Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"settings": {
"optimizer": {
"enabled": true,
"runs": 260
},
"viaIR": true,
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"remappings": []
},
"sources": {
"contracts/SteleFund.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
// Simplified interfaces for Stele integration
import "./interfaces/ISteleFund.sol";
import "./interfaces/ISteleFundInfo.sol";
import "./interfaces/ISteleFundManagerNFT.sol";
import "./libraries/PriceOracle.sol";
import "./libraries/Path.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
interface IWETH9 {
function deposit() external payable;
function withdraw(uint256 wad) external;
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);
function balanceOf(address account) external view returns (uint256);
}
interface ISwapRouter {
struct ExactInputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
struct ExactInputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
}
function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);
function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);
}
contract SteleFund is ISteleFund, ReentrancyGuard {
using PriceOracle for address;
using Path for bytes;
using SafeERC20 for IERC20;
address public override owner;
// Uniswap V3 Contract
address public constant swapRouter = 0xE592427A0AEce92De3Edee1F18E0157C05861564;
address public constant uniswapV3Factory = 0x1F98431c8aD98523631AE4a59f267346ea31F984; // For price oracle
// Precision scaling for more accurate calculations
uint256 private constant BASIS_POINTS = 10000; // 100% = 10000 basis points
// Minimum thresholds to prevent dust issues
uint256 private constant MIN_DEPOSIT_USD = 10; // Minimum $10 deposit
// Maximum fund ID to prevent abuse
uint256 private constant MAX_FUND_ID = 1000000000; // Maximum 1 billion funds
// Maximum swaps per transaction to prevent DoS
uint256 private constant MAX_SWAPS_PER_TX = 10;
address public info;
address public managerNFTContract; // SteleFundManagerNFT contract address
uint256 public override managerFee = 100; // 100 : 1%
uint256 public override maxSlippage = 300; // Maximum 3% slippage allowed (300 = 3%)
address public weth9;
address public usdToken;
address public wbtc;
address public uni;
address public link;
mapping(address => bool) public override isInvestable;
modifier onlyOwner() {
require(msg.sender == owner, 'NO');
_;
}
modifier onlyManager(address sender, uint256 fundId) {
require(fundId == ISteleFundInfo(info).managingFund(sender), "NM");
_;
}
constructor(
address _info,
address _weth9,
address _usdToken,
address _wbtc,
address _uni,
address _link
) {
require(_info != address(0), "ZA");
require(_weth9 != address(0), "ZA");
require(_usdToken != address(0), "ZA");
require(_wbtc != address(0), "ZA");
require(_uni != address(0), "ZA");
require(_link != address(0), "ZA");
info = _info;
weth9 = _weth9;
usdToken = _usdToken;
wbtc = _wbtc;
uni = _uni;
link = _link;
isInvestable[_weth9] = true;
isInvestable[_usdToken] = true;
isInvestable[_wbtc] = true;
isInvestable[_uni] = true;
isInvestable[_link] = true;
emit AddToken(_weth9);
emit AddToken(_usdToken);
emit AddToken(_wbtc);
emit AddToken(_uni);
emit AddToken(_link);
owner = msg.sender;
}
// Safe fund ID parsing from calldata
function parseFundId(bytes memory data) private pure returns (uint256 fundId) {
require(data.length == 32, "IDL"); // Must be exactly 32 bytes for uint256
// Use standard ABI decoding for safety
fundId = abi.decode(data, (uint256));
// Prevent unreasonably large fund IDs
require(fundId > 0 && fundId <= MAX_FUND_ID, "FID");
}
// Calculate portfolio total value in USD
function getPortfolioValueUSD(uint256 fundId) internal view returns (uint256) {
IToken.Token[] memory fundTokens = ISteleFundInfo(info).getFundTokens(fundId);
uint256 totalValueUSD = 0;
for (uint256 i = 0; i < fundTokens.length; i++) {
if (fundTokens[i].amount > 0) {
uint256 tokenValueUSD = PriceOracle.getTokenPriceUSD(uniswapV3Factory, fundTokens[i].token, fundTokens[i].amount, weth9, usdToken);
totalValueUSD += tokenValueUSD;
}
}
return totalValueUSD;
}
// Calculate shares to mint based on USD value with improved precision
function _calculateSharesToMint(uint256 fundId, address token, uint256 amount) private view returns (uint256) {
uint256 fundShare = ISteleFundInfo(info).getFundShare(fundId);
// First deposit: shares = USD value of deposit
if (fundShare == 0) {
uint256 usdValue = PriceOracle.getTokenPriceUSD(uniswapV3Factory, token, amount, weth9, usdToken);
return usdValue;
}
// Get deposit value in USD
uint256 depositValueUSD = PriceOracle.getTokenPriceUSD(uniswapV3Factory, token, amount, weth9, usdToken);
if (depositValueUSD == 0) return 0;
// Get current portfolio value in USD
uint256 portfolioValueUSD = getPortfolioValueUSD(fundId);
if (portfolioValueUSD == 0) {
return depositValueUSD;
}
// Use mulDiv for maximum precision: (depositValue * existingShares) / portfolioValue
// This avoids intermediate overflow and maintains precision
uint256 shares = PriceOracle.mulDiv(depositValueUSD, fundShare, portfolioValueUSD);
// Round up to favor the protocol (prevent rounding attacks)
if ((depositValueUSD * fundShare) % portfolioValueUSD > 0) {
shares += 1;
}
return shares;
}
fallback() external payable nonReentrant {
// ETH deposit with fundId (requires 32 bytes calldata)
uint256 fundId = parseFundId(msg.data);
// Verify fund exists (fundId > 0 already checked in parseFundId)
require(fundId <= ISteleFundInfo(info).fundIdCount(), "FNE");
require(ISteleFundInfo(info).isJoined(msg.sender, fundId), "US");
// Check minimum USD deposit amount
{
uint256 depositUSD = PriceOracle.getTokenPriceUSD(uniswapV3Factory, weth9, msg.value, weth9, usdToken);
uint8 decimals = IERC20Metadata(usdToken).decimals();
require(decimals <= 18, "ID"); // Prevent overflow
require(depositUSD >= MIN_DEPOSIT_USD * (10 ** uint256(decimals)), "MDA"); // Minimum $10 deposit
}
// Calculate manager fee (only for investors, not manager)
uint256 feeAmount = 0;
uint256 fundAmount = msg.value;
if (msg.sender != ISteleFundInfo(info).manager(fundId)) {
feeAmount = PriceOracle.mulDiv(msg.value, managerFee, BASIS_POINTS);
fundAmount = msg.value - feeAmount;
}
// Calculate shares based on net deposit amount (after fee deduction)
uint256 sharesToMint = _calculateSharesToMint(fundId, weth9, fundAmount);
require(sharesToMint > 0, "ZS"); // Zero shares
// Update state FIRST (before external calls)
ISteleFundInfo(info).increaseFundToken(fundId, weth9, fundAmount); // Net amount to fund pool
if (feeAmount > 0) {
ISteleFundInfo(info).increaseFeeToken(fundId, weth9, feeAmount); // Fee amount to fee pool
}
(uint256 investorShare, uint256 fundShare) = ISteleFundInfo(info).increaseShare(fundId, msg.sender, sharesToMint);
// External call LAST
IWETH9(weth9).deposit{value: msg.value}();
emit Deposit(fundId, msg.sender, weth9, msg.value, investorShare, fundShare, fundAmount, feeAmount);
}
receive() external payable {
require(msg.sender == weth9, "OW"); // Only WETH unwrap
}
function withdraw(uint256 fundId, uint256 percentage) external payable override nonReentrant {
bool isJoined = ISteleFundInfo(info).isJoined(msg.sender, fundId);
require(isJoined, "US");
require(percentage > 0 && percentage <= 10000, "IP"); // 0.01% to 100%
uint256 investorShare = ISteleFundInfo(info).getInvestorShare(fundId, msg.sender);
require(investorShare > 0, "NS");
_withdraw(fundId, investorShare, percentage);
}
function _withdraw(uint256 fundId, uint256 investorShareBefore, uint256 percentage) private {
IToken.Token[] memory fundTokens = ISteleFundInfo(info).getFundTokens(fundId);
uint256 fundShare = ISteleFundInfo(info).getFundShare(fundId);
require(fundShare > 0, "ZFS"); // Zero fund shares
uint256 shareToWithdraw = PriceOracle.mulDiv(investorShareBefore, percentage, 10000);
// If shareToWithdraw is 0 due to rounding, just return - no need to complicate
if (shareToWithdraw == 0) {
return; // No withdrawal, save gas
}
// Update state FIRST (before external calls)
(uint256 investorShareAfter, uint256 fundShareAfter) = ISteleFundInfo(info).decreaseShare(fundId, msg.sender, shareToWithdraw);
for (uint256 i = 0; i < fundTokens.length; i++) {
if (fundTokens[i].amount > 0) {
// Calculate token amount with overflow protection using mulDiv
// Calculate token share directly: (amount * investorShareBefore * percentage) / (fundShare * 10000)
uint256 tokenShare = PriceOracle.mulDiv(
PriceOracle.mulDiv(fundTokens[i].amount, investorShareBefore, fundShare),
percentage,
10000
);
// Ensure we don't withdraw more than available
if (tokenShare > fundTokens[i].amount) {
tokenShare = fundTokens[i].amount;
}
if (tokenShare > 0) {
address token = fundTokens[i].token;
// Update state FIRST (before external calls)
ISteleFundInfo(info).decreaseFundToken(fundId, token, tokenShare);
// External calls
if (token == weth9) {
IWETH9(weth9).withdraw(tokenShare);
(bool success, ) = payable(msg.sender).call{value: tokenShare}("");
require(success, "FW");
} else {
IERC20(token).safeTransfer(msg.sender, tokenShare);
}
}
}
}
emit Withdraw(fundId, msg.sender, percentage, investorShareAfter, fundShareAfter);
}
// Get last token from multi-hop path and validate intermediate tokens
function getLastTokenFromPath(bytes memory path) private view returns (address) {
address tokenOut;
uint256 hopCount = 0;
uint256 MAX_HOPS = 3;
while (true) {
require(hopCount < MAX_HOPS, "TMP"); // Too Many Pools
bool hasMultiplePools = path.hasMultiplePools();
(, tokenOut, ) = path.decodeFirstPool();
// Validate intermediate tokens (not first, not last)
if (hasMultiplePools && hopCount > 0) {
// Intermediate token must be WETH or USDC
require(tokenOut == weth9 || tokenOut == usdToken, "IIT"); // Invalid Intermediate Token
}
if (!hasMultiplePools) break;
path = path.skipToken();
hopCount++;
}
return tokenOut;
}
// Execute single-hop swap
function exactInputSingle(uint256 fundId, SwapParams calldata trade) private {
require(isInvestable[trade.tokenOut], "NWT");
require(trade.amountIn <= ISteleFundInfo(info).getFundTokenAmount(fundId, trade.tokenIn), "NET");
// Calculate minimum output with slippage protection (ignores Manager's input)
uint256 minOutput = _calculateMinOutput(trade.tokenIn, trade.tokenOut, trade.amountIn);
// Approve with SafeERC20 to prevent approve race condition
IERC20(trade.tokenIn).safeApprove(swapRouter, 0);
IERC20(trade.tokenIn).safeApprove(swapRouter, trade.amountIn);
ISwapRouter.ExactInputSingleParams memory params = ISwapRouter.ExactInputSingleParams({
tokenIn: trade.tokenIn,
tokenOut: trade.tokenOut,
fee: trade.fee,
recipient: address(this),
deadline: block.timestamp + 180, // 3 minutes deadline
amountIn: trade.amountIn,
amountOutMinimum: minOutput, // Use calculated minOutput
sqrtPriceLimitX96: 0
});
uint256 amountOut = ISwapRouter(swapRouter).exactInputSingle(params);
handleSwap(fundId, trade.tokenIn, trade.tokenOut, trade.amountIn, amountOut);
}
// Execute multi-hop swap
function exactInput(uint256 fundId, SwapParams calldata trade) private {
address tokenOut = getLastTokenFromPath(trade.path);
(address tokenIn, , ) = trade.path.decodeFirstPool();
require(isInvestable[tokenOut], "NWT");
require(trade.amountIn <= ISteleFundInfo(info).getFundTokenAmount(fundId, tokenIn), "NET");
// Calculate minimum output with slippage protection (ignores Manager's input)
uint256 minOutput = _calculateMinOutput(tokenIn, tokenOut, trade.amountIn);
// Approve with SafeERC20 to prevent approve race condition
IERC20(tokenIn).safeApprove(swapRouter, 0);
IERC20(tokenIn).safeApprove(swapRouter, trade.amountIn);
ISwapRouter.ExactInputParams memory params = ISwapRouter.ExactInputParams({
path: trade.path,
recipient: address(this),
deadline: block.timestamp + 180, // 3 minutes deadline
amountIn: trade.amountIn,
amountOutMinimum: minOutput // Use calculated minOutput
});
uint256 amountOut = ISwapRouter(swapRouter).exactInput(params);
handleSwap(fundId, tokenIn, tokenOut, trade.amountIn, amountOut);
}
// Handle swap state updates
function handleSwap(
uint256 fundId,
address tokenIn,
address tokenOut,
uint256 amountIn,
uint256 amountOut
) private {
ISteleFundInfo(info).decreaseFundToken(fundId, tokenIn, amountIn);
ISteleFundInfo(info).increaseFundToken(fundId, tokenOut, amountOut);
emit Swap(fundId, tokenIn, tokenOut, amountIn, amountOut);
}
// Calculate minimum output with slippage protection using spot price
function _calculateMinOutput(
address tokenIn,
address tokenOut,
uint256 amountIn
) private view returns (uint256) {
// Get expected output from oracle (spot price)
uint256 amountInETH = PriceOracle.getTokenPriceETH(uniswapV3Factory, tokenIn, weth9, amountIn);
uint256 expectedOutput = PriceOracle.getTokenPriceETH(uniswapV3Factory, weth9, tokenOut, amountInETH);
// Calculate minimum acceptable output: expectedOutput * (10000 - maxSlippage) / 10000
uint256 minOutput = PriceOracle.mulDiv(expectedOutput, 10000 - maxSlippage, 10000);
return minOutput;
}
function swap(uint256 fundId, SwapParams[] calldata trades)
external override onlyManager(msg.sender, fundId) nonReentrant
{
require(trades.length <= MAX_SWAPS_PER_TX, "TMS");
for (uint256 i = 0; i < trades.length; i++) {
if (trades[i].swapType == SwapType.EXACT_INPUT_SINGLE_HOP) {
exactInputSingle(fundId, trades[i]);
} else if (trades[i].swapType == SwapType.EXACT_INPUT_MULTI_HOP) {
exactInput(fundId, trades[i]);
}
}
}
function withdrawFee(uint256 fundId, address token, uint256 percentage)
external payable override onlyManager(msg.sender, fundId) nonReentrant
{
require(percentage > 0 && percentage <= 10000, "IP"); // 0.01% to 100%
uint256 totalFeeAmount = ISteleFundInfo(info).getFeeTokenAmount(fundId, token);
require(totalFeeAmount > 0, "NF"); // No fee available
// Calculate amount to withdraw using high precision
uint256 amount = PriceOracle.precisionMul(totalFeeAmount, percentage, 10000);
// If amount is 0 due to rounding, return
if (amount == 0) {
return; // Save gas
}
// Ensure we don't withdraw more than available
if (amount > totalFeeAmount) {
amount = totalFeeAmount;
}
// Update state FIRST (before external calls)
bool isSuccess = ISteleFundInfo(info).decreaseFeeToken(fundId, token, amount);
require(isSuccess, "FD");
// External calls BEFORE event emission (CEI pattern)
if (token == weth9) {
IWETH9(weth9).withdraw(amount);
(bool success, ) = payable(msg.sender).call{value: amount}("");
require(success, "FW");
} else {
IERC20(token).safeTransfer(msg.sender, amount);
}
// Event LAST - only emit after successful transfer
emit WithdrawFee(fundId, msg.sender, token, amount);
}
// Transfer ownership (only owner)
function transferOwnership(address newOwner) external onlyOwner {
require(newOwner != address(0), "ZA"); // Zero Address
owner = newOwner;
emit OwnershipTransferred(msg.sender, newOwner);
}
// Renounce ownership of the contract
function renounceOwnership() external onlyOwner {
emit OwnershipTransferred(owner, address(0));
owner = address(0);
}
// Set Manager NFT Contract (only callable by info contract owner)
function setManagerNFTContract(address _managerNFTContract) external override onlyOwner {
require(_managerNFTContract != address(0), "NZ");
managerNFTContract = _managerNFTContract;
emit ManagerNFTContractSet(_managerNFTContract);
}
// Mint Manager NFT (only callable by fund manager)
function mintManagerNFT(uint256 fundId) external override onlyManager(msg.sender, fundId) nonReentrant returns (uint256) {
require(managerNFTContract != address(0), "NNC"); // NFT Contract Not set
address manager = ISteleFundInfo(info).manager(fundId);
require(manager == msg.sender, "NM");
// Create mint parameters
MintParams memory params = MintParams({
fundId: fundId,
fundCreated: ISteleFundInfo(info).fundCreationBlock(fundId), // Get actual fund creation block
investment: ISteleFundInfo(info).getFundShare(fundId),
currentTVL: getPortfolioValueUSD(fundId)
});
// Call NFT contract to mint
return ISteleFundManagerNFT(managerNFTContract).mintManagerNFT(params);
}
}
"
},
"@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
"
},
"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
"
},
"@openzeppelin/contracts/security/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
"
},
"contracts/libraries/Path.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
import './BytesLib.sol';
/// @title Functions for manipulating path data for multihop swaps
library Path {
using BytesLib for bytes;
/// @dev The length of the bytes encoded address
uint256 private constant ADDR_SIZE = 20;
/// @dev The length of the bytes encoded fee
uint256 private constant FEE_SIZE = 3;
/// @dev The offset of a single token address and pool fee
uint256 private constant NEXT_OFFSET = ADDR_SIZE + FEE_SIZE;
/// @dev The offset of an encoded pool key
uint256 private constant POP_OFFSET = NEXT_OFFSET + ADDR_SIZE;
/// @dev The minimum length of an encoding that contains 2 or more pools
uint256 private constant MULTIPLE_POOLS_MIN_LENGTH = POP_OFFSET + NEXT_OFFSET;
/// @notice Returns true iff the path contains two or more pools
/// @param path The encoded swap path
/// @return True if path contains two or more pools, otherwise false
function hasMultiplePools(bytes memory path) internal pure returns (bool) {
return path.length >= MULTIPLE_POOLS_MIN_LENGTH;
}
/// @notice Decodes the first pool in path
/// @param path The bytes encoded swap path
/// @return tokenA The first token of the given pool
/// @return tokenB The second token of the given pool
/// @return fee The fee level of the pool
function decodeFirstPool(bytes memory path)
internal
pure
returns (
address tokenA,
address tokenB,
uint24 fee
)
{
tokenA = path.toAddress(0);
fee = path.toUint24(ADDR_SIZE);
tokenB = path.toAddress(NEXT_OFFSET);
}
/// @notice Skips a token + fee element from the buffer and returns the remainder
/// @param path The swap path
/// @return The remaining token + fee elements in the path
function skipToken(bytes memory path) internal pure returns (bytes memory) {
return path.slice(NEXT_OFFSET, path.length - NEXT_OFFSET);
}
}
"
},
"contracts/libraries/PriceOracle.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
// Direct Uniswap V3 interfaces
interface IUniswapV3Factory {
function getPool(address tokenA, address tokenB, uint24 fee)
external view returns (address pool);
}
interface IUniswapV3Pool {
function slot0() external view returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
}
/// @title Price Oracle Library
/// @notice Library for calculating Spot Prices using Uniswap V3
/// @dev Provides functions for spot price calculation, tick math, and price conversion
library PriceOracle {
// Standard Uniswap V3 fee tiers - using function to return array
function getFeeTiers() private pure returns (uint16[3] memory) {
return [uint16(500), uint16(3000), uint16(10000)]; // 0.05%, 0.3%, 1%
}
/// @notice Convert tick to sqrt price ratio
/// @param tick The tick value
/// @return sqrtPriceX96 The sqrt price in X96 format
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
require(absTick <= uint256(int256(887272)), 'T');
uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
}
/// @notice Full precision multiplication
/// @param a First number
/// @param b Second number
/// @param denominator Denominator for division
/// @return result The result of (a * b) / denominator
function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
require(denominator > prod1);
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
uint256 twos = (~denominator + 1) & denominator;
assembly {
denominator := div(denominator, twos)
}
assembly {
prod0 := div(prod0, twos)
}
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
uint256 inv = (3 * denominator) ^ 2;
inv *= 2 - denominator * inv;
inv *= 2 - denominator * inv;
inv *= 2 - denominator * inv;
inv *= 2 - denominator * inv;
inv *= 2 - denominator * inv;
inv *= 2 - denominator * inv;
result = prod0 * inv;
return result;
}
/// @notice Convert tick to price quote
/// @param tick The tick value
/// @param baseAmount The base amount to convert
/// @param baseToken The base token address
/// @param quoteToken The quote token address
/// @return quoteAmount The calculated quote amount
function getQuoteAtTick(
int24 tick,
uint128 baseAmount,
address baseToken,
address quoteToken
) internal pure returns (uint256 quoteAmount) {
uint160 sqrtRatioX96 = getSqrtRatioAtTick(tick);
// Calculate the price ratio from sqrtRatioX96
if (sqrtRatioX96 <= type(uint128).max) {
uint256 ratioX192 = uint256(sqrtRatioX96) * sqrtRatioX96;
quoteAmount = baseToken < quoteToken
? mulDiv(ratioX192, baseAmount, 1 << 192)
: mulDiv(1 << 192, baseAmount, ratioX192);
} else {
uint256 ratioX128 = mulDiv(sqrtRatioX96, sqrtRatioX96, 1 << 64);
quoteAmount = baseToken < quoteToken
? mulDiv(ratioX128, baseAmount, 1 << 128)
: mulDiv(1 << 128, baseAmount, ratioX128);
}
}
/// @notice Get quote from pool using spot price
/// @param pool The pool address
/// @param baseAmount The base amount
/// @param baseToken The base token address
/// @param quoteToken The quote token address
/// @return quoteAmount The calculated quote amount
function getQuoteFromPool(
address pool,
uint128 baseAmount,
address baseToken,
address quoteToken
) internal view returns (uint256 quoteAmount) {
// Use spot price (like Uniswap SwapRouter)
(, int24 tick, , , , , ) = IUniswapV3Pool(pool).slot0();
return getQuoteAtTick(tick, baseAmount, baseToken, quoteToken);
}
/// @notice Get best quote across multiple fee tiers using spot price
/// @param factory The Uniswap V3 factory address
/// @param tokenA First token address
/// @param tokenB Second token address
/// @param amountIn Input amount
/// @return bestQuote The best quote found across all pools
function getBestQuote(
address factory,
address tokenA,
address tokenB,
uint128 amountIn
) internal view returns (uint256 bestQuote) {
bestQuote = 0;
uint16[3] memory feeTiers = getFeeTiers();
for (uint256 i = 0; i < feeTiers.length; i++) {
address pool = IUniswapV3Factory(factory).getPool(tokenA, tokenB, uint24(feeTiers[i]));
if (pool == address(0)) {
continue;
}
// Note: Direct call without try-catch since we're in a library
// The calling contract should handle exceptions
uint256 quote = getQuoteFromPool(pool, amountIn, tokenA, tokenB);
if (quote > bestQuote) {
bestQuote = quote;
}
}
}
/// @notice Get ETH price in USD using spot price
/// @dev Reverts if no valid price is available
/// @param factory The Uniswap V3 factory address
/// @param weth9 WETH9 token address
/// @param usdToken USD token address (e.g., USDC)
/// @return ethPriceUSD ETH price in USD
function getETHPriceUSD(
address factory,
address weth9,
address usdToken
) internal view returns (uint256 ethPriceUSD) {
uint256 quote = getBestQuote(
factory,
weth9,
usdToken,
uint128(1e18) // 1 ETH
);
require(quote > 0, "No valid ETH price available");
return quote;
}
/// @notice Get token price in ETH using spot price
/// @param factory The Uniswap V3 factory address
/// @param token Token address
/// @param weth9 WETH9 token address
/// @param amount Token amount
/// @return ethAmount ETH amount equivalent
function getTokenPriceETH(
address factory,
address token,
address weth9,
uint256 amount
) internal view returns (uint256 ethAmount) {
if (token == weth9) {
return amount; // 1:1 ratio for WETH to ETH
}
return getBestQuote(
factory,
token,
weth9,
uint128(amount)
);
}
/// @notice Get token price in USD using spot price
/// @param factory The Uniswap V3 factory address
/// @param token Token address
/// @param amount Token amount
/// @param weth9 WETH9 token address
/// @param usdToken USD token address (e.g., USDC)
/// @return usdAmount USD amount equivalent
function getTokenPriceUSD(
address factory,
address token,
uint256 amount,
address weth9,
address usdToken
) internal view returns (uint256 usdAmount) {
if (token == weth9) {
// ETH to USD directly
uint256 ethPriceUSD = getETHPriceUSD(factory, weth9, usdToken);
return precisionMul(amount, ethPriceUSD, 1e18);
} else if (token == usdToken) {
// USD token (USDC) - return as is
return amount;
} else {
// Other tokens: token -> ETH -> USD
uint256 ethAmount = getTokenPriceETH(factory, token, weth9, amount);
if (ethAmount == 0) return 0;
uint256 ethPriceUSD = getETHPriceUSD(factory, weth9, usdToken);
return precisionMul(ethAmount, ethPriceUSD, 1e18);
}
}
/// @notice High precision multiplication: (a * b) / c
/// @param a First number
/// @param b Second number
/// @param c Divisor
/// @return result The result of (a * b) / c with high precision
function precisionMul(uint256 a, uint256 b, uint256 c) internal pure returns (uint256) {
if (a == 0 || b == 0) return 0;
require(c > 0, "Division by zero");
uint256 PRECISION_SCALE = 1e18;
// Check if we can safely multiply with precision scale
if (a <= type(uint256).max / b && (a * b) <= type(uint256).max / PRECISION_SCALE) {
return (a * b * PRECISION_SCALE) / (c * PRECISION_SCALE);
}
// Fallback to standard calculation to avoid overflow
return (a * b) / c;
}
}"
},
"contracts/interfaces/ISteleFundManagerNFT.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
// Mint parameters structure to avoid stack too deep
struct MintParams {
uint256 fundId;
uint256 fundCreated;
uint256 investment;
uint256 currentTVL;
}
interface ISteleFundManagerNFT {
// Events
event ManagerNFTMinted(
uint256 indexed tokenId,
uint256 indexed fundId,
address indexed manager,
uint256 investment,
uint256 currentTVL,
int256 returnRate,
uint256 fundCreated,
uint256 mintedAt
);
event TransferAttemptBlocked(uint256 indexed tokenId, address indexed from, address indexed to, string reason);
// Main functions
function mintManagerNFT(MintParams calldata params) external returns (uint256);
// View functions
function getTokenData(uint256 tokenId) external view returns (
uint256 fundId,
uint256 fundCreated,
uint256 nftMintBlock,
uint256 investment,
uint256 currentTVL,
int256 returnRate
);
}"
},
"contracts/interfaces/ISteleFundInfo.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
import './IToken.sol';
interface ISteleFundInfo is IToken {
event InfoCreated();
event OwnerChanged(address owner, address newOwner);
event Create(uint256 fundId, address indexed manager);
event Join(uint256 fundId, address indexed investor);
function owner() external view returns (address _owner);
function manager(uint256 fundId) external view returns (address _manager);
function managingFund(address _manager) external view returns (uint256 fundId);
function fundIdCount() external view returns (uint256 fundCount);
function fundCreationBlock(uint256 fundId) external view returns (uint256 creationBlock);
function setOwner(address newOwner) external;
function create() external returns (uint256 fundId);
function isJoined(address investor, uint256 fundId) external view returns (bool);
function join(uint256 fundId) external;
function getFundTokens(uint256 fundId) external view returns (Token[] memory);
function getFeeTokens(uint256 fundId) external view returns (Token[] memory);
function getFundTokenAmount(uint256 fundId, address token) external view returns (uint256);
function getFeeTokenAmount(uint256 fundId, address token) external view returns (uint256);
function getFundShare(uint256 fundId) external view returns (uint256);
function getInvestorShare(uint256 fundId, address investor) external view returns (uint256);
function increaseFundToken(uint256 fundId, address token, uint256 amount) external;
function decreaseFundToken(uint256 fundId, address token, uint256 amount) external returns (bool);
function increaseShare(uint256 fundId, address investor, uint256 amount) external returns (uint256, uint256);
function decreaseShare(uint256 fundId, address investor, uint256 amount) external returns (uint256, uint256);
function increaseFeeToken(uint256 fundId, address token, uint256 amount) external;
function decreaseFeeToken(uint256 fundId, address token, uint256 amount) external returns (bool);
}"
},
"contracts/interfaces/ISteleFund.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
interface ISteleFund {
event Deposit(uint256 fundId, address indexed investor, address token, uint256 amount, uint256 investorShare, uint256 fundShare, uint256 fundAmount, uint256 feeAmount);
event Withdraw(uint256 fundId, address indexed investor, uint256 percentage, uint256 investorShare, uint256 fundShare);
event Swap(uint256 fundId, address tokenIn, address tokenOut, uint256 amountIn, uint256 amountOut);
event WithdrawFee(uint256 fundId, address indexed manager, address token, uint256 amount);
event ManagerNFTContractSet(address indexed managerNFTContract);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
event AddToken(address indexed token);
function managerFee() external view returns (uint256);
function maxSlippage() external view returns (uint256);
function isInvestable(address _token) external view returns (bool);
enum SwapType {
EXACT_INPUT_SINGLE_HOP,
EXACT_INPUT_MULTI_HOP
}
struct SwapParams {
SwapType swapType;
address tokenIn;
address tokenOut;
bytes path;
uint24 fee;
uint256 amountIn;
uint256 amountOutMinimum;
}
function owner() external view returns (address);
function withdraw(uint256 fundId, uint256 percentage) external payable;
function swap(uint256 fundId, SwapParams[] calldata trades) external;
function withdrawFee(uint256 fundId, address token, uint256 percentage) external payable;
function setManagerNFTContract(address _managerNFTContract) external;
function mintManagerNFT(uint256 fundId) external returns (uint256);
}"
},
"contracts/libraries/BytesLib.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
/*
* @title Solidity Bytes Arrays Utils
* @author Gonçalo Sá <goncalo.sa@consensys.net>
*
* @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
* The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
*/
pragma solidity ^0.8.28;
library BytesLib {
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
) internal pure returns (bytes memory) {
require(_length + 31 >= _length, 'slice_overflow');
require(_start + _length >= _start, 'slice_overflow');
require(_bytes.length >= _start + _length, 'slice_outOfBounds');
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
require(_start + 20 >= _start, 'toAddress_overflow');
require(_bytes.length >= _start + 20, 'toAddress_outOfBounds');
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toUint24(bytes memory _bytes, uint256 _start) internal pure returns (uint24) {
require(_start + 3 >= _start, 'toUint24_overflow');
require(_bytes.length >= _start + 3, 'toUint24_outOfBounds');
uint24 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x3), _start))
}
return tempUint;
}
}
"
},
"contracts/interfaces/IToken.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
interface IToken {
struct Token {
address token;
uint256 amount;
}
}"
},
"@openzeppelin/contracts/utils/Address.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
"
},
"@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to
Submitted on: 2025-11-01 11:41:41
Comments
Log in to comment.
No comments yet.