }

    /// @inheritdoc IYieldModule
    function getP90InterestRate() public view whenNotPaused returns (uint256) {
        return _yieldModuleStorageV0().p90Rate;
    }

    /// @inheritdoc IYieldModule
    function getYieldSource(address asset) external view returns (YieldSourceData memory) {
        return _getYieldSource(asset);
    }

    /// @inheritdoc IYieldModule
    function getYieldSourceCount() external view returns (uint256) {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        address[] memory rwas = $.tokenMapping.getAllEur0CollateralTokens();
        uint256 count = 0;

        for (uint256 i = 0; i < rwas.length;) {
            if ($.yieldSources[rwas[i]].lastUpdated != 0) {
                unchecked {
                    ++count;
                }
            }
            unchecked {
                ++i;
            }
        }
        return count;
    }

    /// @inheritdoc IYieldModule
    function getAllYieldSourceData() external view returns (YieldSourceData[] memory) {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        address[] memory rwas = $.tokenMapping.getAllEur0CollateralTokens();
        uint256 count = 0;

        // First count valid yield sources
        for (uint256 i = 0; i < rwas.length;) {
            if ($.yieldSources[rwas[i]].lastUpdated != 0) {
                unchecked {
                    ++count;
                }
            }
            unchecked {
                ++i;
            }
        }

        YieldSourceData[] memory yieldSources = new YieldSourceData[](count);
        count = 0;

        // Then populate the array
        for (uint256 i = 0; i < rwas.length;) {
            address rwa = rwas[i];
            if ($.yieldSources[rwa].lastUpdated != 0) {
                yieldSources[count] = $.yieldSources[rwa];
                unchecked {
                    ++count;
                }
            }
            unchecked {
                ++i;
            }
        }
        return yieldSources;
    }

    /// @inheritdoc IYieldModule
    function getTreasuryCount() external view returns (uint256) {
        return _yieldModuleStorageV0().treasuries.length;
    }

    /// @inheritdoc IYieldModule
    function getAllTreasury() external view returns (address[] memory) {
        return _yieldModuleStorageV0().treasuries;
    }

    /*//////////////////////////////////////////////////////////////
                                Internal
    //////////////////////////////////////////////////////////////*/

    /// @notice Returns the storage struct of the contract.
    /// @return $ .
    function _yieldModuleStorageV0() internal pure returns (YieldModuleStorageV0 storage $) {
        bytes32 position = YieldModuleStorageV0Location;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            $.slot := position
        }
    }

    /// @notice Creates a new yield source
    /// @param asset The address of the asset
    /// @param feed The address of the feed
    /// @param rate The rate of the yield source
    function _validateAndCreateYieldSource(address asset, address feed, uint256 rate) private {
        if (asset == address(0)) revert NullAddress();

        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        if ($.yieldSources[asset].lastUpdated != 0) {
            revert YieldSourceAlreadyExists();
        }

        $.yieldSources[asset] = YieldSourceData({
            feed: IAggregator(feed),
            weeklyInterestBps: rate,
            lastUpdated: block.timestamp
        });

        emit YieldSourceAdded(asset, feed, rate);
    }

    /// @notice Validates Chainlink feed contract interface
    /// @param feedAddress The address of the feed contract
    function _validateFeedInterface(address feedAddress) private view {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();

        // Fetch the latest round data from the feed
        // slither-disable-next-line unused-return
        (,,, uint256 updatedAt, uint80 answeredInRound) = IAggregator(feedAddress).latestRoundData();

        // Validate the feed data integrity
        if (answeredInRound == 0 || updatedAt == 0) revert InvalidFeed();

        // Ensure data is recent enough
        if (block.timestamp - updatedAt > $.maxDataAge) {
            revert YieldSourceDataTooOld();
        }
    }

    /// @notice Returns the yield source data for a given asset address
    /// @param asset The address of the asset to get the yield source data for
    /// @return source The yield source data
    function _getYieldSource(address asset) private view returns (YieldSourceData storage) {
        if (asset == address(0)) revert NullAddress();

        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        if ($.yieldSources[asset].lastUpdated == 0) {
            revert YieldSourceNotFound();
        }

        return $.yieldSources[asset];
    }

    /// @notice Returns the latest valid rate and amount for an yield source in USD
    /// @param asset The address of the asset to get the yield source data for
    /// @return rate The latest valid rate for the yield source
    /// @return amount The asset amount across all treasuries
    function _getYieldSourceRateAndAmount(address asset)
        private
        view
        returns (uint256 rate, uint256 amount)
    {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        YieldSourceData memory source = _getYieldSource(asset);
        // Try to get oracle rate first
        if (source.feed != IAggregator(address(0))) {
            // slither-disable-next-line unused-return
            (, int256 oracleRate,, uint256 updatedAt,) = source.feed.latestRoundData();

            if (updatedAt == 0) revert InvalidFeed();
            if (block.timestamp - updatedAt > $.maxDataAge) {
                revert YieldSourceDataTooOld();
            }
            if (oracleRate < 0) oracleRate = 0;

            rate = oracleRate.toUint256();
            if (rate > BASIS_POINT_BASE) revert InvalidWeeklyInterestBps();
        } else {
            if (block.timestamp - source.lastUpdated > $.maxDataAge) {
                revert YieldSourceDataTooOld();
            }
            rate = source.weeklyInterestBps;
        }

        amount = _getAssetBacking(asset);
    }

    /// @notice Calculates the backing amount of an asset inside our treasuries
    /// @param asset The address of the asset to calculate the backing amount for
    /// @return totalAmount The backing amount of the asset sitting in our treasuries
    function _getAssetBacking(address asset) internal view returns (uint256) {
        YieldModuleStorageV0 storage $ = _yieldModuleStorageV0();
        uint256 totalAmount = 0;
        for (uint256 i = 0; i < $.treasuries.length;) {
            address treasury = $.treasuries[i];
            totalAmount += IERC20(asset).balanceOf(treasury);
            unchecked {
                ++i;
            }
        }

        return totalAmount;
    }
}
"
    },
    "lib/openzeppelin-contracts-upgradeable/contracts/utils/PausableUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Pausable
    struct PausableStorage {
        bool _paused;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;

    function _getPausableStorage() private pure returns (PausableStorage storage $) {
        assembly {
            $.slot := PausableStorageLocation
        }
    }

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    function __Pausable_init() internal onlyInitializing {
        __Pausable_init_unchained();
    }

    function __Pausable_init_unchained() internal onlyInitializing {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        PausableStorage storage $ = _getPausableStorage();
        return $._paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
        emit Unpaused(_msgSender());
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/utils/math/SafeCast.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
     

Tags:
ERC20, Multisig, Pausable, Swap, Yield, Upgradeable, Multi-Signature, Factory, Oracle|addr:0x9ca5ae65ef6445f1b3b2a4aa47e6df0a8c07900d|verified:true|block:23655582|tx:0x0058d3c0cdfc914fa408da42af390aa0d75a17423c7a6b3fd42efd8451a94a24|first_check:1761412995

Submitted on: 2025-10-25 19:23:16

Comments

Log in to comment.

No comments yet.