ConvexCurveEthereumreUSDscrvUSD

Description:

Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
"
    },
    "@openzeppelin/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}
"
    },
    "@openzeppelin/contracts/utils/Address.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}
"
    },
    "@shift-defi/core/contracts/defii/execution/Logic.sol": {
      "content": "// SPDX-License-Identifier: SHIFT-1.0
pragma solidity ^0.8.20;

abstract contract Logic {
    error NotImplemented();

    function claimRewards(address recipient) external payable virtual {
        revert NotImplemented();
    }

    function emergencyExit() external payable virtual {
        revert NotImplemented();
    }

    function withdrawLiquidity(
        address recipient,
        uint256 amount
    ) external payable virtual {
        revert NotImplemented();
    }

    function enter() external payable virtual;

    function exit(uint256 liquidity) external payable virtual;

    function accountLiquidity(
        address account
    ) external view virtual returns (uint256);
}
"
    },
    "@shift-defi/core/contracts/libraries/Constants.sol": {
      "content": "// SPDX-License-Identifier: SHIFT-1.0
pragma solidity ^0.8.20;

library Constants {
    uint256 constant BPS = 1e4;
}
"
    },
    "@shitam/defi-product-templates/contracts/Errors.sol": {
      "content": "// SPDX-License-Identifier: SHIFT-1.0
pragma solidity ^0.8.24;

error NotImplemented();
error EnterFailed();
error ExitFailed();
"
    },
    "@shitam/defi-product-templates/contracts/SelfManagedLogic.sol": {
      "content": "// SPDX-License-Identifier: SHIFT-1.0
pragma solidity ^0.8.24;

import {Logic} from "@shift-defi/core/contracts/defii/execution/Logic.sol";
import {UniswapV3Callbacks} from "./UniswapV3Callbacks.sol";

abstract contract SelfManagedLogic is Logic, UniswapV3Callbacks {
    error WrongBuildingBlockId(uint256);

    function enterWithParams(bytes memory params) external payable virtual {
        revert NotImplemented();
    }

    function exitBuildingBlock(
        uint256 buildingBlockId
    ) external payable virtual;

    function allocatedLiquidity(
        address account
    ) external view virtual returns (uint256);

    function exitWithRepay(address lending) external virtual {
        revert NotImplemented();
    }
}
"
    },
    "@shitam/defi-product-templates/contracts/UniswapV3Callbacks.sol": {
      "content": "// SPDX-License-Identifier: SHIFT-1.0
pragma solidity ^0.8.24;

import {NotImplemented} from "./Errors.sol";

abstract contract UniswapV3Callbacks {
    function uniswapV3SwapCallback(
        int256 amount0Delta,
        int256 amount1Delta,
        bytes calldata data
    ) external virtual {
        revert NotImplemented();
    }
    function uniswapV3MintCallback(
        uint256 amount0Owed,
        uint256 amount1Owed,
        bytes calldata data
    ) external virtual {
        revert NotImplemented();
    }
    function uniswapV3FlashCallback(
        uint256 fee0,
        uint256 fee1,
        bytes calldata data
    ) external virtual {
        revert NotImplemented();
    }
}
"
    },
    "contracts/constants/ethereum.sol": {
      "content": "// SPDX-License-Identifier: SHIFT-1.0
pragma solidity ^0.8.9;

address constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
address constant USDT = 0xdAC17F958D2ee523a2206206994597C13D831ec7;
address constant DAI = 0x6B175474E89094C44Da98b954EedeAC495271d0F;
address constant wstETH = 0x7f39C581F595B53c5cb19bD0b3f8dA6c935E2Ca0;
address constant wETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address constant crvUSD = 0xf939E0A03FB07F59A73314E73794Be0E57ac1b4E;
address constant XAI = 0xd7C9F0e536dC865Ae858b0C0453Fe76D13c3bEAc;
address constant FRAX = 0x853d955aCEf822Db058eb8505911ED77F175b99e;
address constant eUSD = 0xA0d69E286B938e21CBf7E51D71F6A4c8918f482F;
address constant GHO = 0x40D16FC0246aD3160Ccc09B8D0D3A2cD28aE6C2f;
address constant stETH = 0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84;
address constant fxUSD = 0x085780639CC2cACd35E474e71f4d000e2405d8f6;
address constant btcUSD = 0x9D11ab23d33aD026C466CE3c124928fDb69Ba20E;
address constant wBTC = 0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599;
address constant CRV = 0xD533a949740bb3306d119CC777fa900bA034cd52;
address constant CVX = 0x4e3FBD56CD56c3e72c1403e103b45Db9da5B9D2B;
address constant MIM = 0x99D8a9C45b2ecA8864373A26D1459e3Dff1e17F3;
address constant sDAI = 0x83F20F44975D03b1b09e64809B757c47f942BEeA;
address constant scrvUSD = 0x0655977FEb2f289A4aB78af67BAB0d17aAb84367;
address constant USDe = 0x4c9EDD5852cd905f086C759E8383e09bff1E68B3;
address constant sUSDe = 0x9D39A5DE30e57443BfF2A8307A4256c8797A3497;
address constant ACX = 0x44108f0223A3C3028F5Fe7AEC7f9bb2E66beF82F;
address constant ETHPlus = 0xE72B141DF173b999AE7c1aDcbF60Cc9833Ce56a8;
address constant rETH = 0xae78736Cd615f374D3085123A210448E74Fc6393;
address constant ETHx = 0xA35b1B31Ce002FBF2058D22F30f95D405200A15b;
address constant sfrxETH = 0xac3E018457B222d93114458476f3E3416Abbe38F;
address constant frxETH = 0x5E8422345238F34275888049021821E8E08CAa1f;
address constant rlUSD = 0x8292Bb45bf1Ee4d140127049757C2E0fF06317eD;
address constant cUSDO = 0xaD55aebc9b8c03FC43cd9f62260391c13c23e7c0;
address constant reUSD = 0x57aB1E0003F623289CD798B1824Be09a793e4Bec;"
    },
    "contracts/interfaces/ILending.sol": {
      "content": "// SPDX-License-Identifier: SHIFT-1.0
pragma solidity ^0.8.9;

interface ILending {
    function repay(address[] calldata tokens) external;
    function currentDebt(address token) external view returns (uint256);
    function totalDebt() external view returns (uint256);
}
"
    },
    "contracts/logic/ethereum/ConvexCurveEthereumreUSDscrvUSD.sol": {
      "content": "// SPDX-License-Identifier: SHIFT-1.0

pragma solidity ^0.8.9;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SelfManagedLogicV4WithUtils} from "../templates/SelfManagedLogicV4WithUtils.sol";
import {reUSD, scrvUSD, crvUSD} from "../../constants/ethereum.sol";

/**
 * @title ConvexCurveEthereumreUSDscrvUSD
 * @notice DeFi strategy contract for providing liquidity to the reUSD/scrvUSD Curve pool and staking on Convex
 * @dev This contract implements a multi-layer yield strategy:
 *      1. Deposits crvUSD into scrvUSD vault to earn vault yield
 *      2. Provides liquidity to reUSD/scrvUSD Curve pool to earn trading fees
 *      3. Stakes Curve LP tokens on Convex to earn CRV and CVX rewards
 *      4. Implements intelligent exit routing to maximize returns when unwinding positions
 * @dev Exit strategy includes:
 *      - Comparison between direct pool exit and reUSD redemption routes
 *      - Multi-pair redemption support across 11 different collateral pairs
 *      - Automatic selection of best crvUSD->stablecoin swap route (LLAMMA, Curve USDC, or Curve USDT)
 */
contract ConvexCurveEthereumreUSDscrvUSD is SelfManagedLogicV4WithUtils {
    /* LOGIC CONSTANTS */

    /// @notice Convex pool ID for the reUSD/scrvUSD Curve pool
    uint256 public constant POOL_ID = 440;
    /// @notice Slippage tolerance for redemptions (1% = 1e16)
    uint256 public constant SLIPPAGE_TOLERANCE = 1e16;
    /// @notice Precision constant for calculations (1e18)
    uint256 private constant PRECISION = 1e18;
    /// @notice Index of scrvUSD token in the Curve pool (1 = second token)
    int128 private constant SCRVUSD_INDEX = 1;
    /// @notice Number of reUSD redemption pairs supported
    uint256 private constant PAIR_COUNT = 11;

    /* MATH CONSTANTS */

    /// @dev Minimum sqrt price ratio for Uniswap V3 swaps (MIN_SQRT_RATIO + 1)
    uint160 constant MIN_SQRT_RATIO = 4295128739;
    /// @dev Maximum sqrt price ratio for Uniswap V3 swaps (MAX_SQRT_RATIO - 1)
    uint160 constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;

    /* ADDRESSES CONSTANTS */

    /// @notice Convex Booster contract for depositing LP tokens
    IBooster public constant BOOSTER = IBooster(0xF403C135812408BFbE8713b5A23a04b3D48AAE31);
    /// @notice scrvUSD savings vault for depositing crvUSD
    IScrvUSDVault public constant SCRVUSD_VAULT = IScrvUSDVault(0x0655977FEb2f289A4aB78af67BAB0d17aAb84367);
    /// @notice Resupply redemption handler for redeeming reUSD to underlying assets
    IRedemptionHandler public constant REDEMPTION_HANDLER =
        IRedemptionHandler(0x99999999A5Dc4695EF303C9EA9e4B3A19367Ed94);
    /// @notice Curve NG pool for reUSD/scrvUSD liquidity provision
    ICurvePoolNG public immutable CURVE_POOL;
    /// @notice Convex reward pool for staking LP tokens and claiming rewards (set in constructor)
    IRewardPool public immutable REWARD_POOL;

    // Controller addresses for reUSD redemption
    address constant CONTROLLER_SUSDE = 0xB536FEa3a01c95Dd09932440eC802A75410139D6;
    address constant CONTROLLER_SDOLA_1 = 0xaD444663c6C92B497225c6cE65feE2E7F78BFb86;
    address constant CONTROLLER_SFRXUSD = 0x3DE37c38739dFb83b7A902842bF5393040f7BF50;
    address constant CONTROLLER_WBTC = 0xcaD85b7fe52B1939DCEebEe9bCf0b2a5Aa0cE617;
    address constant CONTROLLER_WETH = 0x23F5a668A9590130940eF55964ead9787976f2CC;
    address constant CONTROLLER_SDOLA_2 = 0xCf3DF6C1B4A6b38496661B31170de9508b867C8E;
    address constant CONTROLLER_WSTETH = 0x5756A035F276a8095A922931F224F4ed06149608;
    address constant CONTROLLER_USDE = 0x2dA313f6DCEE04BA46466E100c4656618E5d3dDd;
    address constant CONTROLLER_FXSAVE = 0x8035b16053560b3C351b665b10f6C7dBDb6A1E05;
    address constant CONTROLLER_SUSDS = 0x2dA313f6DCEE04BA46466E100c4656618E5d3dDd;
    address constant CONTROLLER_TBTC = 0xc572297c5e995692B972c8eEa1D12b56b6399e1e;

    // Pair addresses for reUSD redemption
    address constant PAIR_SUSDE = 0x39Ea8e7f44E9303A7441b1E1a4F5731F1028505C;
    address constant PAIR_SDOLA_1 = 0x08064A8eEecf71203449228f3eaC65E462009fdF;
    address constant PAIR_SFRXUSD = 0xC5184cccf85b81EDdc661330acB3E41bd89F34A1;
    address constant PAIR_WBTC = 0x2d8ecd48b58e53972dBC54d8d0414002B41Abc9D;
    address constant PAIR_WETH = 0xCF1deb0570c2f7dEe8C07A7e5FA2bd4b2B96520D;
    address constant PAIR_SDOLA_2 = 0x27AB448a75d548ECfF73f8b4F36fCc9496768797;
    address constant PAIR_WSTETH = 0x4A7c64932d1ef0b4a2d430ea10184e3B87095E33;
    address constant PAIR_USDE = 0x3b037329Ff77B5863e6a3c844AD2a7506ABe5706;
    address constant PAIR_FXSAVE = 0xD42535Cda82a4569BA7209857446222ABd14A82c;
    address constant PAIR_SUSDS = 0x57E69699381a651Fb0BBDBB31888F5D655Bf3f06;
    address constant PAIR_TBTC = 0xF4A6113FbD71Ac1825751A6fe844A156f60C83EF;

    // Pool addresses for crvUSD exit
    address constant CRVUSD_USDC_POOL = 0x4DEcE678ceceb27446b35C672dC7d61F30bAD69E;
    address constant CRVUSD_USDT_POOL = 0x390f3595bCa2Df7d23783dFd126427CCeb997BF4;
    address constant LLAMMA = 0x37417B2238AA52D0DD2D6252d989E728e8f706e4;
    address constant WSTETH_WETH_POOL = 0x109830a1AAaD605BbF02a9dFA7B0B92EC2FB7dAa;
    address constant WETH_USDC_POOL = 0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640;
    address constant UNISWAP_QUOTER = 0xb27308f9F90D607463bb33eA1BeBb41C27CE5AB6;
    address constant WSTETH = 0x7f39C581F595B53c5cb19bD0b3f8dA6c935E2Ca0;
    address constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
    address constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
    address constant USDT = 0xdAC17F958D2ee523a2206206994597C13D831ec7;

    /**
     * @notice Initializes the contract and sets the Convex reward pool
     * @dev Retrieves the reward pool address from Convex Booster using POOL_ID
     */
    constructor() {
        (address lpToken,,, address rewardPool,,) = BOOSTER.poolInfo(POOL_ID);
        CURVE_POOL = ICurvePoolNG(lpToken);
        REWARD_POOL = IRewardPool(rewardPool);
    }

    /**
     * @notice Enters the full strategy position
     * @dev Executes the following steps:
     *      1. Converts any crvUSD balance to scrvUSD via the savings vault
     *      2. Adds liquidity to the reUSD/scrvUSD Curve pool with available balances
     *      3. Stakes all LP tokens on Convex to earn rewards
     * @dev Assumes the contract already holds reUSD, scrvUSD, and/or crvUSD tokens
     */
    function enter() external payable override {
        uint256 crvUSDBalance = IERC20(crvUSD).balanceOf(address(this));
        if (crvUSDBalance > 0) {
            _approveIfNeeded(crvUSD, address(SCRVUSD_VAULT));
            SCRVUSD_VAULT.deposit(crvUSDBalance, address(this));
        }

        uint256 reUSDBalance = IERC20(reUSD).balanceOf(address(this));
        uint256 scrvUSDBalance = IERC20(scrvUSD).balanceOf(address(this));

        _approveIfNeeded(reUSD, address(CURVE_POOL));
        _approveIfNeeded(scrvUSD, address(CURVE_POOL));

        uint256[] memory amounts = new uint256[](2);
        amounts[0] = reUSDBalance;
        amounts[1] = scrvUSDBalance;
        CURVE_POOL.add_liquidity(amounts, 0, address(this));

        _approveIfNeeded(address(CURVE_POOL), address(BOOSTER));
        BOOSTER.depositAll(POOL_ID, true);
    }

    /**
     * @notice Exits a specific amount of liquidity from the strategy
     * @param liquidity Amount of LP tokens to unstake and withdraw
     * @dev Executes the following steps:
     *      1. Unstakes specified LP tokens from Convex (without claiming rewards)
     *      2. Removes liquidity from Curve pool proportionally
     *      3. Redeems all scrvUSD to crvUSD via the savings vault
     * @dev Does not perform final crvUSD->stablecoin conversion (use building blocks for that)
     */
    function exit(uint256 liquidity) public payable override {
        REWARD_POOL.withdrawAndUnwrap(liquidity, false);

        uint256 lpBalance = CURVE_POOL.balanceOf(address(this));
        if (lpBalance > 0) {
            uint256[] memory minAmounts = new uint256[](2);
            CURVE_POOL.remove_liquidity(lpBalance, minAmounts, address(this));
        }
    }

    // this function should be called in case, when
    // default exit() was called by the system and
    // trigger executed major exit right after
    // - we have no liquidity in this case
    // - we have scrvUSD and reUSD in this case
    // - we need to redeem from tokens to have crvUSD only for final conversion
    function _triggerExitAfterDefaultExit() private {
        _redeemToCrvUSD();

        // now handle the reUSD->crvUSD conversion
        uint256 reUSDBalance = IERC20(reUSD).balanceOf(address(this));
        if (reUSDBalance == 0) {
            return;
        }

        (address pair, /*uint256 amount*/ ) = tryFindOnePairRedemption(reUSDBalance);
        _approveIfNeeded(reUSD, address(REDEMPTION_HANDLER));
        if (pair != address(0)) {
            REDEMPTION_HANDLER.redeemFromPair(pair, reUSDBalance, SLIPPAGE_TOLERANCE, address(this), true);
        } else {
            // pair not found, we have only multipair option
            uint256[PAIR_COUNT] memory liqs = _getControllersWLiq();
            address[PAIR_COUNT] memory pairs = _getPairs();
            uint256 remainingReUSD = reUSDBalance;
            for (uint256 i = 0; i < PAIR_COUNT && remainingReUSD > 0; i++) {
                if (liqs[i] == 0) continue;

                uint256 redeemAmount = remainingReUSD > liqs[i] ? liqs[i] : remainingReUSD;
                REDEMPTION_HANDLER.redeemFromPair(pairs[i], redeemAmount, SLIPPAGE_TOLERANCE, address(this), true);
                remainingReUSD -= redeemAmount;
            }
        }
    }

    /**
     * @notice Returns the total liquidity value for an account across all strategy positions
     * @param account The address to check
     * @return Total liquidity in strategy-native units (prioritizes staked > LP > crvUSD)
     * @dev Returns the first non-zero balance in priority order:
     *      1. Staked LP tokens on Convex (highest priority - actively earning rewards)
     *      2. Unstaked LP tokens in Curve pool
     *      3. crvUSD balance (lowest priority - not yet deployed)
     */
    function accountLiquidity(address account) public view override returns (uint256) {
        uint256 staked = allocatedLiquidity(account);
        if (staked > 0) {
            return staked;
        }

        uint256 lpAmount = CURVE_POOL.balanceOf(account);
        if (lpAmount > 0) {
            return lpAmount;
        }

        if (IERC20(reUSD).balanceOf(account) > 0) {
            return IERC20(reUSD).balanceOf(account);
        }

        if (IERC20(scrvUSD).balanceOf(account) > 0) {
            return IERC20(scrvUSD).balanceOf(account);
        }

        return IERC20(crvUSD).balanceOf(account);
    }

    /**
     * @notice Returns the amount of LP tokens staked on Convex for an account
     * @param account The address to check
     * @return Amount of staked LP tokens earning rewards on Convex
     */
    function allocatedLiquidity(address account) public view override returns (uint256) {
        return REWARD_POOL.balanceOf(account);
    }

    /**
     * @notice Claims all accumulated rewards and transfers them to the recipient
     * @param recipient Address to receive the claimed rewards
     * @dev Claims both base rewards (CRV) and extra rewards from Convex
     * @dev Unwraps stash token wrappers to get the underlying reward tokens
     */
    function claimRewards(address recipient) external payable override {
        require(recipient != address(0), "recipient zero");
        REWARD_POOL.getReward(address(this), true);
        uint256 extraRewardLength = REWARD_POOL.extraRewardsLength();
        address[] memory rewards = new address[](extraRewardLength + 1);

        for (uint256 i = 0; i < extraRewardLength; i++) {
            address extraReward = REWARD_POOL.extraRewards(i);
            IStashTokenWrapper stashTokenWrapper = IStashTokenWrapper(IExtraReward(extraReward).rewardToken());
            rewards[i] = stashTokenWrapper.token();
        }

        rewards[extraRewardLength] = REWARD_POOL.rewardToken();

        for (uint256 i = 0; i < rewards.length; i++) {
            if (rewards[i] == address(0)) continue;
            _transferAll(rewards[i], recipient);
        }
    }

    /**
     * @notice Exits a specific building block of the strategy
     * @param buildingBlockId The building block to exit (0-3)
     * @dev Building blocks:
     *      0 = Convex: Unstake from Convex and exit to LP tokens + optimal routing
     *      1 = Curve: Exit Convex, then remove Curve LP and convert crvUSD to stablecoins
     *      2 = reUSD: Exit Convex (same as building block 0)
     *      3 = crvUSD: Exit Convex + Curve, then convert crvUSD to stablecoins
     */
    function exitBuildingBlock(uint256 buildingBlockId) external payable override {
        if (buildingBlockId == 0) {
            _exitBuildingBlockConvex();
        } else if (buildingBlockId == 1) {
            _exitBuildingBlockCurve();
        } else if (buildingBlockId == 2) {
            _exitBuildingBlockReUSD();
        } else if (buildingBlockId == 3) {
            _exitBuildingBlockCrvUSD();
        } else {
            revert WrongBuildingBlockId(buildingBlockId);
        }
    }

    /**
     * @notice Emergency exit that unstakes from Convex with optimal routing
     * @dev Calls _exitBuildingBlockConvex which performs intelligent exit routing
     */
    function emergencyExit() external payable override {
        _exitBuildingBlockConvex();
    }

    function _exitBuildingBlockReUSD() internal {
        _exitBuildingBlockConvex();
    }

    function _exitBuildingBlockCurve() internal {
        _exitBuildingBlockConvex();
        _triggerExitAfterDefaultExit();
        _exitCrvUSD();
    }

    function _exitBuildingBlockCrvUSD() internal {
        _exitBuildingBlockCurve();
    }

    function _redeemToCrvUSD() private {
        uint256 scrvUSDBalance = IERC20(scrvUSD).balanceOf(address(this));
        if (scrvUSDBalance > 0) {
            _approveIfNeeded(scrvUSD, address(SCRVUSD_VAULT));
            SCRVUSD_VAULT.redeem(scrvUSDBalance, address(this), address(this));
        }
    }

    function _exitBuildingBlockConvex() internal {
        uint256 liquidity = allocatedLiquidity(address(this));
        if (liquidity == 0) return;

        // Step 1: Unstake LP from Convex
        REWARD_POOL.withdrawAndUnwrap(liquidity, true);

        uint256 lpBalance = CURVE_POOL.balanceOf(address(this));
        if (lpBalance == 0) return;

        // Step 2: Get scrvUSD/crvUSD exchange rate
        uint256 exchangeRate = getExchangeRate();

        // Step 3: Simulate pool exit in scrvUSD only
        uint256 poolExitAmount = simulatePoolExitInScrvUSD(lpBalance, exchangeRate);

        // Step 4: Simulate direct redemption via Resupply
        // Step 4.1: Simulate exit from Curve pool in both tokens, take the amount of reUSD to receive
        (bool success, uint256 reUSDSize, uint256 scrvUSDSize) = simulateCurvePool(lpBalance);

        // can't exit curve with 2 tokens -> exit via pool with 1 token
        if (!success || reUSDSize == 0) {
            _exitViaPoolScrvUSD(lpBalance);
            _redeemToCrvUSD();
            return;
        }

        // 4.2 simulate exit on first part of the position
        uint256 crvUSDSize = scrvUSDSize * exchangeRate / PRECISION;

        // 4.3 Find redemption options
        uint256[PAIR_COUNT] memory liqs = _getControllersWLiq();
        address[PAIR_COUNT] memory pairs = _getPairs();

        (address pair, uint256 crvUSDOut) = tryFindOnePairRedemptionWLiq(reUSDSize, liqs, pairs);

        uint256 redeemExitAmount;
        if (pair != address(0)) {
            redeemExitAmount = crvUSDSize + crvUSDOut;
        } else {
            // If no single pair has enough liquidity, simulate multi-pair redemption
            uint256 totalCrvUSD = 0;
            uint256 remainingReUSD = reUSDSize;

            for (uint256 i = 0; i < PAIR_COUNT && remainingReUSD > 0; i++) {
                if (liqs[i] == 0) continue;
                uint256 redeemAmount = remainingReUSD > liqs[i] ? liqs[i] : remainingReUSD;
                uint256 crvUSDAmount = simulateOnePairRedemption(pairs[i], redeemAmount);

                if (crvUSDAmount == 0) continue;
                totalCrvUSD += crvUSDAmount;
                remainingReUSD -= redeemAmount;
            }

            if (remainingReUSD > 0) {
                // that means we are not able to redeem all reUSD via our pair list
                _exitViaPoolScrvUSD(lpBalance);
                _redeemToCrvUSD();
                return;
            }

            redeemExitAmount = totalCrvUSD + crvUSDSize;
        }

        // Step 5: Choose the best route
        if (redeemExitAmount > poolExitAmount) {
            if (pair != address(0)) {
                _exitRedeemOnePair(lpBalance, pair);
            } else {
                _exitViaRedemption(lpBalance, liqs, pairs);
            }
        } else {
            // Pool exit is better or equal
            _exitViaPoolScrvUSD(lpBalance);
        }

        // Always redeem scrvUSD to crvUSD at the end
        _redeemToCrvUSD();
    }

    /**
     * @notice Gets the current scrvUSD to crvUSD exchange rate
     * @return Exchange rate with 18 decimals (e.g., 1.05e18 means 1 scrvUSD = 1.05 crvUSD)
     */
    function getExchangeRate() public view returns (uint256) {
        return SCRVUSD_VAULT.convertToAssets(PRECISION);
    }

    /**
     * @notice Simulates exiting the Curve pool by withdrawing only scrvUSD
     * @param lpAmount Amount of LP tokens to simulate exiting
     * @param exchangeRate Current scrvUSD to crvUSD exchange rate
     * @return Expected crvUSD amount after withdrawing scrvUSD and converting
     */
    function simulatePoolExitInScrvUSD(uint256 lpAmount, uint256 exchangeRate) public view returns (uint256) {
        if (lpAmount == 0) return 0;
        uint256 scrvUSDAmount = CURVE_POOL.calc_withdraw_one_coin(lpAmount, SCRVUSD_INDEX);
        return (scrvUSDAmount * exchangeRate) / PRECISION;
    }

    /**
     * @notice Attempts to find a single redemption pair with enough liquidity
     * @param reUSDSize Amount of reUSD to redeem
     * @return pair Address of the redemption pair (zero address if none found)
     * @return crvUSDOut Expected crvUSD output from redemption
     * @dev Checks all 11 redemption pairs and returns the first one with sufficient liquidity
     */
    function tryFindOnePairRedemption(uint256 reUSDSize) public view returns (address, uint256) {
        address[PAIR_COUNT] memory controllers = _getControllers();
        address[PAIR_COUNT] memory pairs = _getPairs();
        uint256[PAIR_COUNT] memory liqs;
        for (uint256 i = 0; i < PAIR_COUNT; i++) {
            liqs[i] = IERC20(crvUSD).balanceOf(controllers[i]);
        }

        return tryFindOnePairRedemptionWLiq(reUSDSize, liqs, pairs);
    }

    /**
     * @notice Attempts to find a single redemption pair with enough liquidity (optimized with pre-fetched liquidity)
     * @param reUSDSize Amount of reUSD to redeem
     * @param liqs Array of available crvUSD liquidity for each controller
     * @param pairs Array of redemption pair addresses
     * @return pair Address of the redemption pair (zero address if none found)
     * @return crvUSDOut Expected crvUSD output from redemption
     */
    function tryFindOnePairRedemptionWLiq(
        uint256 reUSDSize,
        uint256[PAIR_COUNT] memory liqs,
        address[PAIR_COUNT] memory pairs
    ) public view returns (address, uint256) {
        for (uint256 i = 0; i < PAIR_COUNT; i++) {
            if (liqs[i] >= reUSDSize) {
                uint256 out = simulateOnePairRedemption(pairs[i], reUSDSize);
                if (out > 0) {
                    return (pairs[i], out);
                }
            }
        }

        return (address(0), 0);
    }

    /**
     * @notice Simulates redeeming reUSD through a single redemption pair
     * @param pair Address of the redemption pair
     * @param reUSDSize Amount of reUSD to redeem
     * @return Expected crvUSD output (0 if simulation fails)
     */
    function simulateOnePairRedemption(address pair, uint256 reUSDSize) public view returns (uint256) {
        try REDEMPTION_HANDLER.previewRedeem(pair, reUSDSize) returns (
            uint256 returnedUnderlying, uint256, /*returnedCollateral*/ uint256 /*fee*/
        ) {
            return returnedUnderlying;
        } catch {
            return 0;
        }
    }

    /**
     * @notice Simulates redeeming reUSD across multiple pairs to maximize output
     * @param reUSDSize Total amount of reUSD to redeem
     * @return totalCrvUSD Total crvUSD output from all pairs
     * @return remainingReUSD Amount of reUSD that couldn't be redeemed
     * @dev Iterates through pairs and redeems as much as possible from each
     */
    function simulateMultiPairRedemption(uint256 reUSDSize) public view returns (uint256, uint256) {
        address[PAIR_COUNT] memory pairs = _getPairs();
        uint256[PAIR_COUNT] memory liqs = _getControllersWLiq();

        uint256 totalCrvUSD = 0;
        uint256 remainingReUSD = reUSDSize;

        for (uint256 i = 0; i < PAIR_COUNT && remainingReUSD > 0; i++) {
            if (liqs[i] == 0) continue;

            uint256 redeemAmount = remainingReUSD > liqs[i] ? liqs[i] : remainingReUSD;
            uint256 crvUSDAmount = simulateOnePairRedemption(pairs[i], redeemAmount);

            if (crvUSDAmount == 0) continue;
            totalCrvUSD += crvUSDAmount;
            remainingReUSD -= redeemAmount;
        }

        return (totalCrvUSD, remainingReUSD);
    }

    /**
     * @notice Simulates proportional withdrawal from the Curve pool
     * @param lpAmount Amount of LP tokens to withdraw
     * @return success Whether simulation succeeded
     * @return reUSDAmount Expected reUSD output
     * @return scrvUSDAmount Expected scrvUSD output
     * @dev Calculates proportional amounts based on pool balances and total supply
     */
    function simulateCurvePool(uint256 lpAmount) public view returns (bool, uint256, uint256) {
        if (lpAmount == 0) return (false, 0, 0);

        // Get pool balances
        uint256[] memory poolBalances = CURVE_POOL.get_balances();
        uint256 totalSupply = CURVE_POOL.totalSupply();

        if (totalSupply == 0) return (false, 0, 0);
        // not proportional
        if (poolBalances[0] == 0 || poolBalances[1] == 0) return (false, 0, 0);

        // Calculate proportional amounts (no fees for proportional withdrawal)
        // amount = pool_balance * lp_amount / total_supply
        uint256 reUSDAmount = (poolBalances[0] * lpAmount) / totalSupply;
        uint256 scrvUSDAmount = (poolBalances[1] * lpAmount) / totalSupply;

        return (true, reUSDAmount, scrvUSDAmount);
    }

    function _exitRedeemOnePair(uint256 lpAmount, address pair) internal {
        uint256 reUSDSize = _exitPool(lpAmount);
        _approveIfNeeded(reUSD, address(REDEMPTION_HANDLER));
        REDEMPTION_HANDLER.redeemFromPair(pair, reUSDSize, SLIPPAGE_TOLERANCE, address(this), true);
    }

    function _exitViaRedemption(uint256 lpAmount, uint256[PAIR_COUNT] memory liqs, address[PAIR_COUNT] memory pairs)
        internal
    {
        uint256 reUSDSize = _exitPool(lpAmount);
        _approveIfNeeded(reUSD, address(REDEMPTION_HANDLER));

        uint256 remainingReUSD = reUSDSize;
        for (uint256 i = 0; i < PAIR_COUNT && remainingReUSD > 0; i++) {
            if (liqs[i] == 0) continue;

            uint256 redeemAmount = remainingReUSD > liqs[i] ? liqs[i] : remainingReUSD;
            REDEMPTION_HANDLER.redeemFromPair(pairs[i], redeemAmount, SLIPPAGE_TOLERANCE, address(this), true);
            remainingReUSD -= redeemAmount;
        }
    }

    function _exitPool(uint256 lpAmount) private returns (uint256) {
        uint256[] memory minAmounts = new uint256[](2);
        uint256[] memory amounts = CURVE_POOL.remove_liquidity(lpAmount, minAmounts, address(this));
        return amounts[0];
    }

    function _exitViaPoolScrvUSD(uint256 lpAmount) internal {
        CURVE_POOL.remove_liquidity_one_coin(lpAmount, SCRVUSD_INDEX, 0);
    }

    function _getPairs() private pure returns (address[PAIR_COUNT] memory) {
        return [
            PAIR_SUSDE,
            PAIR_SDOLA_1,
            PAIR_SFRXUSD,
            PAIR_WBTC,
            PAIR_WETH,
            PAIR_SDOLA_2,
            PAIR_WSTETH,
            PAIR_USDE,
            PAIR_FXSAVE,
            PAIR_SUSDS,
            PAIR_TBTC
        ];
    }

    function _getControllers() private pure returns (address[PAIR_COUNT] memory) {
        return [
            CONTROLLER_SUSDE,
            CONTROLLER_SDOLA_1,
            CONTROLLER_SFRXUSD,
            CONTROLLER_WBTC,
            CONTROLLER_WETH,
            CONTROLLER_SDOLA_2,
            CONTROLLER_WSTETH,
            CONTROLLER_USDE,
            CONTROLLER_FXSAVE,
            CONTROLLER_SUSDS,
            CONTROLLER_TBTC
        ];
    }

    function _getControllersWLiq() private view returns (uint256[PAIR_COUNT] memory) {
        address[PAIR_COUNT] memory controllers = _getControllers();
        uint256[PAIR_COUNT] memory liqs;

        for (uint256 i = 0; i < PAIR_COUNT; i++) {
            liqs[i] = IERC20(crvUSD).balanceOf(controllers[i]);
        }

        return liqs;
    }

    /**
     * @notice Simulate swap through LLAMMA -> wstETH -> wETH -> USDC path
     * @param crvUSDAmount Amount of crvUSD to swap
     * @return Expected USDC amount out
     */
    function simulateSwapHops(uint256 crvUSDAmount) public returns (uint256) {
        if (crvUSDAmount == 0) return 0;

        try ILLAMMA(LLAMMA).get_dy(0, 1, crvUSDAmount) returns (uint256 wstETHAmount) {
            if (wstETHAmount == 0) return 0;

            // Build path: wstETH -> wETH (fee 100) -> USDC (fee 500)
            bytes memory path = abi.encodePacked(WSTETH, uint24(100), WETH, uint24(500), USDC);

            try IUniswapQuoter(UNISWAP_QUOTER).quoteExactInput(path, wstETHAmount) returns (uint256 usdcAmount) {
                return usdcAmount;
            } catch {
                return 0;
            }
        } catch {
            return 0;
        }
    }

    /**
     * @notice Simulates swapping crvUSD to USDC via Curve stable pool
     * @param crvUSDAmount Amount of crvUSD to swap
     * @return Expected USDC amount out (0 if simulation fails)
     */
    function simulateCurveSwapUSDC(uint256 crvUSDAmount) public view returns (uint256) {
        if (crvUSDAmount == 0) return 0;

        try IStableSwap(CRVUSD_USDC_POOL).get_dy(1, 0, crvUSDAmount) returns (uint256 usdcAmount) {
            return usdcAmount;
        } catch {
            return 0;
        }
    }

    /**
     * @notice Simulates swapping crvUSD to USDT via Curve stable pool
     * @param crvUSDAmount Amount of crvUSD to swap
     * @return Expected USDT amount out (0 if simulation fails)
     */
    function simulateCurveSwapUSDT(uint256 crvUSDAmount) public view returns (uint256) {
        if (crvUSDAmount == 0) return 0;

        try IStableSwap(CRVUSD_USDT_POOL).get_dy(1, 0, crvUSDAmount) returns (uint256 usdtAmount) {
            return usdtAmount;
        } catch {
            return 0;
        }
    }

    /**
     * @notice Exit from crvUSD to USDC/USDT using the best available route
     * @dev Simulates all three routes and executes the one with maximum output
     */
    function _exitCrvUSD() private {
        uint256 crvUSDBalance = IERC20(crvUSD).balanceOf(address(this));
        if (crvUSDBalance == 0) return;

        uint256 hopAmount = simulateSwapHops(crvUSDBalance);
        uint256 usdcAmount = simulateCurveSwapUSDC(crvUSDBalance);
        uint256 usdtAmount = simulateCurveSwapUSDT(crvUSDBalance);

        if (hopAmount >= usdcAmount && hopAmount >= usdtAmount) {
            _executeSwapHops(crvUSDBalance);
        } else if (usdcAmount >= usdtAmount) {
            _executeCurveSwapUSDC(crvUSDBalance);
        } else {
            _executeCurveSwapUSDT(crvUSDBalance);
        }
    }

    /**
     * @notice Execute swap through LLAMMA -> wstETH -> wETH -> USDC path
     */
    function _executeSwapHops(uint256 crvUSDAmount) private {
        _approveIfNeeded(crvUSD, LLAMMA);

        // Step 1: Swap crvUSD -> wstETH via LLAMMA
        uint256[2] memory amounts = ILLAMMA(LLAMMA).exchange(0, 1, crvUSDAmount, 0);
        uint256 wstETHAmount = amounts[1];

        // Step 2: Swap wstETH -> wETH via Uniswap V3
        IERC20(WSTETH).approve(WSTETH_WETH_POOL, wstETHAmount);
        (, int256 wethAmount) = IUniswapPool(WSTETH_WETH_POOL).swap(
            address(this), true, int256(wstETHAmount), MIN_SQRT_RATIO + 1, bytes("")
        );

        // Step 3: Swap wETH -> USDC via Uniswap V3
        IERC20(WETH).approve(WETH_USDC_POOL, uint256(-wethAmount));
        IUniswapPool(WETH_USDC_POOL).swap(address(this), false, -wethAmount, MAX_SQRT_RATIO - 1, bytes(""));
    }

    /**
     * @notice Execute swap crvUSD -> USDC via Curve pool
     */
    function _executeCurveSwapUSDC(uint256 crvUSDAmount) private {
        _approveIfNeeded(crvUSD, CRVUSD_USDC_POOL);
        IStableSwap(CRVUSD_USDC_POOL).exchange(1, 0, crvUSDAmount, 0);
    }

    /**
     * @notice Execute swap crvUSD -> USDT via Curve pool
     */
    function _executeCurveSwapUSDT(uint256 crvUSDAmount) private {
        _approveIfNeeded(crvUSD, CRVUSD_USDT_POOL);
        IStableSwap(CRVUSD_USDT_POOL).exchange(1, 0, crvUSDAmount, 0);
    }
}

// Interfaces
interface IBooster {
    function depositAll(uint256 _pid, bool _stake) external;
    function poolInfo(uint256) external view returns (address, address, address, address, address, bool);
}

interface IRewardPool {
    function balanceOf(address account) external view returns (uint256);
    function withdrawAndUnwrap(uint256 amount, bool claim) external;
    function getReward(address account, bool claimExtras) external;
    function extraRewardsLength() external view returns (uint256);
    function extraRewards(uint256 index) external view returns (address);
    function rewardToken() external view returns (address);
}

interface IExtraReward {
    function rewardToken() external view returns (address);
}

interface IStashTokenWrapper {
    function token() external view returns (address);
}

interface IScrvUSDVault {
    function deposit(uint256 assets, address receiver) external returns (uint256);
    function convertToAssets(uint256 shares) external view returns (uint256);
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256);
}

interface ICurvePoolNG is IERC20 {
    function add_liquidity(uint256[] memory amounts, uint256 min_mint_amount, address receiver)
        external
        returns (uint256);
    function remove_liquidity(uint256 burn_amount, uint256[] memory min_amounts, address receiver)
        external
        returns (uint256[] memory);
    function remove_liquidity_one_coin(uint256 burn_amount, int128 i, uint256 min_amount) external returns (uint256);
    function calc_withdraw_one_coin(uint256 token_amount, int128 i) external view returns (uint256);
    function get_balances() external view returns (uint256[] memory);
}

interface IRedemptionHandler {
    function redeemFromPair(
        address pair,
        uint256 reUSDAmount,
        uint256 slippageTolerance,
        address recipient,
        bool redeemToUnderlying
    ) external returns (uint256);

    function previewRedeem(address pair, uint256 amount)
        external
        view
        returns (uint256 _returnedUnderlying, uint256 _returnedCollateral, uint256 _fee);
}

interface ILLAMMA {
    function get_dy(uint256 i, uint256 j, uint256 dx) external view returns (uint256);
    function exchange(uint256 i, uint256 j, uint256 dx, uint256 min_dy) external returns (uint256[2] memory);
}

interface IStableSwap {
    function get_dy(int128 i, int128 j, uint256 dx) external view returns (uint256);
    function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy) external returns (uint256);
}

interface IUniswapQuoter {
    function quoteExactInput(bytes memory path, uint256 amountIn) external returns (uint256 amountOut);
}

interface IUniswapPool {
    function swap(
        address recipient,
        bool zeroForOne,
        int256 amountSpecified,
        uint160 sqrtPriceLimitX96,
        bytes calldata data
    ) external returns (int256 amount0, int256 amount1);
}
"
    },
    "contracts/logic/templates/SelfManagedLogicV2WithUtils.sol": {
      "content": "// SPDX-License-Identifier: SHIFT-1.0
pragma solidity ^0.8.9;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import {SelfManagedLogic, UniswapV3Callbacks} from "@shitam/defi-product-templates/contracts/SelfManagedLogic.sol";
import {Constants} from "@shift-defi/core/contracts/libraries/Constants.sol";

import {ILending} from "../../interfaces/ILending.sol";

abstract contract SelfManagedLogicV2WithUtils is SelfManagedLogic {
    using SafeERC20 for IERC20;

    function exit(uint256) public payable override virtual;
    function allocatedLiquidity(address) public view override virtual returns(uint256);

    function _approveIfNeeded(address token, address recipient) internal {
        uint256 allowance = IERC20(token).allowance(address(this), recipient);
        if (allowance < type(uint256).max) {
            IERC20(token).forceApprove(recipient, type(uint256).max);
        }
    }

    function _transferAll(address token, address recipient) internal {
        uint256 balance = IERC20(token).balanceOf(address(this));
        if (balance > 0) {
            IERC20(token).safeTransfer(recipient, balance);
        }
    }

    function _exitWithRepay(address lending, address[] memory tokens) internal virtual {
        require(ILending(lending).totalDebt() > 0);
        if (allocatedLiquidity(address(this)) > 0) {
            exit(allocatedLiquidity(address(this)));
        }
        for (uint i = 0; i < tokens.length; i++) {
            if (IERC20(tokens[i]).balanceOf(address(this)) > 0) {
                _transferAll(tokens[i], lending);
            }
        }
        ILending(lending).repay(tokens);
    }
}
"
    },
    "contracts/logic/templates/SelfManagedLogicV4WithUtils.sol": {
      "content": "// SPDX-License-Identifier: SHIFT-1.0
pragma solidity ^0.8.9;

import {SelfManagedLogicV2WithUtils} from "./SelfManagedLogicV2WithUtils.sol";

abstract contract SelfManagedLogicV4WithUtils is SelfManagedLogicV2WithUtils {
    function rebalance(bytes calldata) external virtual {
        revert NotImplemented();
    }
}
"
    }
  },
  "settings": {
    "optimizer": {
      "enabled": true,
      "runs": 1
    },
    "evmVersion": "paris",
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    }
  }
}}

Tags:
ERC20, Proxy, Swap, Liquidity, Staking, Yield, Upgradeable, Factory|addr:0x1af7e1f06a968a5232f70d8fef91d356e4cfcfa5|verified:true|block:23682088|tx:0xd309dafec275f612ba2d89a4188293d25b061fed00fdb450ca7a580ad6e9e650|first_check:1761734073

Submitted on: 2025-10-29 11:34:34

Comments

Log in to comment.

No comments yet.