Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/SwapStables.sol": {
"content": "//SPDX-License-Identifier: MIT
pragma solidity >=0.8.11 <0.9.0;
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IUniswapV2Router02 {
function WETH() external pure returns (address);
function getAmountsOut(uint256 amountIn, address[] calldata path)
external
view
returns (uint256[] memory amounts);
function swapExactTokensForETH(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
}
contract SwapStables is Ownable, ReentrancyGuard {
// Custom errors
error SwapStables__TransferFromFailed();
error SwapStables__InvalidRouter();
error SwapStables__RouterNotConfigured();
error SwapStables__NoPaths();
error SwapStables__NoValidPath();
error SwapStables__ZeroAmountIn();
error SwapStables__EthSendFailed();
error SwapStables__DeadlineExpired();
error SwapStables__ApproveFailed();
IUniswapV2Router02 public immutable uniV2; // On mainnet addr = "0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D"
event SwapExecuted(address indexed sender, address indexed tokenIn, uint256 amountIn, uint256 amountOut);
// Router is provided at construction and is immutable
constructor(address _uniV2) Ownable(msg.sender) {
if (_uniV2 == address(0)) revert SwapStables__InvalidRouter();
uniV2 = IUniswapV2Router02(_uniV2);
}
/**
* @notice Estimate best amount out among candidate paths
* @param amountIn amount of input token
* @param paths array of candidate paths (each is an array of addresses)
*/
function estimateBestOut(uint256 amountIn, address[][] memory paths)
internal
view
returns (uint256 bestOut, uint256 bestIndex)
{
if (address(uniV2) == address(0)) revert SwapStables__RouterNotConfigured();
if (paths.length == 0) revert SwapStables__NoPaths();
bestOut = 0;
bestIndex = 0;
for (uint256 i = 0; i < paths.length; i++) {
address[] memory p = paths[i];
// skip invalid small paths
if (p.length < 2) continue;
try uniV2.getAmountsOut(amountIn, p) returns (uint256[] memory amounts) {
uint256 out = amounts[amounts.length - 1];
if (out > bestOut) {
bestOut = out;
bestIndex = i;
}
} catch {
// ignore failing path, reverts by bestOut remaining 0
continue;
}
}
if (bestOut == 0) revert SwapStables__NoValidPath();
}
/**
* @notice Swap an ERC20 stable token for ETH using Uniswap V2, choosing the most profitable path
* @param tokenIn input ERC20 token
* @param amountIn amount of token to swap (caller must approve this contract)
* @param paths candidate paths where each path is an array of token addresses (last should be WETH)
* @param amountOutMin minimum acceptable ETH out (slippage protection)
* @param deadline unix timestamp after which the swap will fail
*/
function swapStableToETHBest(
address tokenIn,
uint256 amountIn,
address[][] calldata paths,
uint256 amountOutMin,
uint256 deadline
) external nonReentrant returns (uint256 amountOut) {
if (amountIn == 0) revert SwapStables__ZeroAmountIn();
if (paths.length == 0) revert SwapStables__NoPaths();
if (address(uniV2) == address(0)) revert SwapStables__RouterNotConfigured();
// deadline check: enforcing deadline locally in case of router failure
if (deadline < block.timestamp) revert SwapStables__DeadlineExpired();
// pull tokens from caller
(bool success) = IERC20(tokenIn).transferFrom(msg.sender, address(this), amountIn);
if (!success) revert SwapStables__TransferFromFailed();
// approve router (reset then set). Check return values for non-standard tokens that return false
bool approved;
approved = IERC20(tokenIn).approve(address(uniV2), 0);
if (!approved) revert SwapStables__ApproveFailed();
approved = IERC20(tokenIn).approve(address(uniV2), amountIn);
if (!approved) revert SwapStables__ApproveFailed();
// find best path
(, uint256 bestIndex) = estimateBestOut(amountIn, paths);
address[] memory bestPath = paths[bestIndex];
// execute swap: expect last token to be ETH
// the router will return ETH to this contract for swapExactTokensForETH
uint256[] memory amounts =
uniV2.swapExactTokensForETH(amountIn, amountOutMin, bestPath, address(this), deadline);
amountOut = amounts[amounts.length - 1];
// forward ETH to sender
(bool sent,) = payable(msg.sender).call{ value: amountOut }(" ");
if (!sent) revert SwapStables__EthSendFailed();
emit SwapExecuted(msg.sender, tokenIn, amountIn, amountOut);
}
// receive ETH from router when swapping
receive() external payable { }
}
"
},
"lib/openzeppelin-contracts/contracts/access/Ownable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
"
},
"lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"lib/openzeppelin-contracts/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
"
}
},
"settings": {
"remappings": [
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"ds-test/=lib/solidity-bytes-utils/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"solidity-bytes-utils/=lib/solidity-bytes-utils/contracts/"
],
"optimizer": {
"enabled": false,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false
}
}}
Submitted on: 2025-10-29 09:18:32
Comments
Log in to comment.
No comments yet.