Description:
Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/v1/router/specAdapters/OkxSwapAdapter.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.27;
import {OKXScaleHelper} from "contracts/v1/extensions/OKXScaleHelper.sol";
import "./ERC20SwapAdapterV2.sol";
/**
* @title TermMax OkxSwapAdapter
* @author Term Structure Labs
*/
contract OkxSwapAdapter is ERC20SwapAdapterV2, OKXScaleHelper {
using TransferUtilsV2 for IERC20;
function _swap(IERC20 tokenIn, IERC20 tokenOut, uint256 amount, bytes memory swapData)
internal
virtual
override
onlyProxy
returns (uint256 tokenOutAmt)
{
(address router, address okxApproveAddress, bytes memory data) = abi.decode(swapData, (address, address, bytes));
IERC20(tokenIn).safeApprove(okxApproveAddress, amount);
// scale the swapData and set the receiver to this contract(OkxDexRouter may not
// support transferring to arbitrary address)
data = _okxScaling(data, amount, address(this));
(bool success, bytes memory returnData) = router.call(data);
if (!success) {
assembly {
let ptr := add(returnData, 0x20)
let len := mload(returnData)
revert(ptr, len)
}
}
tokenOutAmt = abi.decode(returnData, (uint256));
}
}
"
},
"contracts/v1/extensions/OKXScaleHelper.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.27;
abstract contract OKXScaleHelper {
function _okxScaling(bytes memory rawCallData, uint256 actualAmount, address receiver)
internal
pure
returns (bytes memory scaledCallData)
{
bytes4 selector;
assembly {
selector := mload(add(rawCallData, 32))
}
bytes memory dataToDecode;
assembly {
let len := sub(mload(rawCallData), 4)
dataToDecode := mload(0x40)
mstore(dataToDecode, len)
let src := add(rawCallData, 36)
let dest := add(dataToDecode, 32)
for { let i := 0 } lt(i, len) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
mstore(0x40, add(dest, len))
}
if (selector == IOKXDexRouter.uniswapV3SwapTo.selector) {
(, uint256 amount, uint256 minReturn, uint256[] memory pools) =
abi.decode(dataToDecode, (uint256, uint256, uint256, uint256[]));
minReturn = (minReturn * actualAmount) / amount;
amount = actualAmount;
scaledCallData = abi.encodeWithSelector(selector, uint160(receiver), amount, minReturn, pools);
} else if (selector == IOKXDexRouter.smartSwapTo.selector) {
(
uint256 orderId,
,
IOKXDexRouter.BaseRequest memory baseRequest,
uint256[] memory batchesAmount,
IOKXDexRouter.RouterPath[][] memory batches,
IOKXDexRouter.PMMSwapRequest[] memory extraData
) = abi.decode(
dataToDecode,
(
uint256,
address,
IOKXDexRouter.BaseRequest,
uint256[],
IOKXDexRouter.RouterPath[][],
IOKXDexRouter.PMMSwapRequest[]
)
);
batchesAmount = _scaleArray(batchesAmount, actualAmount, baseRequest.fromTokenAmount);
baseRequest.minReturnAmount = (baseRequest.minReturnAmount * actualAmount) / baseRequest.fromTokenAmount;
baseRequest.fromTokenAmount = actualAmount;
scaledCallData =
abi.encodeWithSelector(selector, orderId, receiver, baseRequest, batchesAmount, batches, extraData);
} else if (selector == IOKXDexRouter.unxswapTo.selector) {
(uint256 srcToken, uint256 amount, uint256 minReturn,, bytes32[] memory pools) =
abi.decode(dataToDecode, (uint256, uint256, uint256, address, bytes32[]));
minReturn = (minReturn * actualAmount) / amount;
amount = actualAmount;
scaledCallData = abi.encodeWithSelector(selector, srcToken, amount, minReturn, receiver, pools);
} else if (selector == IOKXDexRouter.unxswapByOrderId.selector) {
(uint256 srcToken, uint256 amount, uint256 minReturn, bytes32[] memory pools) =
abi.decode(dataToDecode, (uint256, uint256, uint256, bytes32[]));
minReturn = (minReturn * actualAmount) / amount;
amount = actualAmount;
scaledCallData = abi.encodeWithSelector(selector, srcToken, amount, minReturn, pools);
} else if (selector == IOKXDexRouter.smartSwapByOrderId.selector) {
(
uint256 orderId,
IOKXDexRouter.BaseRequest memory baseRequest,
uint256[] memory batchesAmount,
IOKXDexRouter.RouterPath[][] memory batches,
IOKXDexRouter.PMMSwapRequest[] memory extraData
) = abi.decode(
dataToDecode,
(
uint256,
IOKXDexRouter.BaseRequest,
uint256[],
IOKXDexRouter.RouterPath[][],
IOKXDexRouter.PMMSwapRequest[]
)
);
batchesAmount = _scaleArray(batchesAmount, actualAmount, baseRequest.fromTokenAmount);
baseRequest.minReturnAmount = (baseRequest.minReturnAmount * actualAmount) / baseRequest.fromTokenAmount;
baseRequest.fromTokenAmount = actualAmount;
scaledCallData = abi.encodeWithSelector(selector, orderId, baseRequest, batchesAmount, batches, extraData);
} else {
revert("OKX scale helper: OKX selector not supported");
}
}
function _scaleArray(uint256[] memory arr, uint256 newAmount, uint256 oldAmount)
internal
pure
returns (uint256[] memory scaledArr)
{
scaledArr = new uint256[](arr.length);
for (uint256 i = 0; i < arr.length; i++) {
scaledArr[i] = (arr[i] * newAmount) / oldAmount;
}
}
}
interface IOKXDexRouter {
struct BaseRequest {
uint256 fromToken;
address toToken;
uint256 fromTokenAmount;
uint256 minReturnAmount;
uint256 deadLine;
}
struct RouterPath {
address[] mixAdapters;
address[] assetTo;
uint256[] rawData;
bytes[] extraData;
uint256 fromToken;
}
struct PMMSwapRequest {
uint256 pathIndex;
address payer;
address fromToken;
address toToken;
uint256 fromTokenAmountMax;
uint256 toTokenAmountMax;
uint256 salt;
uint256 deadLine;
bool isPushOrder;
bytes extension;
}
// // address marketMaker;
// // uint256 subIndex;
// // bytes signature;
// // uint256 source; 1byte type + 1byte bool(reverse) + 0...0 + 20 bytes address
// function smartSwapByInvest(
// BaseRequest calldata baseRequest,
// uint256[] calldata batchesAmount,
// RouterPath[][] calldata batches,
// PMMSwapRequest[] calldata extraData,
// address to
// ) external payable;
function uniswapV3SwapTo(uint256 receiver, uint256 amount, uint256 minReturn, uint256[] calldata pools)
external
payable
returns (uint256 returnAmount);
function smartSwapTo(
uint256 orderId,
address receiver,
BaseRequest calldata baseRequest,
uint256[] calldata batchesAmount,
RouterPath[][] calldata batches,
PMMSwapRequest[] calldata extraData
) external payable returns (uint256 returnAmount);
function unxswapTo(
uint256 srcToken,
uint256 amount,
uint256 minReturn,
address receiver,
// solhint-disable-next-line no-unused-vars
bytes32[] calldata pools
) external payable returns (uint256 returnAmount);
function unxswapByOrderId(
uint256 srcToken,
uint256 amount,
uint256 minReturn,
// solhint-disable-next-line no-unused-vars
bytes32[] calldata pools
) external payable returns (uint256 returnAmount);
function smartSwapByOrderId(
uint256 orderId,
BaseRequest calldata baseRequest,
uint256[] calldata batchesAmount,
RouterPath[][] calldata batches,
PMMSwapRequest[] calldata extraData
) external payable returns (uint256 returnAmount);
}
"
},
"contracts/v1/router/specAdapters/ERC20SwapAdapterV2.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {TransferUtilsV2} from "../../../v2/lib/TransferUtilsV2.sol";
import {ISwapAdapter} from "../ISwapAdapter.sol";
import {OnlyProxyCall} from "../../../v2/lib/OnlyProxyCall.sol";
/**
* @title TermMax ERC20SwapAdapter V2
* @author Term Structure Labs
* @notice This contract is an abstract base for ERC20 swap adapters in the TermMax protocol.
*/
abstract contract ERC20SwapAdapterV2 is ISwapAdapter, OnlyProxyCall {
using TransferUtilsV2 for IERC20;
/// @notice Error for less than min token out
/// @dev Revert when the actual output token amount is less than the expected minimum
error LessThanMinTokenOut(uint256 actual, uint256 expected);
/// @notice Error for exceeding max token in
/// @dev Revert when the actual required input token amount exceeds the expected maximum
error ExceedMaxTokenIn(uint256 actual, uint256 expected);
/**
* @inheritdoc ISwapAdapter
*/
function swap(address tokenIn, address tokenOut, bytes memory tokenInAmt, bytes memory swapData)
external
override
onlyProxy
returns (bytes memory)
{
return abi.encode(_swap(IERC20(tokenIn), IERC20(tokenOut), abi.decode(tokenInAmt, (uint256)), swapData));
}
function _swap(IERC20 tokenIn, IERC20 tokenOut, uint256 tokenInAmt, bytes memory swapData)
internal
virtual
returns (uint256 tokenOutAmt);
/**
* @inheritdoc ISwapAdapter
*/
function approveOutputToken(address token, address spender, bytes memory tokenData) external override {
IERC20(token).safeIncreaseAllowance(spender, _decodeAmount(tokenData));
}
/**
* @inheritdoc ISwapAdapter
*/
function transferOutputToken(address token, address to, bytes memory tokenData) external override {
IERC20(token).safeTransfer(to, _decodeAmount(tokenData));
}
/**
* @inheritdoc ISwapAdapter
*/
function transferInputTokenFrom(address token, address from, address to, bytes memory tokenData)
external
override
{
IERC20(token).safeTransferFrom(from, to, _decodeAmount(tokenData));
}
/// @notice Encode uin256 to bytes
function _encodeAmount(uint256 amount) internal pure returns (bytes memory data) {
data = abi.encode(amount);
}
/// @notice Decode uin256 from bytes
function _decodeAmount(bytes memory data) internal pure returns (uint256 amount) {
amount = abi.decode(data, (uint256));
}
}
"
},
"dependencies/@openzeppelin-contracts-5.2.0/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"dependencies/@openzeppelin-contracts-5.2.0/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
"
},
"contracts/v2/lib/TransferUtilsV2.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
library TransferUtilsV2 {
using SafeERC20 for IERC20;
error CanNotTransferUintMax();
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
token.safeTransferFrom(from, to, value);
}
function safeTransfer(IERC20 token, address to, uint256 value) internal {
token.safeTransfer(to, value);
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
token.safeIncreaseAllowance(spender, value);
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
if (value > oldAllowance) {
token.forceApprove(spender, value);
}
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
if (value == 0 || spender == address(this)) {
return;
}
token.safeDecreaseAllowance(spender, value);
}
function forceApprove(IERC20 token, address spender, uint256 value) internal {
token.forceApprove(spender, value);
}
function safeTransferFromWithCheck(IERC20 token, address from, address to, uint256 value) internal {
if (from == to || value == 0) {
return;
}
token.safeTransferFrom(from, to, value);
}
function safeTransferWithCheck(IERC20 token, address to, uint256 value) internal {
if (to == address(this) || value == 0) {
return;
}
token.safeTransfer(to, value);
}
function safeIncreaseAllowanceWithCheck(IERC20 token, address spender, uint256 value) internal {
if (value == 0 || spender == address(this)) {
return;
}
token.safeIncreaseAllowance(spender, value);
}
function safeDecreaseAllowanceWithCheck(IERC20 token, address spender, uint256 value) internal {
if (value == 0 || spender == address(this)) {
return;
}
token.safeDecreaseAllowance(spender, value);
}
function forceApproveWithCheck(IERC20 token, address spender, uint256 value) internal {
if (spender == address(this)) {
return;
}
token.forceApprove(spender, value);
}
}
"
},
"contracts/v1/router/ISwapAdapter.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.27;
/// @notice Swap unit
struct SwapUnit {
/// @notice Adapter's address
address adapter;
/// @notice Input token address
address tokenIn;
/// @notice Output token address
address tokenOut;
/// @notice Encoded swap data
bytes swapData;
}
/**
* @title TermMax SwapAdapter interface
* @author Term Structure Labs
*/
interface ISwapAdapter {
/// @notice Swap tokenIn to tokenOut
/// @param tokenIn Input token address
/// @param tokenOut Output token address
/// @param tokenInData Encoded token input data
/// @param swapData Encoded swap data
/// @param tokenOutData Encoded token output data
function swap(address tokenIn, address tokenOut, bytes memory tokenInData, bytes memory swapData)
external
returns (bytes memory tokenOutData);
/// @notice Approve output token
/// @param token Token address
/// @param spender Who spend tokens
/// @param tokenData Encoded token approving data
function approveOutputToken(address token, address spender, bytes memory tokenData) external;
/// @notice Transfer output token
/// @param token Token address
/// @param to Who receive tokens
/// @param tokenData Encoded token tranfering data
function transferOutputToken(address token, address to, bytes memory tokenData) external;
/// @notice Transfer input token from an address
/// @param token Token address
/// @param from Who provide tokens
/// @param to Who receive tokens
/// @param tokenData Encoded token tranfering data
function transferInputTokenFrom(address token, address from, address to, bytes memory tokenData) external;
}
"
},
"contracts/v2/lib/OnlyProxyCall.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
abstract contract OnlyProxyCall {
error OnlyCallableThroughProxy();
address private immutable addressThis;
constructor() {
// Store the address of the contract at deployment
addressThis = address(this);
}
/// @notice Modifier to restrict function calls to only be made through the proxy
/// @dev This ensures that the function can only be called via the proxy contract, preventing direct calls
modifier onlyProxy() {
require(addressThis != address(this), OnlyCallableThroughProxy());
_;
}
}
"
},
"dependencies/@openzeppelin-contracts-5.2.0/utils/Panic.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
"
},
"dependencies/@openzeppelin-contracts-5.2.0/utils/math/SafeCast.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function
Submitted on: 2025-10-27 16:00:51
Comments
Log in to comment.
No comments yet.