Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"lib/v4-core/lib/openzeppelin-contracts/contracts/access/manager/AccessManager.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AccessManager.sol)
pragma solidity ^0.8.20;
import {IAccessManager} from "./IAccessManager.sol";
import {IAccessManaged} from "./IAccessManaged.sol";
import {Address} from "../../utils/Address.sol";
import {Context} from "../../utils/Context.sol";
import {Multicall} from "../../utils/Multicall.sol";
import {Math} from "../../utils/math/Math.sol";
import {Time} from "../../utils/types/Time.sol";
/**
* @dev AccessManager is a central contract to store the permissions of a system.
*
* A smart contract under the control of an AccessManager instance is known as a target, and will inherit from the
* {AccessManaged} contract, be connected to this contract as its manager and implement the {AccessManaged-restricted}
* modifier on a set of functions selected to be permissioned. Note that any function without this setup won't be
* effectively restricted.
*
* The restriction rules for such functions are defined in terms of "roles" identified by an `uint64` and scoped
* by target (`address`) and function selectors (`bytes4`). These roles are stored in this contract and can be
* configured by admins (`ADMIN_ROLE` members) after a delay (see {getTargetAdminDelay}).
*
* For each target contract, admins can configure the following without any delay:
*
* * The target's {AccessManaged-authority} via {updateAuthority}.
* * Close or open a target via {setTargetClosed} keeping the permissions intact.
* * The roles that are allowed (or disallowed) to call a given function (identified by its selector) through {setTargetFunctionRole}.
*
* By default every address is member of the `PUBLIC_ROLE` and every target function is restricted to the `ADMIN_ROLE` until configured otherwise.
* Additionally, each role has the following configuration options restricted to this manager's admins:
*
* * A role's admin role via {setRoleAdmin} who can grant or revoke roles.
* * A role's guardian role via {setRoleGuardian} who's allowed to cancel operations.
* * A delay in which a role takes effect after being granted through {setGrantDelay}.
* * A delay of any target's admin action via {setTargetAdminDelay}.
* * A role label for discoverability purposes with {labelRole}.
*
* Any account can be added and removed into any number of these roles by using the {grantRole} and {revokeRole} functions
* restricted to each role's admin (see {getRoleAdmin}).
*
* Since all the permissions of the managed system can be modified by the admins of this instance, it is expected that
* they will be highly secured (e.g., a multisig or a well-configured DAO).
*
* NOTE: This contract implements a form of the {IAuthority} interface, but {canCall} has additional return data so it
* doesn't inherit `IAuthority`. It is however compatible with the `IAuthority` interface since the first 32 bytes of
* the return data are a boolean as expected by that interface.
*
* NOTE: Systems that implement other access control mechanisms (for example using {Ownable}) can be paired with an
* {AccessManager} by transferring permissions (ownership in the case of {Ownable}) directly to the {AccessManager}.
* Users will be able to interact with these contracts through the {execute} function, following the access rules
* registered in the {AccessManager}. Keep in mind that in that context, the msg.sender seen by restricted functions
* will be {AccessManager} itself.
*
* WARNING: When granting permissions over an {Ownable} or {AccessControl} contract to an {AccessManager}, be very
* mindful of the danger associated with functions such as {{Ownable-renounceOwnership}} or
* {{AccessControl-renounceRole}}.
*/
contract AccessManager is Context, Multicall, IAccessManager {
using Time for *;
// Structure that stores the details for a target contract.
struct TargetConfig {
mapping(bytes4 selector => uint64 roleId) allowedRoles;
Time.Delay adminDelay;
bool closed;
}
// Structure that stores the details for a role/account pair. This structures fit into a single slot.
struct Access {
// Timepoint at which the user gets the permission.
// If this is either 0 or in the future, then the role permission is not available.
uint48 since;
// Delay for execution. Only applies to restricted() / execute() calls.
Time.Delay delay;
}
// Structure that stores the details of a role.
struct Role {
// Members of the role.
mapping(address user => Access access) members;
// Admin who can grant or revoke permissions.
uint64 admin;
// Guardian who can cancel operations targeting functions that need this role.
uint64 guardian;
// Delay in which the role takes effect after being granted.
Time.Delay grantDelay;
}
// Structure that stores the details for a scheduled operation. This structure fits into a single slot.
struct Schedule {
// Moment at which the operation can be executed.
uint48 timepoint;
// Operation nonce to allow third-party contracts to identify the operation.
uint32 nonce;
}
uint64 public constant ADMIN_ROLE = type(uint64).min; // 0
uint64 public constant PUBLIC_ROLE = type(uint64).max; // 2**64-1
mapping(address target => TargetConfig mode) private _targets;
mapping(uint64 roleId => Role) private _roles;
mapping(bytes32 operationId => Schedule) private _schedules;
// Used to identify operations that are currently being executed via {execute}.
// This should be transient storage when supported by the EVM.
bytes32 private _executionId;
/**
* @dev Check that the caller is authorized to perform the operation, following the restrictions encoded in
* {_getAdminRestrictions}.
*/
modifier onlyAuthorized() {
_checkAuthorized();
_;
}
constructor(address initialAdmin) {
if (initialAdmin == address(0)) {
revert AccessManagerInvalidInitialAdmin(address(0));
}
// admin is active immediately and without any execution delay.
_grantRole(ADMIN_ROLE, initialAdmin, 0, 0);
}
// =================================================== GETTERS ====================================================
/// @inheritdoc IAccessManager
function canCall(
address caller,
address target,
bytes4 selector
) public view virtual returns (bool immediate, uint32 delay) {
if (isTargetClosed(target)) {
return (false, 0);
} else if (caller == address(this)) {
// Caller is AccessManager, this means the call was sent through {execute} and it already checked
// permissions. We verify that the call "identifier", which is set during {execute}, is correct.
return (_isExecuting(target, selector), 0);
} else {
uint64 roleId = getTargetFunctionRole(target, selector);
(bool isMember, uint32 currentDelay) = hasRole(roleId, caller);
return isMember ? (currentDelay == 0, currentDelay) : (false, 0);
}
}
/// @inheritdoc IAccessManager
function expiration() public view virtual returns (uint32) {
return 1 weeks;
}
/// @inheritdoc IAccessManager
function minSetback() public view virtual returns (uint32) {
return 5 days;
}
/// @inheritdoc IAccessManager
function isTargetClosed(address target) public view virtual returns (bool) {
return _targets[target].closed;
}
/// @inheritdoc IAccessManager
function getTargetFunctionRole(address target, bytes4 selector) public view virtual returns (uint64) {
return _targets[target].allowedRoles[selector];
}
/// @inheritdoc IAccessManager
function getTargetAdminDelay(address target) public view virtual returns (uint32) {
return _targets[target].adminDelay.get();
}
/// @inheritdoc IAccessManager
function getRoleAdmin(uint64 roleId) public view virtual returns (uint64) {
return _roles[roleId].admin;
}
/// @inheritdoc IAccessManager
function getRoleGuardian(uint64 roleId) public view virtual returns (uint64) {
return _roles[roleId].guardian;
}
/// @inheritdoc IAccessManager
function getRoleGrantDelay(uint64 roleId) public view virtual returns (uint32) {
return _roles[roleId].grantDelay.get();
}
/// @inheritdoc IAccessManager
function getAccess(
uint64 roleId,
address account
) public view virtual returns (uint48 since, uint32 currentDelay, uint32 pendingDelay, uint48 effect) {
Access storage access = _roles[roleId].members[account];
since = access.since;
(currentDelay, pendingDelay, effect) = access.delay.getFull();
return (since, currentDelay, pendingDelay, effect);
}
/// @inheritdoc IAccessManager
function hasRole(
uint64 roleId,
address account
) public view virtual returns (bool isMember, uint32 executionDelay) {
if (roleId == PUBLIC_ROLE) {
return (true, 0);
} else {
(uint48 hasRoleSince, uint32 currentDelay, , ) = getAccess(roleId, account);
return (hasRoleSince != 0 && hasRoleSince <= Time.timestamp(), currentDelay);
}
}
// =============================================== ROLE MANAGEMENT ===============================================
/// @inheritdoc IAccessManager
function labelRole(uint64 roleId, string calldata label) public virtual onlyAuthorized {
if (roleId == ADMIN_ROLE || roleId == PUBLIC_ROLE) {
revert AccessManagerLockedRole(roleId);
}
emit RoleLabel(roleId, label);
}
/// @inheritdoc IAccessManager
function grantRole(uint64 roleId, address account, uint32 executionDelay) public virtual onlyAuthorized {
_grantRole(roleId, account, getRoleGrantDelay(roleId), executionDelay);
}
/// @inheritdoc IAccessManager
function revokeRole(uint64 roleId, address account) public virtual onlyAuthorized {
_revokeRole(roleId, account);
}
/// @inheritdoc IAccessManager
function renounceRole(uint64 roleId, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessManagerBadConfirmation();
}
_revokeRole(roleId, callerConfirmation);
}
/// @inheritdoc IAccessManager
function setRoleAdmin(uint64 roleId, uint64 admin) public virtual onlyAuthorized {
_setRoleAdmin(roleId, admin);
}
/// @inheritdoc IAccessManager
function setRoleGuardian(uint64 roleId, uint64 guardian) public virtual onlyAuthorized {
_setRoleGuardian(roleId, guardian);
}
/// @inheritdoc IAccessManager
function setGrantDelay(uint64 roleId, uint32 newDelay) public virtual onlyAuthorized {
_setGrantDelay(roleId, newDelay);
}
/**
* @dev Internal version of {grantRole} without access control. Returns true if the role was newly granted.
*
* Emits a {RoleGranted} event.
*/
function _grantRole(
uint64 roleId,
address account,
uint32 grantDelay,
uint32 executionDelay
) internal virtual returns (bool) {
if (roleId == PUBLIC_ROLE) {
revert AccessManagerLockedRole(roleId);
}
bool newMember = _roles[roleId].members[account].since == 0;
uint48 since;
if (newMember) {
since = Time.timestamp() + grantDelay;
_roles[roleId].members[account] = Access({since: since, delay: executionDelay.toDelay()});
} else {
// No setback here. Value can be reset by doing revoke + grant, effectively allowing the admin to perform
// any change to the execution delay within the duration of the role admin delay.
(_roles[roleId].members[account].delay, since) = _roles[roleId].members[account].delay.withUpdate(
executionDelay,
0
);
}
emit RoleGranted(roleId, account, executionDelay, since, newMember);
return newMember;
}
/**
* @dev Internal version of {revokeRole} without access control. This logic is also used by {renounceRole}.
* Returns true if the role was previously granted.
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function _revokeRole(uint64 roleId, address account) internal virtual returns (bool) {
if (roleId == PUBLIC_ROLE) {
revert AccessManagerLockedRole(roleId);
}
if (_roles[roleId].members[account].since == 0) {
return false;
}
delete _roles[roleId].members[account];
emit RoleRevoked(roleId, account);
return true;
}
/**
* @dev Internal version of {setRoleAdmin} without access control.
*
* Emits a {RoleAdminChanged} event.
*
* NOTE: Setting the admin role as the `PUBLIC_ROLE` is allowed, but it will effectively allow
* anyone to set grant or revoke such role.
*/
function _setRoleAdmin(uint64 roleId, uint64 admin) internal virtual {
if (roleId == ADMIN_ROLE || roleId == PUBLIC_ROLE) {
revert AccessManagerLockedRole(roleId);
}
_roles[roleId].admin = admin;
emit RoleAdminChanged(roleId, admin);
}
/**
* @dev Internal version of {setRoleGuardian} without access control.
*
* Emits a {RoleGuardianChanged} event.
*
* NOTE: Setting the guardian role as the `PUBLIC_ROLE` is allowed, but it will effectively allow
* anyone to cancel any scheduled operation for such role.
*/
function _setRoleGuardian(uint64 roleId, uint64 guardian) internal virtual {
if (roleId == ADMIN_ROLE || roleId == PUBLIC_ROLE) {
revert AccessManagerLockedRole(roleId);
}
_roles[roleId].guardian = guardian;
emit RoleGuardianChanged(roleId, guardian);
}
/**
* @dev Internal version of {setGrantDelay} without access control.
*
* Emits a {RoleGrantDelayChanged} event.
*/
function _setGrantDelay(uint64 roleId, uint32 newDelay) internal virtual {
if (roleId == PUBLIC_ROLE) {
revert AccessManagerLockedRole(roleId);
}
uint48 effect;
(_roles[roleId].grantDelay, effect) = _roles[roleId].grantDelay.withUpdate(newDelay, minSetback());
emit RoleGrantDelayChanged(roleId, newDelay, effect);
}
// ============================================= FUNCTION MANAGEMENT ==============================================
/// @inheritdoc IAccessManager
function setTargetFunctionRole(
address target,
bytes4[] calldata selectors,
uint64 roleId
) public virtual onlyAuthorized {
for (uint256 i = 0; i < selectors.length; ++i) {
_setTargetFunctionRole(target, selectors[i], roleId);
}
}
/**
* @dev Internal version of {setTargetFunctionRole} without access control.
*
* Emits a {TargetFunctionRoleUpdated} event.
*/
function _setTargetFunctionRole(address target, bytes4 selector, uint64 roleId) internal virtual {
_targets[target].allowedRoles[selector] = roleId;
emit TargetFunctionRoleUpdated(target, selector, roleId);
}
/// @inheritdoc IAccessManager
function setTargetAdminDelay(address target, uint32 newDelay) public virtual onlyAuthorized {
_setTargetAdminDelay(target, newDelay);
}
/**
* @dev Internal version of {setTargetAdminDelay} without access control.
*
* Emits a {TargetAdminDelayUpdated} event.
*/
function _setTargetAdminDelay(address target, uint32 newDelay) internal virtual {
uint48 effect;
(_targets[target].adminDelay, effect) = _targets[target].adminDelay.withUpdate(newDelay, minSetback());
emit TargetAdminDelayUpdated(target, newDelay, effect);
}
// =============================================== MODE MANAGEMENT ================================================
/// @inheritdoc IAccessManager
function setTargetClosed(address target, bool closed) public virtual onlyAuthorized {
_setTargetClosed(target, closed);
}
/**
* @dev Set the closed flag for a contract. This is an internal setter with no access restrictions.
*
* Emits a {TargetClosed} event.
*/
function _setTargetClosed(address target, bool closed) internal virtual {
if (target == address(this)) {
revert AccessManagerLockedAccount(target);
}
_targets[target].closed = closed;
emit TargetClosed(target, closed);
}
// ============================================== DELAYED OPERATIONS ==============================================
/// @inheritdoc IAccessManager
function getSchedule(bytes32 id) public view virtual returns (uint48) {
uint48 timepoint = _schedules[id].timepoint;
return _isExpired(timepoint) ? 0 : timepoint;
}
/// @inheritdoc IAccessManager
function getNonce(bytes32 id) public view virtual returns (uint32) {
return _schedules[id].nonce;
}
/// @inheritdoc IAccessManager
function schedule(
address target,
bytes calldata data,
uint48 when
) public virtual returns (bytes32 operationId, uint32 nonce) {
address caller = _msgSender();
// Fetch restrictions that apply to the caller on the targeted function
(, uint32 setback) = _canCallExtended(caller, target, data);
uint48 minWhen = Time.timestamp() + setback;
// if call with delay is not authorized, or if requested timing is too soon
if (setback == 0 || (when > 0 && when < minWhen)) {
revert AccessManagerUnauthorizedCall(caller, target, _checkSelector(data));
}
// Reuse variable due to stack too deep
when = uint48(Math.max(when, minWhen)); // cast is safe: both inputs are uint48
// If caller is authorised, schedule operation
operationId = hashOperation(caller, target, data);
_checkNotScheduled(operationId);
unchecked {
// It's not feasible to overflow the nonce in less than 1000 years
nonce = _schedules[operationId].nonce + 1;
}
_schedules[operationId].timepoint = when;
_schedules[operationId].nonce = nonce;
emit OperationScheduled(operationId, nonce, when, caller, target, data);
// Using named return values because otherwise we get stack too deep
}
/**
* @dev Reverts if the operation is currently scheduled and has not expired.
* (Note: This function was introduced due to stack too deep errors in schedule.)
*/
function _checkNotScheduled(bytes32 operationId) private view {
uint48 prevTimepoint = _schedules[operationId].timepoint;
if (prevTimepoint != 0 && !_isExpired(prevTimepoint)) {
revert AccessManagerAlreadyScheduled(operationId);
}
}
/// @inheritdoc IAccessManager
// Reentrancy is not an issue because permissions are checked on msg.sender. Additionally,
// _consumeScheduledOp guarantees a scheduled operation is only executed once.
// slither-disable-next-line reentrancy-no-eth
function execute(address target, bytes calldata data) public payable virtual returns (uint32) {
address caller = _msgSender();
// Fetch restrictions that apply to the caller on the targeted function
(bool immediate, uint32 setback) = _canCallExtended(caller, target, data);
// If caller is not authorised, revert
if (!immediate && setback == 0) {
revert AccessManagerUnauthorizedCall(caller, target, _checkSelector(data));
}
bytes32 operationId = hashOperation(caller, target, data);
uint32 nonce;
// If caller is authorised, check operation was scheduled early enough
// Consume an available schedule even if there is no currently enforced delay
if (setback != 0 || getSchedule(operationId) != 0) {
nonce = _consumeScheduledOp(operationId);
}
// Mark the target and selector as authorised
bytes32 executionIdBefore = _executionId;
_executionId = _hashExecutionId(target, _checkSelector(data));
// Perform call
Address.functionCallWithValue(target, data, msg.value);
// Reset execute identifier
_executionId = executionIdBefore;
return nonce;
}
/// @inheritdoc IAccessManager
function cancel(address caller, address target, bytes calldata data) public virtual returns (uint32) {
address msgsender = _msgSender();
bytes4 selector = _checkSelector(data);
bytes32 operationId = hashOperation(caller, target, data);
if (_schedules[operationId].timepoint == 0) {
revert AccessManagerNotScheduled(operationId);
} else if (caller != msgsender) {
// calls can only be canceled by the account that scheduled them, a global admin, or by a guardian of the required role.
(bool isAdmin, ) = hasRole(ADMIN_ROLE, msgsender);
(bool isGuardian, ) = hasRole(getRoleGuardian(getTargetFunctionRole(target, selector)), msgsender);
if (!isAdmin && !isGuardian) {
revert AccessManagerUnauthorizedCancel(msgsender, caller, target, selector);
}
}
delete _schedules[operationId].timepoint; // reset the timepoint, keep the nonce
uint32 nonce = _schedules[operationId].nonce;
emit OperationCanceled(operationId, nonce);
return nonce;
}
/// @inheritdoc IAccessManager
function consumeScheduledOp(address caller, bytes calldata data) public virtual {
address target = _msgSender();
if (IAccessManaged(target).isConsumingScheduledOp() != IAccessManaged.isConsumingScheduledOp.selector) {
revert AccessManagerUnauthorizedConsume(target);
}
_consumeScheduledOp(hashOperation(caller, target, data));
}
/**
* @dev Internal variant of {consumeScheduledOp} that operates on bytes32 operationId.
*
* Returns the nonce of the scheduled operation that is consumed.
*/
function _consumeScheduledOp(bytes32 operationId) internal virtual returns (uint32) {
uint48 timepoint = _schedules[operationId].timepoint;
uint32 nonce = _schedules[operationId].nonce;
if (timepoint == 0) {
revert AccessManagerNotScheduled(operationId);
} else if (timepoint > Time.timestamp()) {
revert AccessManagerNotReady(operationId);
} else if (_isExpired(timepoint)) {
revert AccessManagerExpired(operationId);
}
delete _schedules[operationId].timepoint; // reset the timepoint, keep the nonce
emit OperationExecuted(operationId, nonce);
return nonce;
}
/// @inheritdoc IAccessManager
function hashOperation(address caller, address target, bytes calldata data) public view virtual returns (bytes32) {
return keccak256(abi.encode(caller, target, data));
}
// ==================================================== OTHERS ====================================================
/// @inheritdoc IAccessManager
function updateAuthority(address target, address newAuthority) public virtual onlyAuthorized {
IAccessManaged(target).setAuthority(newAuthority);
}
// ================================================= ADMIN LOGIC ==================================================
/**
* @dev Check if the current call is authorized according to admin logic.
*/
function _checkAuthorized() private {
address caller = _msgSender();
(bool immediate, uint32 delay) = _canCallSelf(caller, _msgData());
if (!immediate) {
if (delay == 0) {
(, uint64 requiredRole, ) = _getAdminRestrictions(_msgData());
revert AccessManagerUnauthorizedAccount(caller, requiredRole);
} else {
_consumeScheduledOp(hashOperation(caller, address(this), _msgData()));
}
}
}
/**
* @dev Get the admin restrictions of a given function call based on the function and arguments involved.
*
* Returns:
* - bool restricted: does this data match a restricted operation
* - uint64: which role is this operation restricted to
* - uint32: minimum delay to enforce for that operation (max between operation's delay and admin's execution delay)
*/
function _getAdminRestrictions(
bytes calldata data
) private view returns (bool restricted, uint64 roleAdminId, uint32 executionDelay) {
if (data.length < 4) {
return (false, 0, 0);
}
bytes4 selector = _checkSelector(data);
// Restricted to ADMIN with no delay beside any execution delay the caller may have
if (
selector == this.labelRole.selector ||
selector == this.setRoleAdmin.selector ||
selector == this.setRoleGuardian.selector ||
selector == this.setGrantDelay.selector ||
selector == this.setTargetAdminDelay.selector
) {
return (true, ADMIN_ROLE, 0);
}
// Restricted to ADMIN with the admin delay corresponding to the target
if (
selector == this.updateAuthority.selector ||
selector == this.setTargetClosed.selector ||
selector == this.setTargetFunctionRole.selector
) {
// First argument is a target.
address target = abi.decode(data[0x04:0x24], (address));
uint32 delay = getTargetAdminDelay(target);
return (true, ADMIN_ROLE, delay);
}
// Restricted to that role's admin with no delay beside any execution delay the caller may have.
if (selector == this.grantRole.selector || selector == this.revokeRole.selector) {
// First argument is a roleId.
uint64 roleId = abi.decode(data[0x04:0x24], (uint64));
return (true, getRoleAdmin(roleId), 0);
}
return (false, 0, 0);
}
// =================================================== HELPERS ====================================================
/**
* @dev An extended version of {canCall} for internal usage that checks {_canCallSelf}
* when the target is this contract.
*
* Returns:
* - bool immediate: whether the operation can be executed immediately (with no delay)
* - uint32 delay: the execution delay
*/
function _canCallExtended(
address caller,
address target,
bytes calldata data
) private view returns (bool immediate, uint32 delay) {
if (target == address(this)) {
return _canCallSelf(caller, data);
} else {
return data.length < 4 ? (false, 0) : canCall(caller, target, _checkSelector(data));
}
}
/**
* @dev A version of {canCall} that checks for admin restrictions in this contract.
*/
function _canCallSelf(address caller, bytes calldata data) private view returns (bool immediate, uint32 delay) {
if (data.length < 4) {
return (false, 0);
}
if (caller == address(this)) {
// Caller is AccessManager, this means the call was sent through {execute} and it already checked
// permissions. We verify that the call "identifier", which is set during {execute}, is correct.
return (_isExecuting(address(this), _checkSelector(data)), 0);
}
(bool enabled, uint64 roleId, uint32 operationDelay) = _getAdminRestrictions(data);
if (!enabled) {
return (false, 0);
}
(bool inRole, uint32 executionDelay) = hasRole(roleId, caller);
if (!inRole) {
return (false, 0);
}
// downcast is safe because both options are uint32
delay = uint32(Math.max(operationDelay, executionDelay));
return (delay == 0, delay);
}
/**
* @dev Returns true if a call with `target` and `selector` is being executed via {executed}.
*/
function _isExecuting(address target, bytes4 selector) private view returns (bool) {
return _executionId == _hashExecutionId(target, selector);
}
/**
* @dev Returns true if a schedule timepoint is past its expiration deadline.
*/
function _isExpired(uint48 timepoint) private view returns (bool) {
return timepoint + expiration() <= Time.timestamp();
}
/**
* @dev Extracts the selector from calldata. Panics if data is not at least 4 bytes
*/
function _checkSelector(bytes calldata data) private pure returns (bytes4) {
return bytes4(data[0:4]);
}
/**
* @dev Hashing function for execute protection
*/
function _hashExecutionId(address target, bytes4 selector) private pure returns (bytes32) {
return keccak256(abi.encode(target, selector));
}
}
"
},
"lib/v4-core/lib/openzeppelin-contracts/contracts/access/manager/IAccessManager.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManager.sol)
pragma solidity ^0.8.20;
import {IAccessManaged} from "./IAccessManaged.sol";
import {Time} from "../../utils/types/Time.sol";
interface IAccessManager {
/**
* @dev A delayed operation was scheduled.
*/
event OperationScheduled(
bytes32 indexed operationId,
uint32 indexed nonce,
uint48 schedule,
address caller,
address target,
bytes data
);
/**
* @dev A scheduled operation was executed.
*/
event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev A scheduled operation was canceled.
*/
event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev Informational labelling for a roleId.
*/
event RoleLabel(uint64 indexed roleId, string label);
/**
* @dev Emitted when `account` is granted `roleId`.
*
* NOTE: The meaning of the `since` argument depends on the `newMember` argument.
* If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role,
* otherwise it indicates the execution delay for this account and roleId is updated.
*/
event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);
/**
* @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
*/
event RoleRevoked(uint64 indexed roleId, address indexed account);
/**
* @dev Role acting as admin over a given `roleId` is updated.
*/
event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);
/**
* @dev Role acting as guardian over a given `roleId` is updated.
*/
event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);
/**
* @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
*/
event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);
/**
* @dev Target mode is updated (true = closed, false = open).
*/
event TargetClosed(address indexed target, bool closed);
/**
* @dev Role required to invoke `selector` on `target` is updated to `roleId`.
*/
event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);
/**
* @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
*/
event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);
error AccessManagerAlreadyScheduled(bytes32 operationId);
error AccessManagerNotScheduled(bytes32 operationId);
error AccessManagerNotReady(bytes32 operationId);
error AccessManagerExpired(bytes32 operationId);
error AccessManagerLockedAccount(address account);
error AccessManagerLockedRole(uint64 roleId);
error AccessManagerBadConfirmation();
error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId);
error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector);
error AccessManagerUnauthorizedConsume(address target);
error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
error AccessManagerInvalidInitialAdmin(address initialAdmin);
/**
* @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
* no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
* & {execute} workflow.
*
* This function is usually called by the targeted contract to control immediate execution of restricted functions.
* Therefore we only return true if the call can be performed without any delay. If the call is subject to a
* previously set delay (not zero), then the function should return false and the caller should schedule the operation
* for future execution.
*
* If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
* the operation can be executed if and only if delay is greater than 0.
*
* NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
* is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
* to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
*
* NOTE: This function does not report the permissions of this manager itself. These are defined by the
* {_canCallSelf} function instead.
*/
function canCall(
address caller,
address target,
bytes4 selector
) external view returns (bool allowed, uint32 delay);
/**
* @dev Expiration delay for scheduled proposals. Defaults to 1 week.
*
* IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
* disabling any scheduling usage.
*/
function expiration() external view returns (uint32);
/**
* @dev Minimum setback for all delay updates, with the exception of execution delays. It
* can be increased without setback (and reset via {revokeRole} in the case event of an
* accidental increase). Defaults to 5 days.
*/
function minSetback() external view returns (uint32);
/**
* @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
*/
function isTargetClosed(address target) external view returns (bool);
/**
* @dev Get the role required to call a function.
*/
function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);
/**
* @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
*/
function getTargetAdminDelay(address target) external view returns (uint32);
/**
* @dev Get the id of the role that acts as an admin for the given role.
*
* The admin permission is required to grant the role, revoke the role and update the execution delay to execute
* an operation that is restricted to this role.
*/
function getRoleAdmin(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role that acts as a guardian for a given role.
*
* The guardian permission allows canceling operations that have been scheduled under the role.
*/
function getRoleGuardian(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role current grant delay.
*
* Its value may change at any point without an event emitted following a call to {setGrantDelay}.
* Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
*/
function getRoleGrantDelay(uint64 roleId) external view returns (uint32);
/**
* @dev Get the access details for a given account for a given role. These details include the timepoint at which
* membership becomes active, and the delay applied to all operation by this user that requires this permission
* level.
*
* Returns:
* [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
* [1] Current execution delay for the account.
* [2] Pending execution delay for the account.
* [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
*/
function getAccess(uint64 roleId, address account) external view returns (uint48, uint32, uint32, uint48);
/**
* @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
* permission might be associated with an execution delay. {getAccess} can provide more details.
*/
function hasRole(uint64 roleId, address account) external view returns (bool, uint32);
/**
* @dev Give a label to a role, for improved role discoverability by UIs.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleLabel} event.
*/
function labelRole(uint64 roleId, string calldata label) external;
/**
* @dev Add `account` to `roleId`, or change its execution delay.
*
* This gives the account the authorization to call any function that is restricted to this role. An optional
* execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
* that is restricted to members of this role. The user will only be able to execute the operation after the delay has
* passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
*
* If the account has already been granted this role, the execution delay will be updated. This update is not
* immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
* called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
* operation executed in the 3 hours that follows this update was indeed scheduled before this update.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - granted role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleGranted} event.
*/
function grantRole(uint64 roleId, address account, uint32 executionDelay) external;
/**
* @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
* no effect.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - revoked role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function revokeRole(uint64 roleId, address account) external;
/**
* @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
* the role this call has no effect.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function renounceRole(uint64 roleId, address callerConfirmation) external;
/**
* @dev Change admin role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleAdminChanged} event
*/
function setRoleAdmin(uint64 roleId, uint64 admin) external;
/**
* @dev Change guardian role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGuardianChanged} event
*/
function setRoleGuardian(uint64 roleId, uint64 guardian) external;
/**
* @dev Update the delay for granting a `roleId`.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGrantDelayChanged} event.
*/
function setGrantDelay(uint64 roleId, uint32 newDelay) external;
/**
* @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetFunctionRoleUpdated} event per selector.
*/
function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;
/**
* @dev Set the delay for changing the configuration of a given target contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetAdminDelayUpdated} event.
*/
function setTargetAdminDelay(address target, uint32 newDelay) external;
/**
* @dev Set the closed flag for a contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetClosed} event.
*/
function setTargetClosed(address target, bool closed) external;
/**
* @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
* operation is not yet scheduled, has expired, was executed, or was canceled.
*/
function getSchedule(bytes32 id) external view returns (uint48);
/**
* @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
* been scheduled.
*/
function getNonce(bytes32 id) external view returns (uint32);
/**
* @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
* choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
* required for the caller. The special value zero will automatically set the earliest possible time.
*
* Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
* the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
* scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
*
* Emits a {OperationScheduled} event.
*
* NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
* this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
* contract if it is using standard Solidity ABI encoding.
*/
function schedule(address target, bytes calldata data, uint48 when) external returns (bytes32, uint32);
/**
* @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
* execution delay is 0.
*
* Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
* operation wasn't previously scheduled (if the caller doesn't have an execution delay).
*
* Emits an {OperationExecuted} event only if the call was scheduled and delayed.
*/
function execute(address target, bytes calldata data) external payable returns (uint32);
/**
* @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
* operation that is cancelled.
*
* Requirements:
*
* - the caller must be the proposer, a guardian of the targeted function, or a global admin
*
* Emits a {OperationCanceled} event.
*/
function cancel(address caller, address target, bytes calldata data) external returns (uint32);
/**
* @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
* (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
*
* This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
* with all the verifications that it implies.
*
* Emit a {OperationExecuted} event.
*/
function consumeScheduledOp(address caller, bytes calldata data) external;
/**
* @dev Hashing function for delayed operations.
*/
function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);
/**
* @dev Changes the authority of a target managed by this manager instance.
*
* Requirements:
*
* - the caller must be a global admin
*/
function updateAuthority(address target, address newAuthority) external;
}
"
},
"lib/v4-core/lib/openzeppelin-contracts/contracts/access/manager/IAccessManaged.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol)
pragma solidity ^0.8.20;
interface IAccessManaged {
/**
* @dev Authority that manages this contract was updated.
*/
event AuthorityUpdated(address authority);
error AccessManagedUnauthorized(address caller);
error AccessManagedRequiredDelay(address caller, uint32 delay);
error AccessManagedInvalidAuthority(address authority);
/**
* @dev Returns the current authority.
*/
function authority() external view returns (address);
/**
* @dev Transfers control to a new authority. The caller must be the current authority.
*/
function setAuthority(address) external;
/**
* @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
* being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
* attacker controlled calls.
*/
function isConsumingScheduledOp() external view returns (bytes4);
}
"
},
"lib/v4-core/lib/openzeppelin-contracts/contracts/utils/Address.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
"
},
"lib/v4-core/lib/openzeppelin-contracts/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
"
},
"lib/v4-core/lib/openzeppelin-contracts/contracts/utils/Multicall.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Multicall.sol)
pragma solidity ^0.8.20;
import {Address} from "./Address.sol";
import {Context} from "./Context.sol";
/**
* @dev Provides a function to batch together multiple calls in a single external call.
*
* Consider any assumption about calldata validation performed by the sender may be violated if it's not especially
* careful about sending transactions invoking {multicall}. For example, a relay address that filters function
* selectors won't filter calls nested within a {multicall} operation.
*
* NOTE: Since 5.0.1 and 4.9.4, this contract identifies non-canonical contexts (i.e. `msg.sender` is not {_msgSender}).
* If a non-canonical context is identified, the following self `delegatecall` appends the last bytes of `msg.data`
* to the subcall. This makes it safe to use with {ERC2771Context}. Contexts that don't affect the resolution of
* {_msgSender} are not propagated to subcalls.
*/
abstract contract Multicall is Context {
/**
* @dev Receives and executes a batch of function calls on this contract.
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
bytes memory context = msg.sender == _msgSender()
? new bytes(0)
: msg.data[msg.data.length - _contextSuffixLength():];
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
results[i] = Address.functionDelegateCall(address(this), bytes.concat(data[i], context));
}
return results;
}
}
"
},
"lib/v4-core/lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^2
Submitted on: 2025-10-28 20:23:49
Comments
Log in to comment.
No comments yet.