Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"@chainlink/contracts-ccip/contracts/interfaces/IAny2EVMMessageReceiver.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Client} from "../libraries/Client.sol";
/// @notice Application contracts that intend to receive messages from the router should implement this interface.
interface IAny2EVMMessageReceiver {
/// @notice Called by the Router to deliver a message. If this reverts, any token transfers also revert.
/// The message will move to a FAILED state and become available for manual execution.
/// @param message CCIP Message.
/// @dev Note ensure you check the msg.sender is the OffRampRouter.
function ccipReceive(
Client.Any2EVMMessage calldata message
) external;
}
"
},
"@chainlink/contracts-ccip/contracts/interfaces/IPool.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Pool} from "../libraries/Pool.sol";
import {IERC165} from
"@chainlink/contracts/src/v0.8/vendor/openzeppelin-solidity/v5.0.2/contracts/utils/introspection/IERC165.sol";
/// @notice Shared public interface for multiple V1 pool types.
/// Each pool type handles a different child token model e.g. lock/unlock, mint/burn.
interface IPoolV1 is IERC165 {
/// @notice Lock tokens into the pool or burn the tokens.
/// @param lockOrBurnIn Encoded data fields for the processing of tokens on the source chain.
/// @return lockOrBurnOut Encoded data fields for the processing of tokens on the destination chain.
function lockOrBurn(
Pool.LockOrBurnInV1 calldata lockOrBurnIn
) external returns (Pool.LockOrBurnOutV1 memory lockOrBurnOut);
/// @notice Releases or mints tokens to the receiver address.
/// @param releaseOrMintIn All data required to release or mint tokens.
/// @return releaseOrMintOut The amount of tokens released or minted on the local chain, denominated
/// in the local token's decimals.
/// @dev The offRamp asserts that the balanceOf of the receiver has been incremented by exactly the number
/// of tokens that is returned in ReleaseOrMintOutV1.destinationAmount. If the amounts do not match, the tx reverts.
function releaseOrMint(
Pool.ReleaseOrMintInV1 calldata releaseOrMintIn
) external returns (Pool.ReleaseOrMintOutV1 memory);
/// @notice Checks whether a remote chain is supported in the token pool.
/// @param remoteChainSelector The selector of the remote chain.
/// @return true if the given chain is a permissioned remote chain.
function isSupportedChain(
uint64 remoteChainSelector
) external view returns (bool);
/// @notice Returns if the token pool supports the given token.
/// @param token The address of the token.
/// @return true if the token is supported by the pool.
function isSupportedToken(
address token
) external view returns (bool);
}
"
},
"@chainlink/contracts-ccip/contracts/interfaces/IRMN.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice This interface contains the only RMN-related functions that might be used on-chain by other CCIP contracts.
interface IRMN {
/// @notice A Merkle root tagged with the address of the commit store contract it is destined for.
struct TaggedRoot {
address commitStore;
bytes32 root;
}
/// @notice Callers MUST NOT cache the return value as a blessed tagged root could become unblessed.
function isBlessed(
TaggedRoot calldata taggedRoot
) external view returns (bool);
/// @notice Iff there is an active global or legacy curse, this function returns true.
function isCursed() external view returns (bool);
/// @notice Iff there is an active global curse, or an active curse for `subject`, this function returns true.
/// @param subject To check whether a particular chain is cursed, set to bytes16(uint128(chainSelector)).
function isCursed(
bytes16 subject
) external view returns (bool);
}
"
},
"@chainlink/contracts-ccip/contracts/interfaces/IRouter.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Client} from "../libraries/Client.sol";
interface IRouter {
error OnlyOffRamp();
/// @notice Route the message to its intended receiver contract.
/// @param message Client.Any2EVMMessage struct.
/// @param gasForCallExactCheck of params for exec.
/// @param gasLimit set of params for exec.
/// @param receiver set of params for exec.
/// @dev if the receiver is a contracts that signals support for CCIP execution through EIP-165.
/// the contract is called. If not, only tokens are transferred.
/// @return success A boolean value indicating whether the ccip message was received without errors.
/// @return retBytes A bytes array containing return data form CCIP receiver.
/// @return gasUsed the gas used by the external customer call. Does not include any overhead.
function routeMessage(
Client.Any2EVMMessage calldata message,
uint16 gasForCallExactCheck,
uint256 gasLimit,
address receiver
) external returns (bool success, bytes memory retBytes, uint256 gasUsed);
/// @notice Returns the configured onRamp for a specific destination chain.
/// @param destChainSelector The destination chain Id to get the onRamp for.
/// @return onRampAddress The address of the onRamp.
function getOnRamp(
uint64 destChainSelector
) external view returns (address onRampAddress);
/// @notice Return true if the given offRamp is a configured offRamp for the given source chain.
/// @param sourceChainSelector The source chain selector to check.
/// @param offRamp The address of the offRamp to check.
function isOffRamp(uint64 sourceChainSelector, address offRamp) external view returns (bool isOffRamp);
}
"
},
"@chainlink/contracts-ccip/contracts/interfaces/IRouterClient.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {Client} from "../libraries/Client.sol";
interface IRouterClient {
error UnsupportedDestinationChain(uint64 destChainSelector);
error InsufficientFeeTokenAmount();
error InvalidMsgValue();
/// @notice Checks if the given chain ID is supported for sending/receiving.
/// @param destChainSelector The chain to check.
/// @return supported is true if it is supported, false if not.
function isChainSupported(
uint64 destChainSelector
) external view returns (bool supported);
/// @param destinationChainSelector The destination chainSelector.
/// @param message The cross-chain CCIP message including data and/or tokens.
/// @return fee returns execution fee for the message.
/// delivery to destination chain, denominated in the feeToken specified in the message.
/// @dev Reverts with appropriate reason upon invalid message.
function getFee(
uint64 destinationChainSelector,
Client.EVM2AnyMessage memory message
) external view returns (uint256 fee);
/// @notice Request a message to be sent to the destination chain.
/// @param destinationChainSelector The destination chain ID.
/// @param message The cross-chain CCIP message including data and/or tokens.
/// @return messageId The message ID.
/// @dev Note if msg.value is larger than the required fee (from getFee) we accept.
/// the overpayment with no refund.
/// @dev Reverts with appropriate reason upon invalid message.
function ccipSend(
uint64 destinationChainSelector,
Client.EVM2AnyMessage calldata message
) external payable returns (bytes32);
}
"
},
"@chainlink/contracts-ccip/contracts/libraries/Client.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// End consumer library.
library Client {
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct EVMTokenAmount {
address token; // token address on the local chain.
uint256 amount; // Amount of tokens.
}
struct Any2EVMMessage {
bytes32 messageId; // MessageId corresponding to ccipSend on source.
uint64 sourceChainSelector; // Source chain selector.
bytes sender; // abi.decode(sender) if coming from an EVM chain.
bytes data; // payload sent in original message.
EVMTokenAmount[] destTokenAmounts; // Tokens and their amounts in their destination chain representation.
}
// If extraArgs is empty bytes, the default is 200k gas limit.
struct EVM2AnyMessage {
bytes receiver; // abi.encode(receiver address) for dest EVM chains.
bytes data; // Data payload.
EVMTokenAmount[] tokenAmounts; // Token transfers.
address feeToken; // Address of feeToken. address(0) means you will send msg.value.
bytes extraArgs; // Populate this with _argsToBytes(EVMExtraArgsV2).
}
// Tag to indicate only a gas limit. Only usable for EVM as destination chain.
bytes4 public constant EVM_EXTRA_ARGS_V1_TAG = 0x97a657c9;
struct EVMExtraArgsV1 {
uint256 gasLimit;
}
function _argsToBytes(
EVMExtraArgsV1 memory extraArgs
) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(EVM_EXTRA_ARGS_V1_TAG, extraArgs);
}
// Tag to indicate a gas limit (or dest chain equivalent processing units) and Out Of Order Execution. This tag is
// available for multiple chain families. If there is no chain family specific tag, this is the default available
// for a chain.
// Note: not available for Solana VM based chains.
bytes4 public constant GENERIC_EXTRA_ARGS_V2_TAG = 0x181dcf10;
/// @param gasLimit: gas limit for the callback on the destination chain.
/// @param allowOutOfOrderExecution: if true, it indicates that the message can be executed in any order relative to
/// other messages from the same sender. This value's default varies by chain. On some chains, a particular value is
/// enforced, meaning if the expected value is not set, the message request will revert.
/// @dev Fully compatible with the previously existing EVMExtraArgsV2.
struct GenericExtraArgsV2 {
uint256 gasLimit;
bool allowOutOfOrderExecution;
}
// Extra args tag for chains that use the Solana VM.
bytes4 public constant SVM_EXTRA_ARGS_V1_TAG = 0x1f3b3aba;
struct SVMExtraArgsV1 {
uint32 computeUnits;
uint64 accountIsWritableBitmap;
bool allowOutOfOrderExecution;
bytes32 tokenReceiver;
// Additional accounts needed for execution of CCIP receiver. Must be empty if message.receiver is zero.
// Token transfer related accounts are specified in the token pool lookup table on SVM.
bytes32[] accounts;
}
/// @dev The maximum number of accounts that can be passed in SVMExtraArgs.
uint256 public constant SVM_EXTRA_ARGS_MAX_ACCOUNTS = 64;
/// @dev The expected static payload size of a token transfer when Borsh encoded and submitted to SVM.
/// TokenPool extra data and offchain data sizes are dynamic, and should be accounted for separately.
uint256 public constant SVM_TOKEN_TRANSFER_DATA_OVERHEAD = (4 + 32) // source_pool
+ 32 // token_address
+ 4 // gas_amount
+ 4 // extra_data overhead
+ 32 // amount
+ 32 // size of the token lookup table account
+ 32 // token-related accounts in the lookup table, over-estimated to 32, typically between 11 - 13
+ 32 // token account belonging to the token receiver, e.g ATA, not included in the token lookup table
+ 32 // per-chain token pool config, not included in the token lookup table
+ 32 // per-chain token billing config, not always included in the token lookup table
+ 32; // OffRamp pool signer PDA, not included in the token lookup table
/// @dev Number of overhead accounts needed for message execution on SVM.
/// @dev These are message.receiver, and the OffRamp Signer PDA specific to the receiver.
uint256 public constant SVM_MESSAGING_ACCOUNTS_OVERHEAD = 2;
/// @dev The size of each SVM account address in bytes.
uint256 public constant SVM_ACCOUNT_BYTE_SIZE = 32;
function _argsToBytes(
GenericExtraArgsV2 memory extraArgs
) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(GENERIC_EXTRA_ARGS_V2_TAG, extraArgs);
}
function _svmArgsToBytes(
SVMExtraArgsV1 memory extraArgs
) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(SVM_EXTRA_ARGS_V1_TAG, extraArgs);
}
}
"
},
"@chainlink/contracts-ccip/contracts/libraries/Internal.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {MerkleMultiProof} from "../libraries/MerkleMultiProof.sol";
/// @notice Library for CCIP internal definitions common to multiple contracts.
/// @dev The following is a non-exhaustive list of "known issues" for CCIP:
/// - We could implement yield claiming for Blast. This is not worth the custom code path on non-blast chains.
/// - uint32 is used for timestamps, which will overflow in 2106. This is not a concern for the current use case, as we
/// expect to have migrated to a new version by then.
library Internal {
error InvalidEVMAddress(bytes encodedAddress);
error Invalid32ByteAddress(bytes encodedAddress);
error InvalidTVMAddress(bytes encodedAddress);
/// @dev We limit return data to a selector plus 4 words. This is to avoid malicious contracts from returning
/// large amounts of data and causing repeated out-of-gas scenarios.
uint16 internal constant MAX_RET_BYTES = 4 + 4 * 32;
/// @dev The expected number of bytes returned by the balanceOf function.
uint256 internal constant MAX_BALANCE_OF_RET_BYTES = 32;
/// @dev The address used to send calls for gas estimation.
/// You only need to use this address if the minimum gas limit specified by the user is not actually enough to execute the
/// given message and you're attempting to estimate the actual necessary gas limit
address public constant GAS_ESTIMATION_SENDER = address(0xC11C11C11C11C11C11C11C11C11C11C11C11C1);
/// @notice A collection of token price and gas price updates.
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct PriceUpdates {
TokenPriceUpdate[] tokenPriceUpdates;
GasPriceUpdate[] gasPriceUpdates;
}
/// @notice Token price in USD.
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct TokenPriceUpdate {
address sourceToken; // Source token.
uint224 usdPerToken; // 1e18 USD per 1e18 of the smallest token denomination.
}
/// @notice Gas price for a given chain in USD, its value may contain tightly packed fields.
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct GasPriceUpdate {
uint64 destChainSelector; // Destination chain selector.
uint224 usdPerUnitGas; // 1e18 USD per smallest unit (e.g. wei) of destination chain gas.
}
/// @notice A timestamped uint224 value that can contain several tightly packed fields.
struct TimestampedPackedUint224 {
uint224 value; // ────╮ Value in uint224, packed.
uint32 timestamp; // ─╯ Timestamp of the most recent price update.
}
/// @dev Gas price is stored in 112-bit unsigned int. uint224 can pack 2 prices.
/// When packing L1 and L2 gas prices, L1 gas price is left-shifted to the higher-order bits.
/// Using uint8 type, which cannot be higher than other bit shift operands, to avoid shift operand type warning.
uint8 public constant GAS_PRICE_BITS = 112;
struct SourceTokenData {
// The source pool address, abi encoded. This value is trusted as it was obtained through the onRamp. It can be
// relied upon by the destination pool to validate the source pool.
bytes sourcePoolAddress;
// The address of the destination token, abi encoded in the case of EVM chains.
// This value is UNTRUSTED as any pool owner can return whatever value they want.
bytes destTokenAddress;
// Optional pool data to be transferred to the destination chain. Be default this is capped at
// CCIP_LOCK_OR_BURN_V1_RET_BYTES bytes. If more data is required, the TokenTransferFeeConfig.destBytesOverhead
// has to be set for the specific token.
bytes extraData;
uint32 destGasAmount; // The amount of gas available for the releaseOrMint and balanceOf calls on the offRamp
}
/// @notice Report that is submitted by the execution DON at the execution phase, including chain selector data.
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct ExecutionReport {
uint64 sourceChainSelector; // Source chain selector for which the report is submitted.
Any2EVMRampMessage[] messages;
// Contains a bytes array for each message, each inner bytes array contains bytes per transferred token.
bytes[][] offchainTokenData;
bytes32[] proofs;
uint256 proofFlagBits;
}
/// @dev Any2EVMRampMessage struct has 10 fields, including 3 variable unnested arrays, sender, data and tokenAmounts.
/// Each variable array takes 1 more slot to store its length.
/// When abi encoded, excluding array contents, Any2EVMMessage takes up a fixed number of 13 slots, 32 bytes each.
/// Assume 1 slot for sender
/// For structs that contain arrays, 1 more slot is added to the front, reaching a total of 14.
/// The fixed bytes does not cover struct data (this is represented by MESSAGE_FIXED_BYTES_PER_TOKEN)
uint256 public constant MESSAGE_FIXED_BYTES = 32 * 15;
/// @dev Any2EVMTokensTransfer struct bytes length
/// 0x20
/// sourcePoolAddress_offset
/// destTokenAddress
/// destGasAmount
/// extraData_offset
/// amount
/// sourcePoolAddress_length
/// sourcePoolAddress_content // assume 1 slot
/// extraData_length // contents billed separately
uint256 public constant MESSAGE_FIXED_BYTES_PER_TOKEN = 32 * (4 + (3 + 2));
bytes32 internal constant ANY_2_EVM_MESSAGE_HASH = keccak256("Any2EVMMessageHashV1");
bytes32 internal constant EVM_2_ANY_MESSAGE_HASH = keccak256("EVM2AnyMessageHashV1");
/// @dev Used to hash messages for multi-lane family-agnostic OffRamps.
/// OnRamp hash(EVM2AnyMessage) != Any2EVMRampMessage.messageId.
/// OnRamp hash(EVM2AnyMessage) != OffRamp hash(Any2EVMRampMessage).
/// @param original OffRamp message to hash.
/// @param metadataHash Hash preimage to ensure global uniqueness.
/// @return hashedMessage hashed message as a keccak256.
function _hash(Any2EVMRampMessage memory original, bytes32 metadataHash) internal pure returns (bytes32) {
// Fixed-size message fields are included in nested hash to reduce stack pressure.
// This hashing scheme is also used by RMN. If changing it, please notify the RMN maintainers.
return keccak256(
abi.encode(
MerkleMultiProof.LEAF_DOMAIN_SEPARATOR,
metadataHash,
keccak256(
abi.encode(
original.header.messageId,
original.receiver,
original.header.sequenceNumber,
original.gasLimit,
original.header.nonce
)
),
keccak256(original.sender),
keccak256(original.data),
keccak256(abi.encode(original.tokenAmounts))
)
);
}
function _hash(EVM2AnyRampMessage memory original, bytes32 metadataHash) internal pure returns (bytes32) {
// Fixed-size message fields are included in nested hash to reduce stack pressure.
// This hashing scheme is also used by RMN. If changing it, please notify the RMN maintainers.
return keccak256(
abi.encode(
MerkleMultiProof.LEAF_DOMAIN_SEPARATOR,
metadataHash,
keccak256(
abi.encode(
original.sender,
original.header.sequenceNumber,
original.header.nonce,
original.feeToken,
original.feeTokenAmount
)
),
keccak256(original.receiver),
keccak256(original.data),
keccak256(abi.encode(original.tokenAmounts)),
keccak256(original.extraArgs)
)
);
}
/// @dev We disallow the first 1024 addresses to avoid calling into a range known for hosting precompiles. Calling
/// into precompiles probably won't cause any issues, but to be safe we can disallow this range. It is extremely
/// unlikely that anyone would ever be able to generate an address in this range. There is no official range of
/// precompiles, but EIP-7587 proposes to reserve the range 0x100 to 0x1ff. Our range is more conservative, even
/// though it might not be exhaustive for all chains, which is OK. We also disallow the zero address, which is a
/// common practice.
uint256 public constant EVM_PRECOMPILE_SPACE = 1024;
// According to the Aptos docs, the first 0xa addresses are reserved for precompiles.
// https://github.com/aptos-labs/aptos-core/blob/main/aptos-move/framework/aptos-framework/doc/account.md#function-create_framework_reserved_account-1
uint256 public constant APTOS_PRECOMPILE_SPACE = 0x0b;
/// @notice This methods provides validation for parsing abi encoded addresses by ensuring the address is within the
/// EVM address space. If it isn't it will revert with an InvalidEVMAddress error, which we can catch and handle
/// more gracefully than a revert from abi.decode.
function _validateEVMAddress(
bytes memory encodedAddress
) internal pure {
if (encodedAddress.length != 32) revert InvalidEVMAddress(encodedAddress);
uint256 encodedAddressUint = abi.decode(encodedAddress, (uint256));
if (encodedAddressUint > type(uint160).max || encodedAddressUint < EVM_PRECOMPILE_SPACE) {
revert InvalidEVMAddress(encodedAddress);
}
}
/// @notice This methods provides validation for parsing abi encoded addresses by ensuring the address is within the
/// bounds of [minValue, uint256.max]. If it isn't it will revert with an Invalid32ByteAddress error.
function _validate32ByteAddress(bytes memory encodedAddress, uint256 minValue) internal pure {
if (encodedAddress.length != 32) revert Invalid32ByteAddress(encodedAddress);
if (minValue > 0) {
if (abi.decode(encodedAddress, (uint256)) < minValue) {
revert Invalid32ByteAddress(encodedAddress);
}
}
}
/// @notice This methods provides validation for TON User-friendly addresses by ensuring the address is 36 bytes long.
/// @dev The encodedAddress is expected to be the 36-byte raw representation:
/// - 1 byte: flags (isBounceable, isTestnetOnly, etc.)
/// - 1 byte: workchain_id (0x00 for BaseChain, 0xff for MasterChain)
/// - 32 bytes: account_id
/// - 2 bytes: CRC16 checksum(computationally heavy, validation omitted for simplicity)
/// @param encodedAddress The 36-byte TON address.
function _validateTVMAddress(
bytes memory encodedAddress
) internal pure {
if (encodedAddress.length != 36) revert InvalidTVMAddress(encodedAddress);
bytes32 accountId;
assembly {
accountId := mload(add(encodedAddress, 0x22)) // 0x22 = 0x20 (data start) + 2 (offset for account_id)
}
if (accountId == bytes32(0)) revert InvalidTVMAddress(encodedAddress);
}
/// @notice Enum listing the possible message execution states within the offRamp contract.
/// UNTOUCHED never executed.
/// IN_PROGRESS currently being executed, used a replay protection.
/// SUCCESS successfully executed. End state.
/// FAILURE unsuccessfully executed, manual execution is now enabled.
/// @dev RMN depends on this enum, if changing, please notify the RMN maintainers.
enum MessageExecutionState {
UNTOUCHED,
IN_PROGRESS,
SUCCESS,
FAILURE
}
/// @notice CCIP OCR plugin type, used to separate execution & commit transmissions and configs.
enum OCRPluginType {
Commit,
Execution
}
/// @notice Family-agnostic header for OnRamp & OffRamp messages.
/// The messageId is not expected to match hash(message), since it may originate from another ramp family.
struct RampMessageHeader {
bytes32 messageId; // Unique identifier for the message, generated with the source chain's encoding scheme (i.e. not necessarily abi.encoded).
uint64 sourceChainSelector; // ─╮ the chain selector of the source chain, note: not chainId.
uint64 destChainSelector; // │ the chain selector of the destination chain, note: not chainId.
uint64 sequenceNumber; // │ sequence number, not unique across lanes.
uint64 nonce; // ───────────────╯ nonce for this lane for this sender, not unique across senders/lanes.
}
struct EVM2AnyTokenTransfer {
// The source pool EVM address. This value is trusted as it was obtained through the onRamp. It can be relied
// upon by the destination pool to validate the source pool.
address sourcePoolAddress;
// The EVM address of the destination token.
// This value is UNTRUSTED as any pool owner can return whatever value they want.
bytes destTokenAddress;
// Optional pool data to be transferred to the destination chain. Be default this is capped at
// CCIP_LOCK_OR_BURN_V1_RET_BYTES bytes. If more data is required, the TokenTransferFeeConfig.destBytesOverhead
// has to be set for the specific token.
bytes extraData;
uint256 amount; // Amount of tokens.
// Destination chain data used to execute the token transfer on the destination chain. For an EVM destination, it
// consists of the amount of gas available for the releaseOrMint and transfer calls made by the offRamp.
bytes destExecData;
}
struct Any2EVMTokenTransfer {
// The source pool EVM address encoded to bytes. This value is trusted as it is obtained through the onRamp. It can
// be relied upon by the destination pool to validate the source pool.
bytes sourcePoolAddress;
address destTokenAddress; // ─╮ Address of destination token
uint32 destGasAmount; // ─────╯ The amount of gas available for the releaseOrMint and transfer calls on the offRamp.
// Optional pool data to be transferred to the destination chain. Be default this is capped at
// CCIP_LOCK_OR_BURN_V1_RET_BYTES bytes. If more data is required, the TokenTransferFeeConfig.destBytesOverhead
// has to be set for the specific token.
bytes extraData;
uint256 amount; // Amount of tokens.
}
/// @notice Family-agnostic message routed to an OffRamp.
/// Note: hash(Any2EVMRampMessage) != hash(EVM2AnyRampMessage), hash(Any2EVMRampMessage) != messageId due to encoding
/// and parameter differences.
struct Any2EVMRampMessage {
RampMessageHeader header; // Message header.
bytes sender; // sender address on the source chain.
bytes data; // arbitrary data payload supplied by the message sender.
address receiver; // receiver address on the destination chain.
uint256 gasLimit; // user supplied maximum gas amount available for dest chain execution.
Any2EVMTokenTransfer[] tokenAmounts; // array of tokens and amounts to transfer.
}
/// @notice Family-agnostic message emitted from the OnRamp.
/// Note: hash(Any2EVMRampMessage) != hash(EVM2AnyRampMessage) due to encoding & parameter differences.
/// messageId = hash(EVM2AnyRampMessage) using the source EVM chain's encoding format.
struct EVM2AnyRampMessage {
RampMessageHeader header; // Message header.
address sender; // sender address on the source chain.
bytes data; // arbitrary data payload supplied by the message sender.
bytes receiver; // receiver address on the destination chain.
bytes extraArgs; // destination-chain specific extra args, such as the gasLimit for EVM chains.
address feeToken; // fee token.
uint256 feeTokenAmount; // fee token amount.
uint256 feeValueJuels; // fee amount in Juels.
EVM2AnyTokenTransfer[] tokenAmounts; // array of tokens and amounts to transfer.
}
// bytes4(keccak256("CCIP ChainFamilySelector EVM"));
bytes4 public constant CHAIN_FAMILY_SELECTOR_EVM = 0x2812d52c;
// bytes4(keccak256("CCIP ChainFamilySelector SVM"));
bytes4 public constant CHAIN_FAMILY_SELECTOR_SVM = 0x1e10bdc4;
// bytes4(keccak256("CCIP ChainFamilySelector APTOS"));
bytes4 public constant CHAIN_FAMILY_SELECTOR_APTOS = 0xac77ffec;
// bytes4(keccak256("CCIP ChainFamilySelector SUI"));
bytes4 public constant CHAIN_FAMILY_SELECTOR_SUI = 0xc4e05953;
// byte4(keccak256("CCIP ChainFamiliySelector TVM"));
bytes4 public constant CHAIN_FAMILY_SELECTOR_TVM = 0x647e2ba9;
/// @dev Holds a merkle root and interval for a source chain so that an array of these can be passed in the CommitReport.
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
/// @dev inefficient struct packing intentionally chosen to maintain order of specificity. Not a storage struct so impact is minimal.
// solhint-disable-next-line gas-struct-packing
struct MerkleRoot {
uint64 sourceChainSelector; // Remote source chain selector that the Merkle Root is scoped to
bytes onRampAddress; // Generic onRamp address, to support arbitrary sources; for EVM, use abi.encode
uint64 minSeqNr; // ─────────╮ Minimum sequence number, inclusive
uint64 maxSeqNr; // ─────────╯ Maximum sequence number, inclusive
bytes32 merkleRoot; // Merkle root covering the interval & source chain messages
}
}
"
},
"@chainlink/contracts-ccip/contracts/libraries/MerkleMultiProof.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.4;
library MerkleMultiProof {
/// @notice Leaf domain separator, should be used as the first 32 bytes of a leaf's preimage.
bytes32 internal constant LEAF_DOMAIN_SEPARATOR = 0x0000000000000000000000000000000000000000000000000000000000000000;
/// @notice Internal domain separator, should be used as the first 32 bytes of an internal node's preimage.
bytes32 internal constant INTERNAL_DOMAIN_SEPARATOR =
0x0000000000000000000000000000000000000000000000000000000000000001;
uint256 internal constant MAX_NUM_HASHES = 256;
error InvalidProof();
error LeavesCannotBeEmpty();
/// @notice Computes the root based on provided pre-hashed leaf nodes in leaves, internal nodes in proofs, and using
/// proofFlagBits' i-th bit to determine if an element of proofs or one of the previously computed leafs or internal
/// nodes will be used for the i-th hash.
/// @param leaves Should be pre-hashed and the first 32 bytes of a leaf's preimage should match LEAF_DOMAIN_SEPARATOR.
/// @param proofs Hashes to be used instead of a leaf hash when the proofFlagBits indicates a proof should be used.
/// @param proofFlagBits A single uint256 of which each bit indicates whether a leaf or a proof needs to be used in
/// a hash operation.
/// @dev the maximum number of hash operations it set to 256. Any input that would require more than 256 hashes to get
/// to a root will revert.
/// @dev For given input `leaves` = [a,b,c] `proofs` = [D] and `proofFlagBits` = 5
/// totalHashes = 3 + 1 - 1 = 3
/// ** round 1 **
/// proofFlagBits = (5 >> 0) & 1 = true
/// hashes[0] = hashPair(a, b)
/// (leafPos, hashPos, proofPos) = (2, 0, 0);
///
/// ** round 2 **
/// proofFlagBits = (5 >> 1) & 1 = false
/// hashes[1] = hashPair(D, c)
/// (leafPos, hashPos, proofPos) = (3, 0, 1);
///
/// ** round 3 **
/// proofFlagBits = (5 >> 2) & 1 = true
/// hashes[2] = hashPair(hashes[0], hashes[1])
/// (leafPos, hashPos, proofPos) = (3, 2, 1);
///
/// i = 3 and no longer < totalHashes. The algorithm is done
/// return hashes[totalHashes - 1] = hashes[2]; the last hash we computed.
// We mark this function as internal to force it to be inlined in contracts that use it, but semantically it is public.
function _merkleRoot(
bytes32[] memory leaves,
bytes32[] memory proofs,
uint256 proofFlagBits
) internal pure returns (bytes32) {
unchecked {
uint256 leavesLen = leaves.length;
uint256 proofsLen = proofs.length;
if (leavesLen == 0) revert LeavesCannotBeEmpty();
if (!(leavesLen <= MAX_NUM_HASHES + 1 && proofsLen <= MAX_NUM_HASHES + 1)) revert InvalidProof();
uint256 totalHashes = leavesLen + proofsLen - 1;
if (!(totalHashes <= MAX_NUM_HASHES)) revert InvalidProof();
if (totalHashes == 0) {
return leaves[0];
}
bytes32[] memory hashes = new bytes32[](totalHashes);
(uint256 leafPos, uint256 hashPos, uint256 proofPos) = (0, 0, 0);
for (uint256 i = 0; i < totalHashes; ++i) {
// Checks if the bit flag signals the use of a supplied proof or a leaf/previous hash.
bytes32 a;
if (proofFlagBits & (1 << i) == (1 << i)) {
// Use a leaf or a previously computed hash.
if (leafPos < leavesLen) {
a = leaves[leafPos++];
} else {
a = hashes[hashPos++];
}
} else {
// Use a supplied proof.
a = proofs[proofPos++];
}
// The second part of the hashed pair is never a proof as hashing two proofs would result in a
// hash that can already be computed offchain.
bytes32 b;
if (leafPos < leavesLen) {
b = leaves[leafPos++];
} else {
b = hashes[hashPos++];
}
if (!(hashPos <= i)) revert InvalidProof();
hashes[i] = _hashPair(a, b);
}
if (!(hashPos == totalHashes - 1 && leafPos == leavesLen && proofPos == proofsLen)) revert InvalidProof();
// Return the last hash.
return hashes[totalHashes - 1];
}
}
/// @notice Hashes two bytes32 objects in their given order, prepended by the INTERNAL_DOMAIN_SEPARATOR.
function _hashInternalNode(bytes32 left, bytes32 right) private pure returns (bytes32 hash) {
return keccak256(abi.encode(INTERNAL_DOMAIN_SEPARATOR, left, right));
}
/// @notice Hashes two bytes32 objects. The order is taken into account, using the lower value first.
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _hashInternalNode(a, b) : _hashInternalNode(b, a);
}
}
"
},
"@chainlink/contracts-ccip/contracts/libraries/Pool.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice This library contains various token pool functions to aid constructing the return data.
library Pool {
// The tag used to signal support for the pool v1 standard.
// bytes4(keccak256("CCIP_POOL_V1"))
bytes4 public constant CCIP_POOL_V1 = 0xaff2afbf;
// The number of bytes in the return data for a pool v1 releaseOrMint call.
// This should match the size of the ReleaseOrMintOutV1 struct.
uint16 public constant CCIP_POOL_V1_RET_BYTES = 32;
// The default max number of bytes in the return data for a pool v1 lockOrBurn call.
// This data can be used to send information to the destination chain token pool. Can be overwritten
// in the TokenTransferFeeConfig.destBytesOverhead if more data is required.
uint32 public constant CCIP_LOCK_OR_BURN_V1_RET_BYTES = 32;
struct LockOrBurnInV1 {
bytes receiver; // The recipient of the tokens on the destination chain, abi encoded.
uint64 remoteChainSelector; // ─╮ The chain ID of the destination chain.
address originalSender; // ─────╯ The original sender of the tx on the source chain.
uint256 amount; // The amount of tokens to lock or burn, denominated in the source token's decimals.
address localToken; // The address on this chain of the token to lock or burn.
}
struct LockOrBurnOutV1 {
// The address of the destination token, abi encoded in the case of EVM chains.
// This value is UNTRUSTED as any pool owner can return whatever value they want.
bytes destTokenAddress;
// Optional pool data to be transferred to the destination chain. Be default this is capped at
// CCIP_LOCK_OR_BURN_V1_RET_BYTES bytes. If more data is required, the TokenTransferFeeConfig.destBytesOverhead
// has to be set for the specific token.
bytes destPoolData;
}
struct ReleaseOrMintInV1 {
bytes originalSender; // The original sender of the tx on the source chain.
uint64 remoteChainSelector; // ───╮ The chain ID of the source chain.
address receiver; // ─────────────╯ The recipient of the tokens on the destination chain.
uint256 sourceDenominatedAmount; // The amount of tokens to release or mint, denominated in the source token's decimals.
address localToken; // The address on this chain of the token to release or mint.
/// @dev WARNING: sourcePoolAddress should be checked prior to any processing of funds. Make sure it matches the
/// expected pool address for the given remoteChainSelector.
bytes sourcePoolAddress; // The address of the source pool, abi encoded in the case of EVM chains.
bytes sourcePoolData; // The data received from the source pool to process the release or mint.
/// @dev WARNING: offchainTokenData is untrusted data.
bytes offchainTokenData; // The offchain data to process the release or mint.
}
struct ReleaseOrMintOutV1 {
// The number of tokens released or minted on the destination chain, denominated in the local token's decimals.
// This value is expected to be equal to the ReleaseOrMintInV1.amount in the case where the source and destination
// chain have the same number of decimals.
uint256 destinationAmount;
}
}
"
},
"@chainlink/contracts-ccip/contracts/libraries/RateLimiter.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.4;
/// @notice Implements Token Bucket rate limiting.
/// @dev uint128 is safe for rate limiter state.
/// - For USD value rate limiting, it can adequately store USD value in 18 decimals.
/// - For ERC20 token amount rate limiting, all tokens that will be listed will have at most a supply of uint128.max
/// tokens, and it will therefore not overflow the bucket. In exceptional scenarios where tokens consumed may be larger
/// than uint128, e.g. compromised issuer, an enabled RateLimiter will check and revert.
library RateLimiter {
error BucketOverfilled();
error TokenMaxCapacityExceeded(uint256 capacity, uint256 requested, address tokenAddress);
error TokenRateLimitReached(uint256 minWaitInSeconds, uint256 available, address tokenAddress);
error InvalidRateLimitRate(Config rateLimiterConfig);
error DisabledNonZeroRateLimit(Config config);
event ConfigChanged(Config config);
struct TokenBucket {
uint128 tokens; // ────╮ Current number of tokens that are in the bucket.
uint32 lastUpdated; // │ Timestamp in seconds of the last token refill, good for 100+ years.
bool isEnabled; // ────╯ Indication whether the rate limiting is enabled or not.
uint128 capacity; // ──╮ Maximum number of tokens that can be in the bucket.
uint128 rate; // ──────╯ Number of tokens per second that the bucket is refilled.
}
struct Config {
bool isEnabled; // Indication whether the rate limiting should be enabled.
uint128 capacity; // ──╮ Specifies the capacity of the rate limiter.
uint128 rate; // ─────╯ Specifies the rate of the rate limiter.
}
/// @notice _consume removes the given tokens from the pool, lowering the rate tokens allowed to be
/// consumed for subsequent calls.
/// @param requestTokens The total tokens to be consumed from the bucket.
/// @param tokenAddress The token to consume capacity for, use 0x0 to indicate aggregate value capacity.
/// @dev Reverts when requestTokens exceeds bucket capacity or available tokens in the bucket.
/// @dev emits removal of requestTokens if requestTokens is > 0.
function _consume(TokenBucket storage s_bucket, uint256 requestTokens, address tokenAddress) internal {
// If there is no value to remove or rate limiting is turned off, skip this step to reduce gas usage.
if (!s_bucket.isEnabled || requestTokens == 0) {
return;
}
uint256 tokens = s_bucket.tokens;
uint256 capacity = s_bucket.capacity;
uint256 timeDiff = block.timestamp - s_bucket.lastUpdated;
if (timeDiff != 0) {
if (tokens > capacity) revert BucketOverfilled();
// Refill tokens when arriving at a new block time.
tokens = _calculateRefill(capacity, tokens, timeDiff, s_bucket.rate);
s_bucket.lastUpdated = uint32(block.timestamp);
}
if (capacity < requestTokens) {
revert TokenMaxCapacityExceeded(capacity, requestTokens, tokenAddress);
}
if (tokens < requestTokens) {
uint256 rate = s_bucket.rate;
// Wait required until the bucket is refilled enough to accept this value, round up to next higher second.
// Consume is not guaranteed to succeed after wait time passes if there is competing traffic.
// This acts as a lower bound of wait time.
uint256 minWaitInSeconds = ((requestTokens - tokens) + (rate - 1)) / rate;
revert TokenRateLimitReached(minWaitInSeconds, tokens, tokenAddress);
}
tokens -= requestTokens;
// Downcast is safe here, as tokens is not larger than capacity.
s_bucket.tokens = uint128(tokens);
}
/// @notice Gets the token bucket with its values for the block it was requested at.
/// @return The token bucket.
function _currentTokenBucketState(
TokenBucket memory bucket
) internal view returns (TokenBucket memory) {
// We update the bucket to reflect the status at the exact time of the call. This means we might need to refill a
// part of the bucket based on the time that has passed since the last update.
bucket.tokens =
uint128(_calculateRefill(bucket.capacity, bucket.tokens, block.timestamp - bucket.lastUpdated, bucket.rate));
bucket.lastUpdated = uint32(block.timestamp);
return bucket;
}
/// @notice Sets the rate limited config.
/// @param s_bucket The token bucket.
/// @param config The new config.
function _setTokenBucketConfig(TokenBucket storage s_bucket, Config memory config) internal {
// First update the bucket to make sure the proper rate is used for all the time up until the config change.
uint256 timeDiff = block.timestamp - s_bucket.lastUpdated;
if (timeDiff != 0) {
s_bucket.tokens = uint128(_calculateRefill(s_bucket.capacity, s_bucket.tokens, timeDiff, s_bucket.rate));
s_bucket.lastUpdated = uint32(block.timestamp);
}
s_bucket.tokens = uint128(_min(config.capacity, s_bucket.tokens));
s_bucket.isEnabled = config.isEnabled;
s_bucket.capacity = config.capacity;
s_bucket.rate = config.rate;
emit ConfigChanged(config);
}
/// @notice Validates the token bucket config.
function _validateTokenBucketConfig(
Config memory config
) internal pure {
if (config.isEnabled) {
if (config.rate > config.capacity) {
revert InvalidRateLimitRate(config);
}
} else {
if (config.rate != 0 || config.capacity != 0) {
revert DisabledNonZeroRateLimit(config);
}
}
}
/// @notice Calculate refilled tokens.
/// @param capacity bucket capacity.
/// @param tokens current bucket tokens.
/// @param timeDiff block time difference since last refill.
/// @param rate bucket refill rate.
/// @return the value of tokens after refill.
function _calculateRefill(
uint256 capacity,
uint256 tokens,
uint256 timeDiff,
uint256 rate
) private pure returns (uint256) {
return _min(capacity, tokens + timeDiff * rate);
}
/// @notice Return the smallest of two integers.
/// @param a first int.
/// @param b second int.
/// @return smallest.
function _min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
}
"
},
"@chainlink/contracts-ccip/contracts/pools/TokenPool.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.24;
import {IPoolV1} from "../interfaces/IPool.sol";
import {IRMN} from "../interfaces/IRMN.sol";
import {IRouter} from "../interfaces/IRouter.sol";
import {Pool} from "../libraries/Pool.sol";
import {RateLimiter} from "../libraries/RateLimiter.sol";
import {Ownable2StepMsgSender} from "@chainlink/contracts/src/v0.8/shared/access/Ownable2StepMsgSender.sol";
import {IERC20} from
"@chainlink/contracts/src/v0.8/vendor/openzeppelin-solidity/v4.8.3/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from
"@chainlink/contracts/src/v0.8/vendor/openzeppelin-solidity/v4.8.3/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC165} from
"@chainlink/contracts/src/v0.8/vendor/openzeppelin-solidity/v5.0.2/contracts/utils/introspection/IERC165.sol";
import {EnumerableSet} from
"@chainlink/contracts/src/v0.8/vendor/openzeppelin-solidity/v5.0.2/contracts/utils/structs/EnumerableSet.sol";
/// @notice Base abstract class with common functions for all token pools.
/// A token pool serves as isolated place for holding tokens and token specific logic
/// that may execute as tokens move across the bridge.
/// @dev This pool supports different decimals on different chains but using this feature could impact the total number
/// of tokens in circulation. Since all of the tokens are locked/burned on the source, and a rounded amount is
/// minted/released on the destination, the number of tokens minted/released could be less than the number of tokens
/// burned/locked. This is because the source chain does not know about the destination token decimals. This is not a
/// problem if the decimals are the same on both chains.
///
/// Example:
/// Assume there is a token with 6 decimals on chain A and 3 decimals on chain B.
/// - 1.234567 tokens are burned on chain A.
/// - 1.234 tokens are minted on chain B.
/// When sending the 1.234 tokens back to chain A, you will receive 1.234000 tokens on chain A, effectively losing
/// 0.000567 tokens.
/// In the case of a burnMint pool on chain A, these funds are burned in the pool on chain A.
/// In the case of a lockRelease pool on chain A, these funds accumulate in the pool on chain A.
abstract contract TokenPool is IPoolV1, Ownable2StepMsgSender {
using EnumerableSet for EnumerableSet.Bytes32Set;
using EnumerableSet for EnumerableSet.AddressSet;
using EnumerableSet for EnumerableSet.UintSet;
using RateLimiter for RateLimiter.TokenBucket;
error CallerIsNotARampOnRouter(address caller);
error ZeroAddressNotAllowed();
error SenderNotAllowed(address sender);
error AllowListNotEnabled();
error NonExistentChain(uint64 remoteChainSelector);
error ChainNotAllowed(uint64 remoteChainSelector);
error CursedByRMN();
error ChainAlreadyExists(uint64 chainSelector);
error InvalidSourcePoolAddress(bytes sourcePoolAddress);
error InvalidToken(address token);
error Unauthorized(address caller);
error PoolAlreadyAdded(uint64 remoteChainSelector, bytes remotePoolAddress);
error InvalidRemotePoolForChain(uint64 remoteChainSelector, bytes remotePoolAddress);
error InvalidRemoteChainDecimals(bytes sourcePoolData);
error MismatchedArrayLengths();
error OverflowDetected(uint8 remoteDecimals, uint8 localDecimals, uint256 remoteAmount);
error InvalidDecimalArgs(uint8 expected, uint8 actual);
event LockedOrBurned(uint64 indexed remoteChainSelector, address token, address sender, uint256 amount);
event ReleasedOrMinted(
uint64 indexed remoteChainSelector, address token, address sender, address recipient, uint256 amount
);
event ChainAdded(
uint64 remoteChainSelector,
bytes remoteToken,
RateLimiter.Config outboundRateLimiterConfig,
RateLimiter.Config inboundRateLimiterConfig
);
event ChainConfigured(
uint64 remoteChainSelector,
RateLimiter.Config outboundRateLimiterConfig,
RateLimiter.Config inboundRateLimiterConfig
);
event ChainRemoved(uint64 remoteChainSelector);
event RemotePoolAdded(uint64 indexed remoteChainSelector, bytes remotePoolAddress);
event RemotePoolRemoved(uint64 indexed remoteChainSelector, bytes remotePoolAddress);
event AllowListAdd(address sender);
event AllowListRemove(address sender);
event RouterUpdated(address oldRouter, address newRouter);
event RateLimitAdminSet(address rateLimitAdmin);
event OutboundRateLimitConsumed(uint64 indexed remoteChainSelector, address token, uint256 amount);
event InboundRateLimitConsumed(uint64 indexed remoteChainSelector, address token, uint256 amount);
struct ChainUpdate {
uint64 remoteChainSelector; // Remote chain selector
bytes[] remotePoolAddresses; // Address of the remote pool, ABI encoded in the case of a remote EVM chain.
bytes remoteTokenAddress; // Address of the remote token, ABI encoded in the case of a remote EVM chain.
RateLimiter.Config outboundRateLimiterConfig; // Outbound rate limited config, meaning the rate limits for all of the onRamps for the given chain
RateLimiter.Config inboundRateLimiterConfig; // Inbound rate limited config, meaning the rate limits for all of the offRamps for the given chain
}
struct RemoteChainConfig {
RateLimiter.TokenBucket outboundRateLimiterConfig; // Outbound rate limited config, meaning the rate limits for all of the onRamps for the given chain
RateLimiter.TokenBucket inboundRateLimiterConfig; // Inbound rate limited config, meaning the rate limits for all of the offRamps for the given chain
bytes remoteTokenAddress; // Address of the remote token, ABI encoded in the case of a remote EVM chain.
EnumerableSet.Bytes32Set remotePools; // Set of remote pool hashes, ABI encoded in the case of a remote EVM chain.
}
/// @dev The bridgeable token that is managed by this pool. Pools could support multiple tokens at the same time if
/// required, but this implementation only supports one token.
IERC20 internal immutable i_token;
/// @dev The number of decimals of the token managed by this pool.
uint8 internal immutable i_tokenDecimals;
/// @dev The address of the RMN proxy
address internal immutable i_rmnProxy;
/// @dev The immutable flag that indicates if the pool is access-controlled.
bool internal immutable i_allowlistEnabled;
/// @dev A set of addresses allowed to trigger lockOrBurn as original senders.
/// Only takes effect if i_allowlistEnabled is true.
/// This can be used to ensure only token-issuer specified addresses can move tokens.
EnumerableSet.AddressSet internal s_allowlist;
/// @dev The address of the router
IRouter internal s_router;
/// @dev A set of allowed chain selectors. We want the allowlist to be enumerable to
/// be able to quickly determine (without parsing logs) who can access the pool.
/// @dev The chain selectors are in uint256 format because of the EnumerableSet implementation.
EnumerableSet.UintSet internal s_remoteChainSelectors;
mapping(uint64 remoteChainSelector => RemoteChainConfig) internal s_remoteChainConfigs;
/// @notice A mapping of hashed pool addresses to their unhashed form. This is used to be able to find the actually
/// configured pools and not just their hashed versions.
mapping(bytes32 poolAddressHash => bytes poolAddress) internal s_remotePoolAddresses;
/// @notice The address of the rate limiter admin.
/// @dev Can be address(0) if none is configured.
address internal s_rateLimitAdmin;
constructor(IERC20 token, uint8 localTokenDecimals, address[] memory allowlist, address rmnProxy, address router) {
if (address(token) == address(0) || router == address(0) || rmnProxy == address(0)) revert ZeroAddressNotAllowed();
i_token = token;
i_rmnProxy = rmnProxy;
try IERC20Metadata(address(token)).decimals() returns (uint8 actualTokenDecimals) {
if (localTokenDecimals != actualTokenDecimals) {
revert InvalidDecimalArgs(localTokenDecimals, actualTokenDecimals);
}
} catch {
// The decimals function doesn't exist, which is possible since it's optional in the ERC20 spec. We skip the check and
// assume the supplied token decimals are correct.
}
i_tokenDecimals = localTokenDecimals;
s_router = IRouter(router);
// Pool can be set as permissioned or permissionless at deployment time only to save hot-path gas.
i_allowlistEnabled = allowlist.length > 0;
if (i_allowlistEnabled) {
_applyAllowListUpdates(new address[](0), allowlist);
}
}
/// @inheritdoc IPoolV1
function isSupportedToken(
address token
) public view virtual returns (bool) {
return token == address(i_token);
}
/// @notice Gets the IERC20 token that this pool can lock or burn.
/// @return token The IERC20 token representation.
function getToken() public view returns (IERC20 token) {
return i_token;
}
/// @notice Get RMN proxy address
/// @return rmnProxy Address of RMN proxy
function getRmnProxy() public view returns (address rmnProxy) {
return i_rmnProxy;
}
/// @notice Gets the pool's Router
/// @return router The pool's Router
function getRouter() public view virtual returns (address router) {
return address(s_router);
}
/// @notice Sets the pool's Router
/// @param newRouter The new Router
function setRouter(
address newRouter
) public onlyOwner {
if (newRouter == address(0)) revert ZeroAddressNotAllowed();
address oldRouter = address(s_router);
s_router = IRouter(newRouter);
emit RouterUpdated(oldRouter, newRouter);
}
/// @notice Signals which version of the pool interface is supported
function supportsInterface(
bytes4 interfaceId
) public pure virtual override returns (bool) {
return interfaceId == Pool.CCIP_POOL_V1 || interfaceId == type(IPoolV1).interfaceId
|| interfaceId == type(IERC165).interfaceId;
}
// ================================================================
// │ Lock or Burn │
// ================================================================
/// @notice Burn the token in the pool
/// @dev The _validateLockOrBurn check is an essential security check
function lockOrBurn(
Pool.LockOrBurnInV1 calldata lockOrBurnIn
) public virtual override returns (Pool.LockOrBurnOutV1 memory) {
_validateLockOrBurn(lockOrBurnIn);
_lockOrBurn(lockOrBurnIn.amount);
emit LockedOrBurned({
remoteChainSelector: lockOrBurnIn.remoteChainSelector,
token: address(i_token),
sender: msg.sender,
amount: lockOrBurnIn.amount
});
return Pool.LockOrBurnOutV1({
destTokenAddress: getRemoteToken(lockOrBurnIn.remoteChainSelector),
destPoolData: _encodeLocalDecimals()
});
}
/// @notice Contains the specific lock or burn token logic for a pool.
/// @dev overriding this method allows us to create pools with different lock/burn signatures
/// without duplicating the underlying logic.
function _lockOrBurn(
uint256 amount
) internal virtual {}
// ================================================================
// │ Release or Mint │
// ================================================================
/// @notice Mint tokens from the pool to the recipient
/// @dev The _validateReleaseOrMint check is an essential security check
function releaseOrMint(
Pool.ReleaseOrMintInV1 calldata releaseOrMintIn
) public virtual override returns (Pool.ReleaseOrMintOutV1 memory) {
// Calculate the local amount
uint256 localAmount = _calculateLocalAmount(
releaseOrMintIn.sourceDenominatedAmount, _parseRemoteDecimals(releaseOrMintIn.sourcePoolData)
);
_validateReleaseOrMint(releaseOrMintIn, localAmount);
// Mint to the receiver
_releaseOrMint(releaseOrMintIn.receiver, localAmount);
emit ReleasedOrMinted({
remoteChainSelector: releaseOrMintIn.remoteChainSelector,
token: address(i_token),
sender: msg.sender,
recipient: releaseOrMintIn.receiver,
amount: localAmount
});
return Pool.ReleaseOrMintOutV1({destinationAmount: localAmount});
}
/// @notice Contains the specific release or mint token logic for a pool.
/// @dev overriding this method allows us to create pools with different release/mint signatures
/// without duplicating the underlying logic.
function _releaseOrMint(address receiver, uint256 amount) internal virtual {}
// ================================================================
// │ Validation │
// ================================================================
/// @notice Validates the lock or burn input for correctness on
/// - token to be locked or burned
/// - RMN curse status
/// - allowlist status
/// - if the sender is a valid onRamp
/// - rate limit status
/// @param lockOrBurnIn The input to validate.
/// @dev This function should always be called before executing a lock or burn. Not doing so would allow
/// for various exploits.
function _validateLockOrBurn(
Pool.LockOrBurnInV1 calldata lockOrBurnIn
) internal {
if (!isSupportedToken(lockOrBurnIn.localToken)) revert InvalidToken(lockOrBurnIn.localToken);
if (IRMN(i_rmnProxy).isCursed(bytes16(uint128(lockOrBurnIn.remoteChainSelector)))) revert CursedByRMN();
_checkAllowList(lockOrBurnIn.originalSender);
_onlyOnRamp(lockOrBurnIn.remoteChainSelector);
_consumeOutboundRateLimit(lockOrBurnIn.remoteChainSelector, lockOrBurnIn.amount);
}
/// @notice Validates the release or mint input for correctness on
/// - token to be released or minted
/// - RMN curse status
/// - if the sender is a valid offRamp
/// - if the source pool is valid
/// - rate limit status
/// @param releaseOrMintIn The input to validate.
/// @param localAmount The local amount to be released or minted.
/// @dev This function should always be called before executing a release or mint. Not doing so would allow
/// for various exploits.
function _validateReleaseOrMint(Pool.ReleaseOrMintInV1 calldata releaseOrMintIn, uint256 localAmount) internal {
if (!isSupportedToken(releaseOrMintIn.localToken)) revert InvalidToken(releaseOrMintIn.localToken);
if (IRMN(i_rmnProxy).isCursed(bytes16(uint128(releaseOrMintIn.remoteChainSelector)))) revert CursedByRMN();
_onlyOffRamp(releaseOrMintIn.remoteChainSelector);
// Validates that the source pool address is configured on this pool.
if (!isRemotePool(releaseOrMintIn.remoteChainSelector, releaseOrMintIn.sourcePoolAddress)) {
revert InvalidSourcePoolAddress(releaseOrMintIn.sourcePoolAddress);
}
_consumeInboundRateLimit(releaseOrMintIn.remoteChainSelector, localAmount);
}
// ================================================================
// │ Token decimals │
// ================================================================
/// @notice Gets the IERC20 token decimals on the local chain.
function getTokenDecimals() public view virtual returns (uint8 decimals) {
return i_tokenDecimals;
}
function _encodeLocalDecimals() internal view virtual returns (bytes memory) {
return abi.encode(i_tokenDecimals);
}
function _parseRemoteDecimals(
bytes memory sourcePoolData
) internal view virtual returns (uint8) {
// Fallback to the local token decimals if the source pool data is empty. This allows for backwards compatibility.
if (sourcePoolData.length == 0) {
return i_tokenDecimals;
}
if (sourcePoolData.length != 32) {
revert InvalidRemoteChainDecimals(sourcePoolData);
}
uint256 remoteDecimals = abi.decode(sourcePoolData, (uint256));
if (remoteDecimals > type(uint8).max) {
revert InvalidRemoteChainDecimals(sourcePoolData);
}
return uint8(remoteDecimals);
}
/// @notice Calculates the local amount based on the remote amount and decimals.
/// @param remoteAmount The amount on the remote chain.
/// @param remoteDecimals The decimals of the token on the remote chain.
/// @return The local amount.
/// @dev This function protects against overflows. If there is a transaction that hits the overflow check, it is
/// probably incorrect as that means the amount cannot be represented on this chain. If the local decimals have been
/// wrongly configured, the token issuer could redeploy the pool with the correct decimals and manually re-execute the
/// CCIP tx to fix the issue.
function _calculateLocalAmount(uint256 remoteAmount, uint8 remoteDecimals) internal view virtual returns (uint256) {
if (remoteDecimals == i_tokenDecimals) {
return remoteAmount;
}
if (remoteDecimals > i_tokenDecimals) {
uint8 decimalsDiff = remoteDecimals - i_tokenDecimals;
if (decimalsDiff > 77) {
// This is a safety check to prevent overflow in the next calculation.
revert OverflowDetected(remoteDecimals, i_tokenDecimals, remoteAmount);
}
// Solidity rounds down so there is no risk of minting more tokens than the remote chain sent.
return remoteAmount / (10 ** decimalsDiff);
}
// This is a safety check to prevent overflow in the next calculation.
// More than 77 would never fit in a uint256 and would cause an overflow. We also check if the resulting amount
// would overflow.
uint8 diffDecimals = i_tokenDecimals - remoteDecimals;
if (diffDecimals > 77 || remoteAmount > type(uint256).max / (10 ** diffDecimals)) {
revert OverflowDetected(remoteDecimals, i_tokenDecimals, remoteAmount);
}
return remoteAmount * (10 ** diffDecimals);
}
// ================================================================
// │ Chain permissions │
// ================================================================
/// @notice Gets the pool address on the remote chain.
/// @param remoteChainSelector Remote chain selector.
/// @dev To support non-evm chains, this value is encoded into bytes
function getRemotePools(
uint64 remoteChainSelector
) public view returns (bytes[] memory) {
bytes32[] memory remotePoolHashes = s_remoteChainConfigs[remoteChainSelector].remotePools.values();
bytes[] memory remotePools = new bytes[](remotePoolHashes.length);
for (uint256 i = 0; i < remotePoolHashes.length; ++i) {
remotePools[i] = s_remotePoolAddresses[remotePoolHashes[i]];
}
return remotePools;
}
/// @notice Checks if the pool address is configured on the remote chain.
/// @param remoteChainSelector Remote chain selector.
/// @param remotePoolAddress The address of the remote pool.
function isRemotePool(uint64 remoteChainSelector, bytes memory remotePoolAddress) public view returns (bool) {
return s_remoteChainConfigs[remoteChainSelector].remotePools.contains(keccak256(remotePoolAddress));
}
/// @notice Gets the token address on the remote chain.
/// @param remoteChainSelector Remote chain selector.
/// @dev To support non-evm chains, this value is encoded into bytes
function getRemoteToken(
uint64 remoteChainSelector
) public view returns (bytes memory) {
return s_remoteChainConfigs[remoteChainSelector].remoteTokenAddress;
}
/// @notice Adds a remote pool for a given chain selector. This could be due to a pool being upgraded on the remote
/// chain. We don't simply want to replace the old pool as there could still be valid inflight messages from the old
/// pool. This function allows for multiple pools to be added for a single chain selector.
/// @param remoteChainSelector The remote chain selector for which the remote pool address is being added.
/// @param remotePoolAddress The address of the new remote pool.
function addRemotePool(uint64 remoteChainSelector, bytes calldata remotePoolAddress) external onlyOwner {
if (!isSupportedChain(remoteChainSelector)) revert NonExistentChain(remoteChainSelector);
_setRemotePool(remoteChainSelector, remotePool
Submitted on: 2025-10-27 17:14:35
Comments
Log in to comment.
No comments yet.