Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/Presale.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
interface Aggregator {
function latestRoundData()
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}
interface IStakingHandler {
function stakeByPresale(address _holder, uint256 a_tokenAmount) external;
function stakeFromWallet(address _user, uint256 amount) external;
function migrateUserStakingData(address[] calldata users, uint256[] calldata amounts, uint256 presaleStartTime)
external;
}
interface IVestingVault {
function registerVesting(address user, uint256 amount, bool staked) external;
function claimVestedTokensFor(address user) external returns (uint256);
function setVestingStart(uint256 _vestingStart) external;
function getClaimableAmount(address user) external view returns (uint256);
function convertToStaked(address user, uint256 amount) external returns (bool);
function getNonStakedAllocation(address user) external view returns (uint256);
}
contract Presale is ReentrancyGuard, Ownable, Pausable {
using SafeERC20 for IERC20;
// Constants
uint256 private constant TOKEN_DECIMALS = 18;
uint256 private constant USDT_DECIMALS = 6;
uint256 private constant PRICE_DECIMALS = 18;
uint256 private constant ETH_PRICE_DECIMALS = 8;
uint256 private constant PERCENTAGE_BASE = 10000;
uint256 private constant PRICE_FRESHNESS_THRESHOLD = 3600;
uint256 private constant MIN_TIME_BETWEEN_STAGES = 1 hours;
struct Stage {
uint256 capacity;
uint256 price;
uint256 startTime;
bool initialized;
}
uint256 public totalTokensSold;
uint256 public startTime;
uint256 public endTime;
address public saleToken;
uint256 public immutable baseDecimals;
uint256 public checkPoint;
uint256 public usdRaised;
uint256 public totalBoughtAndStaked;
uint256 public vestingStart;
uint256 public affiliateRewardPercentage = 2000;
mapping(address => uint256) public affiliateEarnings;
mapping(address => address) public userAffiliates;
Stage[] public stages;
address payable[] private destinationSplitWallets;
uint256[] private destinationSplitPercentages;
uint256 public activeStagePublic;
mapping(uint256 => uint256) private tokensSoldInStage;
mapping(uint256 => bool) private stageHasProgressed;
address public usdtToken;
address payable public destinationWallet;
Aggregator public priceAggregator;
IERC20 private USDTInterface;
IStakingHandler public stakingHandler;
IVestingVault public vestingVault;
bool public migrationMode = true;
event StageUpdated(uint256 indexed stageId, uint256 capacity, uint256 price, uint256 startTime);
event StakingHandlerUpdated(address indexed handler);
event VestingVaultUpdated(address indexed vault);
event DestinationWalletUpdated(address indexed wallet);
event PriceAggregatorUpdated(address indexed aggregator);
event USDTTokenUpdated(address indexed usdtToken);
event StageAdded(uint256 indexed stageId, uint256 capacity, uint256 price, uint256 startTime);
event TokensBought(
address indexed user, uint256 amount, address indexed purchaseToken, uint256 amountPaid, uint256 usdEquivalent
);
event TokensClaimed(address indexed user, uint256 amount);
event TokensStaked(address indexed user, uint256 amount);
event SaleTokenUpdated(address indexed saleToken);
event EmergencyWithdraw(address indexed token, uint256 amount);
event RefundIssued(address indexed user, uint256 amount, address indexed token);
event StageProgressed(uint256 indexed fromStage, uint256 indexed toStage, uint256 unsolvedTokensRolledOver);
event MigrationCompleted();
event MigrationDataSet(
uint256 currentStageId, uint256 totalTokensSold, uint256 usdRaised, uint256 totalBoughtAndStaked
);
event UserBalancesMigrated(address[] users, uint256[] amounts);
event StageTokensSoldSet(uint256 stageIds, uint256 amounts);
event TokensTransferredForMigration(uint256 amount);
// Affiliate events
event AffiliateRewardPercentageUpdated(uint256 newPercentage);
event AffiliateRewardPaid(
address indexed affiliate, address indexed buyer, uint256 rewardAmount, address indexed paymentToken
);
// Custom errors
error InvalidAmount();
error InvalidAddress();
error InvalidStage();
error InvalidTime();
error InvalidPrice();
error InsufficientAllowance();
error InsufficientBalance();
error SaleNotActive();
error ClaimNotStarted();
error NothingToClaim();
error TransferFailed();
error StalePrice();
error VestingAlreadyStarted();
error InvalidAffiliatePercentage();
error SelfAffiliation();
// Modifiers
modifier validAddress(address _address) {
_validAddress(_address);
_;
}
function _validAddress(address _address) internal {
if (_address == address(0)) {
revert InvalidAddress();
}
}
modifier whenSaleActive() {
_whenSaleActive();
_;
}
function _whenSaleActive() internal {
if (block.timestamp < startTime) {
revert SaleNotActive();
}
if (endTime != 0 && block.timestamp > endTime) {
revert SaleNotActive();
}
}
modifier whenVestingNotStarted() {
_whenVestingNotStarted();
_;
}
function _whenVestingNotStarted() internal {
if (vestingStart > 0 && block.timestamp >= vestingStart) {
revert VestingAlreadyStarted();
}
}
constructor(
uint256 _startTime,
uint256 _endTime,
address _saleToken,
address _usdtToken,
address _priceAggregator,
address payable _destinationWallet // <- make payable
) Ownable(msg.sender) {
startTime = _startTime;
endTime = _endTime;
saleToken = _saleToken;
usdtToken = _usdtToken;
USDTInterface = IERC20(_usdtToken);
priceAggregator = Aggregator(_priceAggregator);
destinationWallet = _destinationWallet; // now types match
baseDecimals = 10 ** TOKEN_DECIMALS;
vestingStart = 0;
}
/**
* @notice Move unsold tokens from one stage to another
* @param fromStage Index of finished stage
* @param toStage Index of target active/upcoming stage
*/
function moveUnsoldTokens(uint256 fromStage, uint256 toStage) external onlyOwner {
require(fromStage < stages.length && toStage < stages.length, "Invalid stage");
require(fromStage != toStage, "Stages must differ");
Stage storage src = stages[fromStage];
Stage storage dst = stages[toStage];
require(src.initialized && dst.initialized, "Uninitialized stage");
uint256 sold = tokensSoldInStage[fromStage];
uint256 unsold = src.capacity > sold ? src.capacity - sold : 0;
require(unsold > 0, "No unsold tokens");
src.capacity -= unsold;
dst.capacity += unsold;
emit StageUpdated(fromStage, src.capacity, src.price, src.startTime);
emit StageUpdated(toStage, dst.capacity, dst.price, dst.startTime);
}
/**
* @notice Set new staking handler contract address
*/
function setStakingHandler(address _handler) external onlyOwner {
require(_handler != address(0), "Invalid address");
stakingHandler = IStakingHandler(_handler);
emit StakingHandlerUpdated(_handler);
}
/**
* @notice Set new destination wallet for payments
*/
function setDestinationWallet(address payable _wallet) external onlyOwner {
require(_wallet != address(0), "Invalid address");
destinationWallet = _wallet;
emit DestinationWalletUpdated(_wallet);
}
/**
* @notice Set new price feed aggregator
*/
function setPriceAggregator(address _aggregator) external onlyOwner {
require(_aggregator != address(0), "Invalid address");
priceAggregator = Aggregator(_aggregator);
emit PriceAggregatorUpdated(_aggregator);
}
/**
* @notice Set new USDT token contract address
*/
function setUSDTToken(address _usdtToken) external onlyOwner {
require(_usdtToken != address(0), "Invalid address");
usdtToken = _usdtToken;
USDTInterface = IERC20(_usdtToken);
emit USDTTokenUpdated(_usdtToken);
}
// Rest of contract unchanged...
// Affiliate management functions
function setAffiliateRewardPercentage(uint256 _percentage) external onlyOwner {
if (_percentage > 2000) {
revert InvalidAffiliatePercentage(); // Max 20%
}
affiliateRewardPercentage = _percentage;
emit AffiliateRewardPercentageUpdated(_percentage);
}
function getAffiliateEarnings(address affiliate) external view returns (uint256) {
return affiliateEarnings[affiliate];
}
// Migration functions
function completeMigration() external onlyOwner {
migrationMode = false;
activeStagePublic = getCurrentStage();
emit MigrationCompleted();
}
/**
* @notice Prepare tokens for migration by transferring total needed to vesting vault
* @param totalTokensNeeded Total amount of tokens needed for all migrations
*/
function prepareTokensForMigration(uint256 totalTokensNeeded) external onlyOwner {
require(migrationMode, "Migration already completed");
require(address(vestingVault) != address(0), "Vesting vault not set");
require(totalTokensNeeded > 0, "Invalid amount");
// Transfer all tokens needed for migration at once
IERC20(saleToken).safeTransfer(address(vestingVault), totalTokensNeeded);
emit TokensTransferredForMigration(totalTokensNeeded);
}
function migrateUserBalances(address[] calldata users, uint256[] calldata amounts) external onlyOwner {
require(migrationMode, "Migration already completed");
require(users.length == amounts.length, "Arrays length mismatch");
require(address(vestingVault) != address(0), "Vesting vault not set");
for (uint256 i = 0; i < users.length; i++) {
if (amounts[i] > 0) {
vestingVault.registerVesting(users[i], amounts[i], true);
}
}
emit UserBalancesMigrated(users, amounts);
}
function getLatestPrice() public view returns (uint256) {
(uint80 roundID, int256 price,, uint256 updatedAt, uint80 answeredInRound) = priceAggregator.latestRoundData();
if (price <= 0) {
revert InvalidPrice();
}
if (updatedAt == 0) {
revert StalePrice();
}
if (answeredInRound < roundID) {
revert StalePrice();
}
if (block.timestamp - updatedAt > PRICE_FRESHNESS_THRESHOLD) {
revert StalePrice();
}
return uint256(price);
}
function getTokensSoldInStage(uint256 stageId) external view returns (uint256) {
if (stageId >= stages.length) {
revert InvalidStage();
}
if (!stages[stageId].initialized) {
revert InvalidStage();
}
return tokensSoldInStage[stageId];
}
function setTokensSoldInStage(uint256 stageId, uint256 tokensSoldAmount) external onlyOwner {
if (stageId >= stages.length) {
revert InvalidStage();
}
tokensSoldInStage[stageId] = tokensSoldAmount;
emit StageTokensSoldSet(stageId, tokensSoldAmount);
}
function addStage(uint256 _capacity, uint256 _price, uint256 _startTime) external onlyOwner {
if (_capacity == 0 || _price == 0) {
revert InvalidAmount();
}
if (_startTime <= block.timestamp) {
revert InvalidTime();
}
if (stages.length > 0) {
Stage memory lastStage = stages[stages.length - 1];
if (_startTime <= lastStage.startTime + MIN_TIME_BETWEEN_STAGES) {
revert InvalidTime();
}
}
stages.push(Stage({capacity: _capacity, price: _price, startTime: _startTime, initialized: true}));
emit StageAdded(stages.length - 1, _capacity, _price, _startTime);
}
function calculateTokensForUSD(uint256 usdAmount) public view returns (uint256) {
if (usdAmount == 0) {
return 0;
}
uint256 totalTokens = 0;
uint256 remainingUSD = usdAmount;
uint256 currentStage = getCurrentStage();
for (uint256 i = currentStage; i < stages.length && remainingUSD > 0; i++) {
Stage memory stage = stages[i];
if (!stage.initialized) {
break;
}
uint256 tokensAlreadySold = tokensSoldInStage[i];
uint256 tokensAvailableInStage = stage.capacity > tokensAlreadySold ? stage.capacity - tokensAlreadySold : 0;
if (tokensAvailableInStage == 0) {
continue;
}
uint256 usdValueOfAvailableTokens = (tokensAvailableInStage * stage.price) / baseDecimals;
if (remainingUSD >= usdValueOfAvailableTokens) {
totalTokens += tokensAvailableInStage;
remainingUSD -= usdValueOfAvailableTokens;
} else {
uint256 tokensToBuy = (remainingUSD * baseDecimals) / stage.price;
totalTokens += tokensToBuy;
remainingUSD = 0;
}
}
if (remainingUSD > 0) {
revert InvalidAmount();
}
return totalTokens;
}
// Updated purchase functions with affiliate support
function buyWithEth(uint256 tokenAmount, bool isStaking)
external
payable
nonReentrant
whenNotPaused
whenSaleActive
{
_buyWithEth(tokenAmount, isStaking, address(0));
}
function buyWithEthAffiliate(uint256 tokenAmount, bool isStaking, address affiliate)
external
payable
nonReentrant
whenNotPaused
whenSaleActive
{
if (affiliate != address(0) && affiliate == msg.sender) {
revert SelfAffiliation();
}
_buyWithEth(tokenAmount, isStaking, affiliate);
}
function _buyWithEth(uint256 tokenAmount, bool isStaking, address affiliate) internal {
uint256 usdAmount = calculateUSDForTokens(tokenAmount);
uint256 ethPrice = getLatestPrice();
uint256 ethRequired = (usdAmount * (10 ** ETH_PRICE_DECIMALS)) / ethPrice;
if (msg.value < ethRequired) {
revert InsufficientBalance();
}
_processPurchase(tokenAmount, isStaking, ethRequired, usdAmount, address(0), affiliate);
if (msg.value > ethRequired) {
(bool success,) = msg.sender.call{value: msg.value - ethRequired}("");
if (!success) {
revert TransferFailed();
}
emit RefundIssued(msg.sender, msg.value - ethRequired, address(0));
}
}
function buyWithUSDT(uint256 tokenAmount, bool isStaking) external nonReentrant whenNotPaused whenSaleActive {
_buyWithUSDT(tokenAmount, isStaking, address(0));
}
function buyWithUSDTAffiliate(uint256 tokenAmount, bool isStaking, address affiliate)
external
nonReentrant
whenNotPaused
whenSaleActive
{
if (affiliate != address(0) && affiliate == msg.sender) {
revert SelfAffiliation();
}
_buyWithUSDT(tokenAmount, isStaking, affiliate);
}
function _buyWithUSDT(uint256 tokenAmount, bool isStaking, address affiliate) internal {
uint256 usdAmount = calculateUSDForTokens(tokenAmount);
uint256 usdtAmount = usdAmount / (10 ** (PRICE_DECIMALS - USDT_DECIMALS));
if (USDTInterface.allowance(msg.sender, address(this)) < usdtAmount) {
revert InsufficientAllowance();
}
uint256 beforeBal = IERC20(usdtToken).balanceOf(address(this));
USDTInterface.safeTransferFrom(msg.sender, address(this), usdtAmount);
uint256 received = IERC20(usdtToken).balanceOf(address(this)) - beforeBal;
require(received >= usdtAmount, "USDT not received");
_processPurchase(tokenAmount, isStaking, usdtAmount, usdAmount, usdtToken, affiliate);
}
function getCurrentStagePublic() external view returns (uint256) {
return migrationMode ? activeStagePublic : getCurrentStage();
}
function _applyProgress() internal {
uint256 cur = getCurrentStage();
while (true) {
uint256 next = _progressStage(cur);
if (next == cur) {
break;
}
cur = next;
}
activeStagePublic = cur;
}
function _processPurchase(
uint256 tokenAmount,
bool isStaking,
uint256 paymentAmount,
uint256 usdAmount,
address paymentToken,
address affiliate
) internal {
_applyProgress();
require(address(vestingVault) != address(0), "Vesting vault not set");
uint256 remainingTokens = tokenAmount;
uint256 totalTokensPurchased = 0;
uint256 maxIterations = stages.length;
uint256 iterations = 0;
while (remainingTokens > 0 && iterations < maxIterations) {
iterations++;
uint256 activeStage = getCurrentStage();
if (activeStage >= stages.length) {
revert InvalidStage();
}
uint256 tokensAlreadySold = tokensSoldInStage[activeStage];
uint256 tokensAvailableInStage =
stages[activeStage].capacity > tokensAlreadySold ? stages[activeStage].capacity - tokensAlreadySold : 0;
if (tokensAvailableInStage == 0) {
_forceProgressStage(activeStage);
continue;
}
uint256 tokensFromThisStage =
remainingTokens > tokensAvailableInStage ? tokensAvailableInStage : remainingTokens;
tokensSoldInStage[activeStage] += tokensFromThisStage;
totalTokensPurchased += tokensFromThisStage;
remainingTokens -= tokensFromThisStage;
if (tokensSoldInStage[activeStage] >= stages[activeStage].capacity) {
_forceProgressStage(activeStage);
}
}
require(remainingTokens == 0, "Could not fulfill entire purchase");
require(totalTokensPurchased == tokenAmount, "Token calculation error");
totalTokensSold += tokenAmount;
usdRaised += usdAmount;
// Store affiliate information
if (affiliate != address(0)) {
userAffiliates[msg.sender] = affiliate;
}
IERC20(saleToken).safeTransfer(address(vestingVault), tokenAmount);
if (isStaking) {
require(address(stakingHandler) != address(0), "Staking not configured");
vestingVault.registerVesting(msg.sender, tokenAmount, true);
stakingHandler.stakeByPresale(msg.sender, tokenAmount);
totalBoughtAndStaked += tokenAmount;
emit TokensStaked(msg.sender, tokenAmount);
} else {
vestingVault.registerVesting(msg.sender, tokenAmount, false);
}
_distributePaymentWithAffiliate(paymentAmount, paymentToken, affiliate);
emit TokensBought(msg.sender, tokenAmount, paymentToken, paymentAmount, usdAmount);
}
function _forceProgressStage(uint256 stageId) internal {
if (stageId >= stages.length - 1) {
return;
}
uint256 nextStage = stageId + 1;
activeStagePublic = nextStage;
uint256 sold = tokensSoldInStage[stageId];
uint256 unsold = sold < stages[stageId].capacity ? stages[stageId].capacity - sold : 0;
if (unsold > 0) {
stages[nextStage].capacity += unsold;
emit StageUpdated(
nextStage, stages[nextStage].capacity, stages[nextStage].price, stages[nextStage].startTime
);
}
stageHasProgressed[stageId] = true;
emit StageProgressed(stageId, nextStage, unsold);
}
// Backward compatible claim function - delegates to vesting vault
function claim() external nonReentrant whenNotPaused {
uint256 claimedAmount = vestingVault.claimVestedTokensFor(msg.sender);
emit TokensClaimed(msg.sender, claimedAmount);
}
// View function for backward compatibility
function calculateVestedAmount(address user) public view returns (uint256) {
return vestingVault.getClaimableAmount(user);
}
/**
* @notice Stake tokens (only available before vesting starts)
* @param amount Amount of tokens to stake
* @dev After vesting starts, users must use StakingHandler.stake() directly
*/
function stakeTokens(uint256 amount) external nonReentrant whenNotPaused whenVestingNotStarted {
if (amount == 0) {
revert InvalidAmount();
}
uint256 nonStakedAllocation = vestingVault.getNonStakedAllocation(msg.sender);
uint256 userBalance = IERC20(saleToken).balanceOf(msg.sender);
uint256 fromAllocation = amount > nonStakedAllocation ? nonStakedAllocation : amount;
uint256 fromWallet = amount - fromAllocation;
// Stake from vested allocation first (no transfer needed)
if (fromAllocation > 0) {
vestingVault.convertToStaked(msg.sender, fromAllocation);
stakingHandler.stakeByPresale(msg.sender, fromAllocation);
}
// Then stake from wallet if needed (transfer required)
if (fromWallet > 0) {
if (userBalance < fromWallet) {
revert InsufficientBalance();
}
IERC20(saleToken).safeTransferFrom(msg.sender, address(stakingHandler), fromWallet);
stakingHandler.stakeFromWallet(msg.sender, fromWallet);
}
totalBoughtAndStaked += amount;
emit TokensStaked(msg.sender, amount);
}
/**
* @notice Get information about staking availability
* @return canStakeViaPresale Whether staking through presale is still available
* @return vestingHasStarted Whether vesting has started
* @return timeUntilVesting Seconds until vesting starts (0 if already started)
*/
function getStakingInfo()
external
view
returns (bool canStakeViaPresale, bool vestingHasStarted, uint256 timeUntilVesting)
{
vestingHasStarted = vestingStart > 0 && block.timestamp >= vestingStart;
canStakeViaPresale = !vestingHasStarted;
if (vestingStart > 0 && block.timestamp < vestingStart) {
timeUntilVesting = vestingStart - block.timestamp;
} else {
timeUntilVesting = 0;
}
}
function emergencyWithdraw(address token) external onlyOwner {
uint256 balance = IERC20(token).balanceOf(address(this));
IERC20(token).safeTransfer(msg.sender, balance);
emit EmergencyWithdraw(token, balance);
}
function setSaleToken(address _saleToken) external onlyOwner {
if (_saleToken == address(0)) {
revert InvalidAddress();
}
saleToken = _saleToken;
emit SaleTokenUpdated(_saleToken);
}
function setVestingVault(address _vault) external onlyOwner {
if (_vault == address(0)) {
revert InvalidAddress();
}
vestingVault = IVestingVault(_vault);
emit VestingVaultUpdated(_vault);
}
function closeSale() external onlyOwner {
endTime = block.timestamp;
}
function startVesting(uint256 when) external onlyOwner {
require(vestingStart == 0, "Vesting already started");
vestingStart = when == 0 ? block.timestamp : when;
if (address(vestingVault) != address(0)) {
vestingVault.setVestingStart(vestingStart);
}
}
function pause() external onlyOwner {
_pause();
}
function unpause() external onlyOwner {
_unpause();
}
function getCurrentStage() internal view returns (uint256) {
for (uint256 i = 0; i < stages.length; i++) {
Stage memory stage = stages[i];
if (!stage.initialized) {
continue;
}
if (block.timestamp < stage.startTime) {
if (i == 0) {
revert InvalidStage();
}
return i - 1;
}
uint256 tokensSold = tokensSoldInStage[i];
if (tokensSold < stage.capacity) {
if (i < stages.length - 1 && block.timestamp >= stages[i + 1].startTime) {
continue;
}
return i;
}
}
if (stages.length > 0) {
return stages.length - 1;
}
revert InvalidStage();
}
function getCurrentStageCached() external view returns (uint256) {
if (!migrationMode) {
return getCurrentStage();
}
return activeStagePublic;
}
function checkStageProgression()
external
view
returns (bool shouldProgress, uint256 nextStage, uint256 unsoldTokens)
{
uint256 currentStage = getCurrentStage();
if (currentStage >= stages.length - 1) {
return (false, currentStage, 0);
}
nextStage = currentStage + 1;
if (block.timestamp >= stages[nextStage].startTime) {
uint256 tokensSold = tokensSoldInStage[currentStage];
unsoldTokens = tokensSold < stages[currentStage].capacity ? stages[currentStage].capacity - tokensSold : 0;
return (true, nextStage, unsoldTokens);
}
uint256 tokensSoldCapCheck = tokensSoldInStage[currentStage];
if (tokensSoldCapCheck >= stages[currentStage].capacity) {
return (true, nextStage, 0);
}
return (false, currentStage, 0);
}
/**
* @notice Redistribute unsold tokens from previous stage to current stage
* @dev Only owner can call this function to manually redistribute tokens
*/
function redistributeFromPreviousStage() external onlyOwner {
uint256 currentStage = getCurrentStage();
if (currentStage == 0) {
revert InvalidStage();
}
uint256 previousStage = currentStage - 1;
uint256 previousStageCapacity = stages[previousStage].capacity;
uint256 previousStageTokensSold = tokensSoldInStage[previousStage];
uint256 unsoldTokensPrevStage =
previousStageCapacity > previousStageTokensSold ? previousStageCapacity - previousStageTokensSold : 0;
if (unsoldTokensPrevStage > 0) {
stages[currentStage].capacity += unsoldTokensPrevStage;
emit StageUpdated(
currentStage, stages[currentStage].capacity, stages[currentStage].price, stages[currentStage].startTime
);
}
}
function _progressStage(uint256 curStage) internal returns (uint256) {
if (curStage >= stages.length - 1) {
return curStage;
}
uint256 next = curStage + 1;
bool byTime = block.timestamp >= stages[next].startTime;
bool byCap = tokensSoldInStage[curStage] >= stages[curStage].capacity;
if (!(byTime || byCap)) {
return curStage;
}
uint256 sold = tokensSoldInStage[curStage];
uint256 unsold = sold < stages[curStage].capacity ? stages[curStage].capacity - sold : 0;
if (unsold > 0) {
stages[next].capacity += unsold;
emit StageUpdated(next, stages[next].capacity, stages[next].price, stages[next].startTime);
}
emit StageProgressed(curStage, next, unsold);
return next;
}
function calculateUSDForTokens(uint256 tokenAmount) public view returns (uint256) {
if (tokenAmount == 0) {
return 0;
}
uint256 totalUSD = 0;
uint256 remainingTokens = tokenAmount;
uint256 currentStage = getCurrentStage();
for (uint256 i = currentStage; i < stages.length && remainingTokens > 0; i++) {
Stage memory stage = stages[i];
if (!stage.initialized) {
break;
}
uint256 tokensAlreadySold = tokensSoldInStage[i];
uint256 tokensAvailableInStage = stage.capacity > tokensAlreadySold ? stage.capacity - tokensAlreadySold : 0;
if (tokensAvailableInStage == 0) {
continue;
}
uint256 tokensToBuyFromStage =
remainingTokens > tokensAvailableInStage ? tokensAvailableInStage : remainingTokens;
uint256 usdForThisStage = (tokensToBuyFromStage * stage.price) / baseDecimals;
totalUSD += usdForThisStage;
remainingTokens -= tokensToBuyFromStage;
}
if (remainingTokens > 0) {
revert InvalidAmount();
}
return totalUSD;
}
function addStages(uint256[] calldata _capacities, uint256[] calldata _prices, uint256[] calldata _startTimes)
external
onlyOwner
{
if (_capacities.length != _prices.length || _prices.length != _startTimes.length) {
revert InvalidAmount();
}
uint256 length = _capacities.length;
for (uint256 i = 0; i < length; i++) {
if (_capacities[i] == 0 || _prices[i] == 0) {
revert InvalidAmount();
}
if (!migrationMode) {
if (_startTimes[i] <= block.timestamp) {
revert InvalidTime();
}
if (stages.length > 0 || i > 0) {
uint256 lastStageTime;
if (stages.length > 0) {
lastStageTime = stages[stages.length - 1].startTime;
} else {
lastStageTime = _startTimes[i - 1];
}
if (_startTimes[i] <= lastStageTime + MIN_TIME_BETWEEN_STAGES) {
revert InvalidTime();
}
}
}
stages.push(
Stage({capacity: _capacities[i], price: _prices[i], startTime: _startTimes[i], initialized: true})
);
emit StageAdded(stages.length - 1, _capacities[i], _prices[i], _startTimes[i]);
}
}
function withdrawAffiliate(address token) external nonReentrant {
uint256 amt = affiliateAccrual[token][msg.sender];
require(amt > 0, "Nothing to withdraw");
affiliateAccrual[token][msg.sender] = 0;
if (token == address(0)) {
(bool ok,) = payable(msg.sender).call{value: amt}("");
require(ok, "ETH send failed");
} else {
IERC20(token).safeTransfer(msg.sender, amt);
}
}
mapping(address => mapping(address => uint256)) public affiliateAccrual; // token => affiliate => amount
function _distributePaymentWithAffiliate(uint256 amount, address token, address affiliate) internal {
uint256 affiliateReward = 0;
if (affiliate != address(0) && affiliateRewardPercentage > 0) {
affiliateReward = (amount * affiliateRewardPercentage) / PERCENTAGE_BASE;
// always accrue first
affiliateAccrual[token][affiliate] += affiliateReward;
affiliateEarnings[affiliate] += affiliateReward;
// best-effort push, never revert if it fails
bool paid = true;
if (affiliateReward > 0) {
if (token == address(0)) {
(paid,) = payable(affiliate).call{value: affiliateReward}("");
} else {
try IERC20(token).transfer(affiliate, affiliateReward) returns (bool ok) {
paid = ok;
} catch {
paid = false;
}
}
}
if (paid) {
// decrease accrual if push succeeded
affiliateAccrual[token][affiliate] -= affiliateReward;
}
emit AffiliateRewardPaid(affiliate, msg.sender, affiliateReward, token);
}
uint256 remainingAmount = amount - affiliateReward;
_distributePayment(remainingAmount, token);
}
function _distributePayment(uint256 amount, address token) internal {
if (destinationSplitWallets.length == 0) {
if (token == address(0)) {
(bool success,) = destinationWallet.call{value: amount}("");
if (!success) {
revert TransferFailed();
}
} else {
IERC20(token).safeTransfer(destinationWallet, amount);
}
return;
}
uint256 remaining = amount;
for (uint256 i = 0; i < destinationSplitWallets.length; i++) {
uint256 share = (amount * destinationSplitPercentages[i]) / PERCENTAGE_BASE;
if (share == 0) {
continue;
}
if (token == address(0)) {
(bool success,) = destinationSplitWallets[i].call{value: share}("");
if (!success) {
revert TransferFailed();
}
} else {
IERC20(token).safeTransfer(destinationSplitWallets[i], share);
}
remaining -= share;
}
if (remaining > 0 && destinationSplitWallets.length > 0) {
address payable lastWallet = destinationSplitWallets[destinationSplitWallets.length - 1];
if (token == address(0)) {
(bool success,) = lastWallet.call{value: remaining}("");
if (!success) {
revert TransferFailed();
}
} else {
IERC20(token).safeTransfer(lastWallet, remaining);
}
}
}
function setTokensSoldInStageBatch(uint256[] calldata stageIds, uint256[] calldata amounts) external onlyOwner {
require(stageIds.length == amounts.length, "Length mismatch");
for (uint256 i = 0; i < stageIds.length; i++) {
tokensSoldInStage[stageIds[i]] = amounts[i];
emit StageTokensSoldSet(stageIds[i], amounts[i]);
}
}
function setMigrationData(
uint256 _currentStageId,
uint256 _totalTokensSold,
uint256 _usdRaised,
uint256 _totalBoughtAndStaked
) external onlyOwner {
require(migrationMode, "Migration already completed");
totalTokensSold = _totalTokensSold;
usdRaised = _usdRaised;
totalBoughtAndStaked = _totalBoughtAndStaked;
activeStagePublic = _currentStageId;
emit MigrationDataSet(_currentStageId, _totalTokensSold, _usdRaised, _totalBoughtAndStaked);
}
receive() external payable {}
}
"
},
"lib/openzeppelin-contracts/contracts/access/Ownable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
"
},
"lib/openzeppelin-contracts/contracts/utils/Pausable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
"
},
"lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
"
},
"lib/openzeppelin-contracts/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
"
},
"lib/openzeppelin-contracts/contracts/utils/Address.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory retu
Submitted on: 2025-11-01 18:58:01
Comments
Log in to comment.
No comments yet.