Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/integrations/morpho/MorphoMarketFactory.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IMorpho, MarketParamsLib, MarketParams, Id} from "@shared/src/interfaces/IMorpho.sol";
import {IOracle} from "src/interfaces/IOracle.sol";
import {IStrategyWrapper} from "src/interfaces/IStrategyWrapper.sol";
import {IRewardVault} from "src/interfaces/IRewardVault.sol";
import {ILendingFactory} from "src/interfaces/ILendingFactory.sol";
/// @title Morpho Market Factory
/// @notice Factory that creates Stake DAO markets on Morpho Blue
/// @author Stake DAO
/// @custom:contact contact@stakedao.org
contract MorphoMarketFactory is ILendingFactory {
using SafeERC20 for IERC20Metadata;
using SafeERC20 for IRewardVault;
/// @dev The address of the lending protocol
IMorpho private immutable MORPHO_BLUE;
/// @dev The address of this contract
/// Used to check if the `create` function is called with a delegate call
address private immutable THIS;
///////////////////////////////////////////////////////////////
// --- EVENTS & ERRORS
///////////////////////////////////////////////////////////////
/// @dev Emitted when a market is deployed. This is an anonymous event (!)
event LendingMarketDeployed(
address indexed protocol,
address indexed collateral,
address indexed loan,
address indexed oracle,
uint256 lltv,
address irm
) anonymous;
/// @dev Thrown when the given address is zero.
error AddressZero();
/// @dev Thrown when the LLTV is invalid.
error InvalidLLTV();
/// @dev Thrown when the IRM is invalid
error InvalidIRM();
/// @dev Thrown when the factory is not called with a delegate call.
error DelegateCallOnly();
/// @param _morphoBlue The address of the lending protocol where the markets will be created
constructor(address _morphoBlue) {
require(_morphoBlue != address(0), AddressZero());
MORPHO_BLUE = IMorpho(_morphoBlue);
THIS = address(this);
}
/// @custom:throws DelegateCallOnly if the `create` function is not called with a delegate call
modifier onlyDelegateCall() {
require(address(this) != THIS, DelegateCallOnly());
_;
}
///////////////////////////////////////////////////////////////
// --- MARKET CREATION
///////////////////////////////////////////////////////////////
/// @notice Creates a Morpho market for a given collateral, loan, oracle, IRM and LLTV
/// @param collateral The collateral token
/// @param loan The loan token
/// @param oracle The oracle to use for the market
/// @param irm The Interest Rate Model
/// @param lltv The Liquidation Loan-To-Value
/// @param initialLoanSupply The initial amount of loan token to seed the market with
/// @return id The identifier of the freshly created market
/// @custom:throws InvalidLLTV if the LLTV is invalid
/// @custom:throws InvalidIRM if the IRM is invalid
function create(
IStrategyWrapper collateral,
IERC20Metadata loan,
IOracle oracle,
address irm,
uint256 lltv,
uint256 initialLoanSupply
) external onlyDelegateCall returns (Id id) {
require(MORPHO_BLUE.isLltvEnabled(lltv), InvalidLLTV());
require(MORPHO_BLUE.isIrmEnabled(irm), InvalidIRM());
// 1. Create the Morpho Blue market
MarketParams memory morphoMarketParams = MarketParams({
loanToken: address(loan),
collateralToken: address(collateral),
oracle: address(oracle),
irm: irm,
lltv: lltv
});
id = MarketParamsLib.id(morphoMarketParams);
// prevent a DoS attack that would prevent us for deploying the market
if (MORPHO_BLUE.market(id).lastUpdate == 0) {
MORPHO_BLUE.createMarket(morphoMarketParams);
}
// 2. Initialize the collateral by setting the approved market ID
collateral.initialize(Id.unwrap(id));
emit LendingMarketDeployed(address(MORPHO_BLUE), address(collateral), address(loan), address(oracle), lltv, irm);
// 3. Pre-seed the market if needed
if (initialLoanSupply != 0) {
_preSeedMarket(initialLoanSupply, morphoMarketParams);
}
}
/// @notice Pre-seeds the market with the given amount of loan token. The seeded amount is sent to a dead address!
/// @dev Prevent Zero Utilization Rate Decay at Deployment by supplying and borrowing
function _preSeedMarket(uint256 initialLoanSupply, MarketParams memory morphoMarketParams) internal {
// Provide initial loan token liquidity to the freshly created market
IERC20Metadata(morphoMarketParams.loanToken).safeTransferFrom(msg.sender, address(this), initialLoanSupply);
IERC20Metadata(morphoMarketParams.loanToken).forceApprove(address(MORPHO_BLUE), initialLoanSupply);
MORPHO_BLUE.supply({
marketParams: morphoMarketParams,
assets: initialLoanSupply,
shares: 0,
onBehalf: 0x000000000000000000000000000000000000dEaD,
data: hex""
});
// Provide initial collateral to the market
uint256 borrowAmount = (initialLoanSupply * 9) / 10; // 90% of supplied liquidity
uint256 collateralToSupply = Math.mulDiv(
Math.mulDiv(
borrowAmount,
10 ** IOracle(morphoMarketParams.oracle).ORACLE_SCALING_EXPONENT(),
IOracle(morphoMarketParams.oracle).price(),
Math.Rounding.Ceil
),
1e18,
Math.mulDiv(morphoMarketParams.lltv, 9_500, 10_000), // 95 % of LLTV
Math.Rounding.Ceil
);
IRewardVault vault = IStrategyWrapper(morphoMarketParams.collateralToken).REWARD_VAULT();
vault.safeTransferFrom(msg.sender, address(this), collateralToSupply);
vault.approve(morphoMarketParams.collateralToken, collateralToSupply);
// Bootstrap utilisation: post enough collateral to reach 95 % of LLTV
IStrategyWrapper(morphoMarketParams.collateralToken).depositShares(collateralToSupply);
// Bootstrap utilisation: borrow 90 % of that
MORPHO_BLUE.borrow({
marketParams: morphoMarketParams,
assets: borrowAmount,
shares: 0,
onBehalf: address(this),
receiver: 0x000000000000000000000000000000000000dEaD
});
}
///////////////////////////////////////////////////////////////
// GETTERS
///////////////////////////////////////////////////////////////
/// @return protocol The address of the Morpho Blue protocol.
function protocol() external view returns (address) {
return address(MORPHO_BLUE);
}
/// @return _ The scaling exponent expected by the protocol for the oracle to use to scale the price.
/// In the case of Morpho Blue, it is 36.
function protocolScalingExponent() external pure returns (uint256) {
return 36;
}
/// @return version The version of the factory.
function version() external pure returns (string memory) {
return "1.0.0";
}
/// @return _ The identifier of the factory.
function identifier() external pure returns (string memory) {
return type(MorphoMarketFactory).name;
}
}
"
},
"node_modules/@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
"
},
"node_modules/@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
"
},
"node_modules/@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}
"
},
"node_modules/@stake-dao/shared/src/interfaces/IMorpho.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.0;
type Id is bytes32;
struct MarketParams {
address loanToken;
address collateralToken;
address oracle;
address irm;
uint256 lltv;
}
/// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
/// accrual.
struct Position {
uint256 supplyShares;
uint128 borrowShares;
uint128 collateral;
}
/// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalSupplyShares` does not contain the additional shares accrued by `feeRecipient` since the last
/// interest accrual.
struct Market {
uint128 totalSupplyAssets;
uint128 totalSupplyShares;
uint128 totalBorrowAssets;
uint128 totalBorrowShares;
uint128 lastUpdate;
uint128 fee;
}
struct Authorization {
address authorizer;
address authorized;
bool isAuthorized;
uint256 nonce;
uint256 deadline;
}
struct Signature {
uint8 v;
bytes32 r;
bytes32 s;
}
/// @dev This interface is used for factorizing IMorphoStaticTyping and IMorpho.
/// @dev Consider using the IMorpho interface instead of this one.
interface IMorphoBase {
/// @notice The EIP-712 domain separator.
/// @dev Warning: Every EIP-712 signed message based on this domain separator can be reused on chains sharing the
/// same chain id and on forks because the domain separator would be the same.
function DOMAIN_SEPARATOR() external view returns (bytes32);
/// @notice The owner of the contract.
/// @dev It has the power to change the owner.
/// @dev It has the power to set fees on markets and set the fee recipient.
/// @dev It has the power to enable but not disable IRMs and LLTVs.
function owner() external view returns (address);
/// @notice The fee recipient of all markets.
/// @dev The recipient receives the fees of a given market through a supply position on that market.
function feeRecipient() external view returns (address);
/// @notice Whether the `irm` is enabled.
function isIrmEnabled(address irm) external view returns (bool);
/// @notice Whether the `lltv` is enabled.
function isLltvEnabled(uint256 lltv) external view returns (bool);
/// @notice Whether `authorized` is authorized to modify `authorizer`'s position on all markets.
/// @dev Anyone is authorized to modify their own positions, regardless of this variable.
function isAuthorized(address authorizer, address authorized) external view returns (bool);
/// @notice The `authorizer`'s current nonce. Used to prevent replay attacks with EIP-712 signatures.
function nonce(address authorizer) external view returns (uint256);
/// @notice Sets `newOwner` as `owner` of the contract.
/// @dev Warning: No two-step transfer ownership.
/// @dev Warning: The owner can be set to the zero address.
function setOwner(address newOwner) external;
/// @notice Enables `irm` as a possible IRM for market creation.
/// @dev Warning: It is not possible to disable an IRM.
function enableIrm(address irm) external;
/// @notice Enables `lltv` as a possible LLTV for market creation.
/// @dev Warning: It is not possible to disable a LLTV.
function enableLltv(uint256 lltv) external;
/// @notice Sets the `newFee` for the given market `marketParams`.
/// @param newFee The new fee, scaled by WAD.
/// @dev Warning: The recipient can be the zero address.
function setFee(MarketParams memory marketParams, uint256 newFee) external;
/// @notice Sets `newFeeRecipient` as `feeRecipient` of the fee.
/// @dev Warning: If the fee recipient is set to the zero address, fees will accrue there and will be lost.
/// @dev Modifying the fee recipient will allow the new recipient to claim any pending fees not yet accrued. To
/// ensure that the current recipient receives all due fees, accrue interest manually prior to making any changes.
function setFeeRecipient(address newFeeRecipient) external;
/// @notice Creates the market `marketParams`.
/// @dev Here is the list of assumptions on the market's dependencies (tokens, IRM and oracle) that guarantees
/// Morpho behaves as expected:
/// - The token should be ERC-20 compliant, except that it can omit return values on `transfer` and `transferFrom`.
/// - The token balance of Morpho should only decrease on `transfer` and `transferFrom`. In particular, tokens with
/// burn functions are not supported.
/// - The token should not re-enter Morpho on `transfer` nor `transferFrom`.
/// - The token balance of the sender (resp. receiver) should decrease (resp. increase) by exactly the given amount
/// on `transfer` and `transferFrom`. In particular, tokens with fees on transfer are not supported.
/// - The IRM should not re-enter Morpho.
/// - The oracle should return a price with the correct scaling.
/// - The oracle price should not be able to change instantly such that the new price is less than the old price
/// multiplied by LLTV*LIF. In particular, if the loan asset is a vault that can receive donations, the oracle
/// should not price its shares using the AUM.
/// @dev Here is a list of assumptions on the market's dependencies which, if broken, could break Morpho's liveness
/// properties (funds could get stuck):
/// - The token should not revert on `transfer` and `transferFrom` if balances and approvals are right.
/// - The amount of assets supplied and borrowed should not be too high (max ~1e32), otherwise the number of shares
/// might not fit within 128 bits.
/// - The IRM should not revert on `borrowRate`.
/// - The IRM should not return a very high borrow rate (otherwise the computation of `interest` in
/// `_accrueInterest` can overflow).
/// - The oracle should not revert `price`.
/// - The oracle should not return a very high price (otherwise the computation of `maxBorrow` in `_isHealthy` or of
/// `assetsRepaid` in `liquidate` can overflow).
/// @dev The borrow share price of a market with less than 1e4 assets borrowed can be decreased by manipulations, to
/// the point where `totalBorrowShares` is very large and borrowing overflows.
function createMarket(MarketParams memory marketParams) external;
/// @notice Supplies `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
/// `onMorphoSupply` function with the given `data`.
/// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
/// caller is guaranteed to have `assets` tokens pulled from their balance, but the possibility to mint a specific
/// amount of shares is given for full compatibility and precision.
/// @dev Supplying a large amount can revert for overflow.
/// @dev Supplying an amount of shares may lead to supply more or fewer assets than expected due to slippage.
/// Consider using the `assets` parameter to avoid this.
/// @param marketParams The market to supply assets to.
/// @param assets The amount of assets to supply.
/// @param shares The amount of shares to mint.
/// @param onBehalf The address that will own the increased supply position.
/// @param data Arbitrary data to pass to the `onMorphoSupply` callback. Pass empty data if not needed.
/// @return assetsSupplied The amount of assets supplied.
/// @return sharesSupplied The amount of shares minted.
function supply(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
bytes memory data
) external returns (uint256 assetsSupplied, uint256 sharesSupplied);
/// @notice Withdraws `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
/// @dev Either `assets` or `shares` should be zero. To withdraw max, pass the `shares`'s balance of `onBehalf`.
/// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
/// @dev Withdrawing an amount corresponding to more shares than supplied will revert for underflow.
/// @dev It is advised to use the `shares` input when withdrawing the full position to avoid reverts due to
/// conversion roundings between shares and assets.
/// @param marketParams The market to withdraw assets from.
/// @param assets The amount of assets to withdraw.
/// @param shares The amount of shares to burn.
/// @param onBehalf The address of the owner of the supply position.
/// @param receiver The address that will receive the withdrawn assets.
/// @return assetsWithdrawn The amount of assets withdrawn.
/// @return sharesWithdrawn The amount of shares burned.
function withdraw(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
address receiver
) external returns (uint256 assetsWithdrawn, uint256 sharesWithdrawn);
/// @notice Borrows `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
/// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
/// caller is guaranteed to borrow `assets` of tokens, but the possibility to mint a specific amount of shares is
/// given for full compatibility and precision.
/// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
/// @dev Borrowing a large amount can revert for overflow.
/// @dev Borrowing an amount of shares may lead to borrow fewer assets than expected due to slippage.
/// Consider using the `assets` parameter to avoid this.
/// @param marketParams The market to borrow assets from.
/// @param assets The amount of assets to borrow.
/// @param shares The amount of shares to mint.
/// @param onBehalf The address that will own the increased borrow position.
/// @param receiver The address that will receive the borrowed assets.
/// @return assetsBorrowed The amount of assets borrowed.
/// @return sharesBorrowed The amount of shares minted.
function borrow(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
address receiver
) external returns (uint256 assetsBorrowed, uint256 sharesBorrowed);
/// @notice Repays `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
/// `onMorphoRepay` function with the given `data`.
/// @dev Either `assets` or `shares` should be zero. To repay max, pass the `shares`'s balance of `onBehalf`.
/// @dev Repaying an amount corresponding to more shares than borrowed will revert for underflow.
/// @dev It is advised to use the `shares` input when repaying the full position to avoid reverts due to conversion
/// roundings between shares and assets.
/// @dev An attacker can front-run a repay with a small repay making the transaction revert for underflow.
/// @param marketParams The market to repay assets to.
/// @param assets The amount of assets to repay.
/// @param shares The amount of shares to burn.
/// @param onBehalf The address of the owner of the debt position.
/// @param data Arbitrary data to pass to the `onMorphoRepay` callback. Pass empty data if not needed.
/// @return assetsRepaid The amount of assets repaid.
/// @return sharesRepaid The amount of shares burned.
function repay(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
bytes memory data
) external returns (uint256 assetsRepaid, uint256 sharesRepaid);
/// @notice Supplies `assets` of collateral on behalf of `onBehalf`, optionally calling back the caller's
/// `onMorphoSupplyCollateral` function with the given `data`.
/// @dev Interest are not accrued since it's not required and it saves gas.
/// @dev Supplying a large amount can revert for overflow.
/// @param marketParams The market to supply collateral to.
/// @param assets The amount of collateral to supply.
/// @param onBehalf The address that will own the increased collateral position.
/// @param data Arbitrary data to pass to the `onMorphoSupplyCollateral` callback. Pass empty data if not needed.
function supplyCollateral(MarketParams memory marketParams, uint256 assets, address onBehalf, bytes memory data)
external;
/// @notice Withdraws `assets` of collateral on behalf of `onBehalf` and sends the assets to `receiver`.
/// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
/// @dev Withdrawing an amount corresponding to more collateral than supplied will revert for underflow.
/// @param marketParams The market to withdraw collateral from.
/// @param assets The amount of collateral to withdraw.
/// @param onBehalf The address of the owner of the collateral position.
/// @param receiver The address that will receive the collateral assets.
function withdrawCollateral(MarketParams memory marketParams, uint256 assets, address onBehalf, address receiver)
external;
/// @notice Liquidates the given `repaidShares` of debt asset or seize the given `seizedAssets` of collateral on the
/// given market `marketParams` of the given `borrower`'s position, optionally calling back the caller's
/// `onMorphoLiquidate` function with the given `data`.
/// @dev Either `seizedAssets` or `repaidShares` should be zero.
/// @dev Seizing more than the collateral balance will underflow and revert without any error message.
/// @dev Repaying more than the borrow balance will underflow and revert without any error message.
/// @dev An attacker can front-run a liquidation with a small repay making the transaction revert for underflow.
/// @param marketParams The market of the position.
/// @param borrower The owner of the position.
/// @param seizedAssets The amount of collateral to seize.
/// @param repaidShares The amount of shares to repay.
/// @param data Arbitrary data to pass to the `onMorphoLiquidate` callback. Pass empty data if not needed.
/// @return The amount of assets seized.
/// @return The amount of assets repaid.
function liquidate(
MarketParams memory marketParams,
address borrower,
uint256 seizedAssets,
uint256 repaidShares,
bytes memory data
) external returns (uint256, uint256);
/// @notice Executes a flash loan.
/// @dev Flash loans have access to the whole balance of the contract (the liquidity and deposited collateral of all
/// markets combined, plus donations).
/// @dev Warning: Not ERC-3156 compliant but compatibility is easily reached:
/// - `flashFee` is zero.
/// - `maxFlashLoan` is the token's balance of this contract.
/// - The receiver of `assets` is the caller.
/// @param token The token to flash loan.
/// @param assets The amount of assets to flash loan.
/// @param data Arbitrary data to pass to the `onMorphoFlashLoan` callback.
function flashLoan(address token, uint256 assets, bytes calldata data) external;
/// @notice Sets the authorization for `authorized` to manage `msg.sender`'s positions.
/// @param authorized The authorized address.
/// @param newIsAuthorized The new authorization status.
function setAuthorization(address authorized, bool newIsAuthorized) external;
/// @notice Sets the authorization for `authorization.authorized` to manage `authorization.authorizer`'s positions.
/// @dev Warning: Reverts if the signature has already been submitted.
/// @dev The signature is malleable, but it has no impact on the security here.
/// @dev The nonce is passed as argument to be able to revert with a different error message.
/// @param authorization The `Authorization` struct.
/// @param signature The signature.
function setAuthorizationWithSig(Authorization calldata authorization, Signature calldata signature) external;
/// @notice Accrues interest for the given market `marketParams`.
function accrueInterest(MarketParams memory marketParams) external;
/// @notice Returns the data stored on the different `slots`.
function extSloads(bytes32[] memory slots) external view returns (bytes32[] memory);
}
/// @dev This interface is inherited by Morpho so that function signatures are checked by the compiler.
/// @dev Consider using the IMorpho interface instead of this one.
interface IMorphoStaticTyping is IMorphoBase {
/// @notice The state of the position of `user` on the market corresponding to `id`.
/// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
/// accrual.
function position(Id id, address user)
external
view
returns (uint256 supplyShares, uint128 borrowShares, uint128 collateral);
/// @notice The state of the market corresponding to `id`.
/// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalBorrowAssets` does not contain the accrued interest s
Submitted on: 2025-11-03 14:41:11
Comments
Log in to comment.
No comments yet.