PepeManticMarketplace

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "PepeManticMarketplace.sol": {
      "content": "// SPDX-License-Identifier: MIT\r
pragma solidity ^0.8.20;\r
\r
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";\r
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";\r
import "@openzeppelin/contracts/access/Ownable.sol";\r
\r
contract PepeManticMarketplace is Ownable, ReentrancyGuard {\r
    struct Listing {\r
        address seller;\r
        uint256 price;\r
    }\r
\r
    uint256 public marketplaceFeeBps = 250; // 2.5% = 250 basis points\r
    address public feeRecipient;\r
\r
    // NFT => Token ID => Listing\r
    mapping(address => mapping(uint256 => Listing)) public listings;\r
\r
    // NFT => Creator Info\r
    mapping(address => address) public creators;\r
    mapping(address => uint256) public royaltyBps; // e.g., 500 = 5%\r
\r
    // Seller earnings\r
    mapping(address => uint256) public earnings;\r
\r
    event Listed(address indexed nft, uint256 indexed tokenId, address seller, uint256 price);\r
    event Sold(address indexed nft, uint256 indexed tokenId, address buyer, uint256 price);\r
    event Cancelled(address indexed nft, uint256 indexed tokenId);\r
    event CreatorRegistered(address indexed nft, address creator, uint256 royalty);\r
    event FeeUpdated(uint256 newBps);\r
    event FeeRecipientUpdated(address newRecipient);\r
    event EarningsWithdrawn(address user, uint256 amount);\r
\r
    constructor(address _owner, address _feeRecipient) Ownable(_owner) {\r
        require(_feeRecipient != address(0), "Invalid fee recipient");\r
        feeRecipient = _feeRecipient;\r
    }\r
\r
    function listNFT(address nft, uint256 tokenId, uint256 price) external {\r
        require(price > 0, "Price must be > 0");\r
        IERC721(nft).transferFrom(msg.sender, address(this), tokenId);\r
\r
        listings[nft][tokenId] = Listing({\r
            seller: msg.sender,\r
            price: price\r
        });\r
\r
        emit Listed(nft, tokenId, msg.sender, price);\r
    }\r
\r
    function cancelListing(address nft, uint256 tokenId) external {\r
        Listing memory l = listings[nft][tokenId];\r
        require(l.seller == msg.sender, "Not seller");\r
\r
        delete listings[nft][tokenId];\r
        IERC721(nft).transferFrom(address(this), msg.sender, tokenId);\r
\r
        emit Cancelled(nft, tokenId);\r
    }\r
\r
    function buyNFT(address nft, uint256 tokenId) external payable nonReentrant {\r
        Listing memory l = listings[nft][tokenId];\r
        require(l.price > 0, "Not listed");\r
        require(msg.value >= l.price, "Insufficient payment");\r
\r
        delete listings[nft][tokenId];\r
\r
        uint256 fee = (msg.value * marketplaceFeeBps) / 10000;\r
        uint256 royalty = 0;\r
\r
        if (creators[nft] != address(0) && royaltyBps[nft] > 0) {\r
            royalty = (msg.value * royaltyBps[nft]) / 10000;\r
            earnings[creators[nft]] += royalty;\r
        }\r
\r
        earnings[l.seller] += (msg.value - fee - royalty);\r
        payable(feeRecipient).transfer(fee);\r
\r
        IERC721(nft).transferFrom(address(this), msg.sender, tokenId);\r
\r
        emit Sold(nft, tokenId, msg.sender, l.price);\r
    }\r
\r
    function withdrawEarnings() external nonReentrant {\r
        uint256 amount = earnings[msg.sender];\r
        require(amount > 0, "Nothing to withdraw");\r
\r
        earnings[msg.sender] = 0;\r
        payable(msg.sender).transfer(amount);\r
\r
        emit EarningsWithdrawn(msg.sender, amount);\r
    }\r
\r
    function registerCreator(address nft, address creator, uint256 royaltyBps_) external onlyOwner {\r
        require(creator != address(0), "Invalid creator");\r
        require(royaltyBps_ <= 1000, "Max 10% royalty");\r
\r
        creators[nft] = creator;\r
        royaltyBps[nft] = royaltyBps_;\r
\r
        emit CreatorRegistered(nft, creator, royaltyBps_);\r
    }\r
\r
    function setMarketplaceFee(uint256 newFeeBps) external onlyOwner {\r
        require(newFeeBps <= 1000, "Max 10%");\r
        marketplaceFeeBps = newFeeBps;\r
        emit FeeUpdated(newFeeBps);\r
    }\r
\r
    function setFeeRecipient(address newRecipient) external onlyOwner {\r
        require(newRecipient != address(0), "Invalid address");\r
        feeRecipient = newRecipient;\r
        emit FeeRecipientUpdated(newRecipient);\r
    }\r
}\r
"
    },
    "@openzeppelin/contracts/access/Ownable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
"
    },
    "@openzeppelin/contracts/security/ReentrancyGuard.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}
"
    },
    "@openzeppelin/contracts/token/ERC721/IERC721.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721.sol)

pragma solidity >=0.6.2;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/introspection/IERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
"
    }
  },
  "settings": {
    "optimizer": {
      "enabled": true,
      "runs": 200
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    },
    "remappings": [],
    "evmVersion": "shanghai"
  }
}}

Tags:
ERC721, ERC165, Multisig, Non-Fungible, Upgradeable, Multi-Signature, Factory|addr:0xefa168d7b9b9965a0394d6a835704d075309d4db|verified:true|block:23700230|tx:0xb5a9a7cfd59653c0f36630a5522f18c02b17ad077e77563145975a55e49ba8a9|first_check:1761989922

Submitted on: 2025-11-01 10:38:43

Comments

Log in to comment.

No comments yet.