Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/integrations/farms/PendleV2FarmV3.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";
import {IPPYLpOracle as IPendleOracle} from "@pendle/interfaces/IPPYLpOracle.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {Accounting} from "@finance/Accounting.sol";
import {CoWSwapBase} from "@integrations/CoWSwapBase.sol";
import {IPendleV2FarmV3} from "@interfaces/IPendleV2FarmV3.sol";
import {MultiAssetFarmV2} from "@integrations/MultiAssetFarmV2.sol";
import {IMaturityFarm, IFarm} from "@interfaces/IMaturityFarm.sol";
import {PendleStructGen} from "@libraries/PendleStructGen.sol";
import {
IPYieldToken,
IPPrincipalToken,
IStandardizedYield,
IPAllActionV3,
IPMarket
} from "@pendle/interfaces/IPAllActionV3.sol";
/// @title Pendle V2 Farm (V3)
/// @notice Integrates with Pendle v2 for yield token strategies
/// @dev This contract manages Principal Tokens (PTs) and provides yield interpolation mechanisms
/// @dev Inherits from MultiAssetFarm for multi-asset support and CoWSwapFarmBase for MEV protection
/// ## Yield Mechanism:
/// - Before maturity: PTs trade at discount, yield is interpolated linearly
/// - At maturity: PTs redeem 1:1 for yield tokens, creating yield spike
/// - Maturity discount factor accounts for potential swap losses
contract PendleV2FarmV3 is MultiAssetFarmV2, CoWSwapBase, ReentrancyGuard, IPendleV2FarmV3 {
using SafeERC20 for IERC20;
using EnumerableSet for EnumerableSet.AddressSet;
using FixedPointMathLib for uint256;
IPYieldToken public immutable YT;
IPPrincipalToken public immutable PT;
IStandardizedYield public immutable SY;
/// @notice Maturity timestamp of the Pendle market when PTs can be redeemed for underlying tokens
uint256 public immutable maturity;
/// @notice Reference to the Pendle market contract for this specific yield token
IPMarket public immutable pendleMarket;
/// @notice Reference to the Pendle oracle used for PT to underlying asset exchange rates
address public immutable pendleOracle;
/// @notice TWAP duration for Pendle oracle queries (30 minutes)
uint32 private constant _PENDLE_ORACLE_TWAP_DURATION = 1800;
/// @notice The underlying asset token that PTs will be 1-1 with at maturity
/// @dev NOTE: Always make sure that pivot token is not rebasing
address public immutable pivotToken;
/// @notice Address of the Pendle router used for executing swaps and PT operations
IPAllActionV3 public pendleRouter;
/// @notice Address that receives PTs when transferred from this farm
address public ptReceiver;
/// @notice Total number of PTs currently held by this farm (tracked for reconciliation)
uint256 public totalReceivedPTs;
/// @notice Minimum PT balance difference required to trigger reconciliation
/// @dev Used to handle airdrops, external transfers, or accounting discrepancies
uint256 public ptThreshold;
/// @notice Discount factor applied to PT values at maturity to account for swap slippage
/// @dev Reduces reported yield during PT holding period and creates yield spike at unwrap
uint256 public maturityPTDiscount;
/// @notice Timestamp of the last accrual rate update for yield interpolation
uint256 public lastCheckpointTimestamp;
/// @notice Rate at which yield accrues per second, denominated in assetTokens
uint256 public accrualRate;
/// @notice Total amount of assets currently wrapped as PTs, in assetTokens
uint256 public totalWrappedAssets;
/// @notice Initializes the PendleV2FarmV3 contract
/// @param _core Address of the InfiniFi core contract
/// @param _assetToken Primary asset token for this farm (e.g., USDC)
/// @param _pendleMarket Address of the Pendle market for the target yield token
/// @param _pendleOracle Address of the Pendle oracle for PT pricing
/// @param _accounting Address of the accounting contract for price conversions
/// @param _pendleRouter Address of the Pendle router for executing swaps
/// @param _settlementContract Address of the CoW Protocol settlement contract
/// @param _vaultRelayer Address of the CoW Protocol vault relayer
/// @dev Validates that the Pendle market is properly initialized and oracle is ready
/// @dev Sets up supported asset tokens from the SY's tokensIn and tokensOut arrays
constructor(
address _core,
address _assetToken,
address _pendleMarket,
address _pendleOracle,
address _accounting,
address _pendleRouter,
address _settlementContract,
address _vaultRelayer
) CoWSwapBase(_settlementContract, _vaultRelayer, true) MultiAssetFarmV2(_core, _assetToken, _accounting) {
pendleOracle = _pendleOracle;
pendleMarket = IPMarket(_pendleMarket);
pendleRouter = IPAllActionV3(_pendleRouter);
// read expiry
maturity = pendleMarket.expiry();
// read contracts and keep some immutable variables to save gas
(SY, PT, YT) = pendleMarket.readTokens();
(, pivotToken,) = SY.assetInfo();
address[] memory tokensIn = SY.getTokensIn();
address[] memory tokensOut = SY.getTokensOut();
_enableAsset(_assetToken);
_enableAsset(pivotToken);
for (uint256 i = 0; i < tokensIn.length; i++) {
_enableAsset(tokensIn[i]);
}
for (uint256 i = 0; i < tokensOut.length; i++) {
_enableAsset(tokensOut[i]);
}
// set default threshold 10 PTs
ptThreshold = 10 * 10 ** (PT.decimals());
// set default slippage tolerance to 0.3%
maxSlippage = 0.997e18;
// set default maturity discounting to 0.2%
maturityPTDiscount = 0.998e18;
// ensure pendle oracle is initialized for this market
// https://docs.pendle.finance/Developers/Oracles/HowToIntegratePtAndLpOracle
// this call will revert if the oracle is not initialized or if the cardinality
// of the oracle has to be increased (if so, any eoa can do it on the Pendle contract
// directly prior to deploying this farm).
IPendleOracle(pendleOracle).getPtToAssetRate(_pendleMarket, _PENDLE_ORACLE_TWAP_DURATION);
}
/// @notice Ensures the farm's PT balance is reconciled before executing operations
/// @dev Prevents operations when there's a significant discrepancy between tracked and actual PT balances
/// @dev Allows small differences up to ptThreshold to account for rounding errors
modifier onlyReconciled() {
_checkIsReconciled();
_;
}
/// @notice Updates the Pendle router address used for swaps
/// @param _pendleRouter New address of the Pendle router
/// @dev Only callable by PROTOCOL_PARAMETERS role
function setPendleRouter(address _pendleRouter) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
pendleRouter = IPAllActionV3(_pendleRouter);
emit PendleRouterUpdated(block.timestamp, _pendleRouter);
}
/// @notice Sets the discount factor applied to PT values at maturity
/// @param _maturityPTDiscount New discount factor (1e18 = 100%, 0.998e18 = 99.8%)
/// @dev WARNING: Changing this on a farm with invested PTs will cause a jump in reported assets()
/// @dev Only callable by PROTOCOL_PARAMETERS role
function setMaturityPTDiscount(uint256 _maturityPTDiscount) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
maturityPTDiscount = _maturityPTDiscount;
_handleBalanceChange(0);
emit MaturityPTDiscountUpdated(block.timestamp, _maturityPTDiscount);
}
/// @notice Sets the threshold for PT reconciliation
/// @param _ptThreshold New threshold
/// @dev Only callable by PROTOCOL_PARAMETERS role
function setPtThreshold(uint256 _ptThreshold) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
ptThreshold = _ptThreshold;
emit PTThresholdUpdated(block.timestamp, _ptThreshold);
}
/// @notice Sets the address that will receive PTs when transferred from this farm
/// @param _ptReceiver Address to receive transferred PTs
/// @dev Cannot be set to this contract's address
/// @dev Only callable by PROTOCOL_PARAMETERS role
function setPTReceiver(address _ptReceiver) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
require(_ptReceiver != address(this), PTReceiverIsSelf());
ptReceiver = _ptReceiver;
emit PTReceiverChanged(block.timestamp, _ptReceiver);
}
function assets() public view override returns (uint256) {
uint256 supportedAssetBalance = MultiAssetFarmV2.assets();
uint256 ptAssetsValue = ptToAssetsAtMaturity(totalReceivedPTs).mulWadDown(maturityPTDiscount) - remainingYield();
return supportedAssetBalance + ptAssetsValue;
}
/// @notice Calculates the remaining yield that will be distributed until maturity
/// @return Amount of yield remaining to be distributed, in assetTokens
/// @dev Returns 0 if maturity has already passed
function remainingYield() public view returns (uint256) {
if (block.timestamp >= maturity) return 0;
return accrualRate.mulWadDown(maturity - block.timestamp);
}
/// @notice Calculates the interpolated yield that is already reported by the farm
/// @dev Returns 0 if maturity has already passed
function interpolatedYield() public view returns (uint256) {
if (block.timestamp >= maturity) return 0;
if (block.timestamp <= lastCheckpointTimestamp) return 0;
return accrualRate.mulWadUp(block.timestamp - lastCheckpointTimestamp);
}
/// ============================================================
/// Wrap/Unwrap supported tokens to PTs
/// ============================================================
/// @notice Wraps supported tokens into Pendle Principal Tokens (PTs)
/// @param _tokenIn Token to wrap (must be valid input for the SY)
/// @param _amountIn Amount of tokens to wrap
/// @dev Uses Pendle router to swap tokens for PTs with slippage protection
/// @dev Can be called multiple times with partial amounts to reduce slippage
/// @dev Transaction can be submitted privately to avoid MEV attacks
/// @dev Only callable before maturity and by FARM_SWAP_CALLER role
function wrapToPt(address _tokenIn, uint256 _amountIn)
external
whenNotPaused
nonReentrant
onlyReconciled
onlyCoreRole(CoreRoles.FARM_SWAP_CALLER)
{
_validateAmount(_tokenIn, _amountIn);
require(block.timestamp < maturity, PTAlreadyMatured(maturity));
require(isAssetSupported(_tokenIn) && SY.isValidTokenIn(_tokenIn), InvalidToken(_tokenIn));
// do swap
IERC20(_tokenIn).forceApprove(address(pendleRouter), _amountIn);
(uint256 ptReceived,,) = pendleRouter.swapExactTokenForPt(
address(this),
address(pendleMarket),
0,
PendleStructGen.createDefaultApprox(),
PendleStructGen.createTokenInputStruct(_tokenIn, _amountIn),
PendleStructGen.createEmptyLimitOrder()
);
_checkSlippageIn(_tokenIn, _amountIn, ptReceived);
uint256 assetAmountIn = convert(_tokenIn, assetToken, _amountIn);
_handleBalanceChange(int256(assetAmountIn));
emit PTWrapped(block.timestamp, _tokenIn, _amountIn, ptReceived, assetAmountIn);
}
/// @notice Unwraps Pendle Principal Tokens (PTs) into supported tokens
/// @param _tokenOut Token to receive (must be valid output for the SY)
/// @param _ptTokensIn Amount of PTs to unwrap
/// @dev Uses Pendle router to swap PTs for tokens with slippage protection
/// @dev Before maturity: swaps PTs for tokens on the market
/// @dev After maturity: redeems PTs directly for supported out tokens
/// @dev MANUAL_REBALANCER role can unwrap before maturity for emergency exits
/// @dev Only callable by FARM_SWAP_CALLER role
function unwrapFromPt(address _tokenOut, uint256 _ptTokensIn)
external
whenNotPaused
nonReentrant
onlyReconciled
onlyCoreRole(CoreRoles.FARM_SWAP_CALLER)
{
_validateAmount(address(PT), _ptTokensIn);
require(isAssetSupported(_tokenOut) && SY.isValidTokenOut(_tokenOut), InvalidToken(_tokenOut));
// MANUAL_REBALANCER role can bypass the maturity check and manually
// exit positions before maturity.
if (!core().hasRole(CoreRoles.MANUAL_REBALANCER, msg.sender)) {
require(block.timestamp >= maturity, PTNotMatured(maturity));
}
uint256 tokensOut = 0;
// do swap
IERC20(PT).forceApprove(address(pendleRouter), _ptTokensIn);
if (block.timestamp < maturity) {
(tokensOut,,) = pendleRouter.swapExactPtForToken(
address(this),
address(pendleMarket),
_ptTokensIn,
PendleStructGen.createTokenOutputStruct(_tokenOut, 0),
PendleStructGen.createEmptyLimitOrder()
);
} else {
(tokensOut,) = pendleRouter.redeemPyToToken(
address(this), address(YT), _ptTokensIn, PendleStructGen.createTokenOutputStruct(_tokenOut, 0)
);
}
_checkSlippageOut(_tokenOut, _ptTokensIn, tokensOut);
uint256 assetsOut = convert(_tokenOut, assetToken, tokensOut);
_handleBalanceChange(-int256(assetsOut));
emit PTUnwrapped(block.timestamp, _tokenOut, _ptTokensIn, tokensOut, assetsOut);
}
/// @notice Wraps tokens into PTs using custom Pendle router calldata
/// @param _tokenIn Token to wrap (must be supported by the farm)
/// @param _amountIn Amount of tokens to wrap
/// @param _calldata Custom calldata for Pendle router execution
/// @dev Allows for custom swap parameters and advanced Pendle operations
/// @dev Can be called multiple times with partial amounts to reduce slippage
/// @dev Transaction can be submitted privately to avoid MEV attacks
/// @dev Only callable before maturity and by FARM_SWAP_CALLER role
function wrapToPt(address _tokenIn, uint256 _amountIn, bytes memory _calldata)
external
whenNotPaused
nonReentrant
onlyReconciled
onlyCoreRole(CoreRoles.FARM_SWAP_CALLER)
{
_validateAmount(_tokenIn, _amountIn);
require(block.timestamp < maturity, PTAlreadyMatured(maturity));
require(isAssetSupported(_tokenIn), InvalidToken(_tokenIn));
uint256 ptBalanceBefore = PT.balanceOf(address(this));
// do swap
IERC20(_tokenIn).forceApprove(address(pendleRouter), _amountIn);
(bool success, bytes memory reason) = address(pendleRouter).call(_calldata);
require(success, SwapFailed(reason));
// check slippage
uint256 ptBalanceAfter = PT.balanceOf(address(this));
uint256 ptReceived = ptBalanceAfter - ptBalanceBefore;
_checkSlippageIn(_tokenIn, _amountIn, ptReceived);
// tokens are returned from SY getTokensOut
uint256 assetAmountIn = convert(_tokenIn, assetToken, _amountIn);
_handleBalanceChange(int256(assetAmountIn));
emit PTZappedIn(block.timestamp, _tokenIn, _amountIn, ptReceived, assetAmountIn);
}
/// @notice Unwraps PTs into tokens using custom Pendle router calldata
/// @param _tokenOut Token to receive (must be supported by the farm)
/// @param _ptTokensIn Amount of PTs to unwrap
/// @param _calldata Custom calldata for Pendle router execution
/// @dev Allows for custom swap parameters and advanced Pendle operations
/// @dev MANUAL_REBALANCER role can unwrap before maturity for emergency exits
/// @dev Only callable by FARM_SWAP_CALLER role
function unwrapFromPt(address _tokenOut, uint256 _ptTokensIn, bytes memory _calldata)
external
whenNotPaused
nonReentrant
onlyReconciled
onlyCoreRole(CoreRoles.FARM_SWAP_CALLER)
{
_validateAmount(address(PT), _ptTokensIn);
require(isAssetSupported(_tokenOut), InvalidToken(_tokenOut));
// MANUAL_REBALANCER role can bypass the maturity check and manually
// exit positions before maturity.
if (!core().hasRole(CoreRoles.MANUAL_REBALANCER, msg.sender)) {
require(block.timestamp >= maturity, PTNotMatured(maturity));
}
uint256 tokensBefore = IERC20(_tokenOut).balanceOf(address(this));
// do swap
IERC20(PT).forceApprove(address(pendleRouter), _ptTokensIn);
(bool success, bytes memory reason) = address(pendleRouter).call(_calldata);
require(success, SwapFailed(reason));
// check slippage
uint256 tokensAfter = IERC20(_tokenOut).balanceOf(address(this));
uint256 tokensOut = tokensAfter - tokensBefore;
_checkSlippageOut(_tokenOut, _ptTokensIn, tokensOut);
uint256 assetsOut = convert(_tokenOut, assetToken, tokensOut);
_handleBalanceChange(-int256(assetsOut));
emit PTZappedOut(block.timestamp, _tokenOut, tokensOut, _ptTokensIn, assetsOut);
}
/// @notice Transfers PTs to the configured receiver and reconciles accounting
/// @param _amount Amount of PTs to transfer
/// @dev HIGHLY SENSITIVE: Transfers PTs and updates accounting on both farms
/// @dev Requires ptReceiver to be set and implements reconciliation
/// @dev Only callable by FARM_SWAP_CALLER role
function transferPt(uint256 _amount, bool _reconcile)
external
whenNotPaused
onlyReconciled
onlyCoreRole(CoreRoles.FARM_SWAP_CALLER)
{
_validateAmount(address(PT), _amount);
require(ptReceiver != address(0), PTReceiverNotSet());
IERC20(PT).safeTransfer(ptReceiver, _amount);
int256 assetsValue = _estimateAssetsValue(-int256(_amount));
_handleBalanceChange(assetsValue);
if (_reconcile) {
PendleV2FarmV3(ptReceiver).reconcilePt();
}
emit PTTransferred(block.timestamp, ptReceiver, _amount, uint256(-assetsValue));
}
/// @notice Reconciles tracked balances with actual token balances
/// @dev This function should be called to handle PT airdrops, external transfers, or any
/// scenario where the actual PT balance differs from the tracked balance.
function reconcilePt() external whenNotPaused nonReentrant {
uint256 balanceOfPTs = PT.balanceOf(address(this));
int256 ptDifference = int256(balanceOfPTs) - int256(totalReceivedPTs);
uint256 ptDifferenceAbs = uint256(ptDifference > 0 ? ptDifference : -ptDifference);
require(ptDifferenceAbs >= ptThreshold, NoPTsToReconcile(ptDifference));
int256 assetsValue = _estimateAssetsValue(ptDifference);
_handleBalanceChange(assetsValue);
emit PTReconciled(block.timestamp, assetsValue, ptDifference);
}
/// @notice Signs a CoW Protocol swap order for supported asset tokens
/// @param _tokenIn Token to swap from
/// @param _tokenOut Token to swap to
/// @param _amountIn Amount of input token to swap
/// @param _minAmountOut Minimum amount of output token expected
/// @return Calldata for the CoW Protocol swap order
/// @dev Both tokens must be supported and have oracles
/// @dev Only callable by FARM_SWAP_CALLER role
function signSwapOrder(address _tokenIn, address _tokenOut, uint256 _amountIn, uint256 _minAmountOut)
external
whenNotPaused
onlyCoreRole(CoreRoles.FARM_SWAP_CALLER)
returns (bytes memory)
{
_validateAmount(_tokenIn, _amountIn);
CoWSwapBase.CoWSwapData memory _data =
CoWSwapBase.CoWSwapData(_tokenIn, _tokenOut, _amountIn, _minAmountOut, maxSlippage);
return _checkSwapApproveAndSignOrder(_data);
}
/// ============================================================
/// PT Conversions to asset tokens
/// ============================================================
/// @notice Converts PTs to assetTokens using Pendle oracle rates
/// @param _ptAmount Amount of PTs to convert
/// @return Equivalent amount in assetTokens
/// @dev Uses Pendle oracle TWAP for spot pricing
/// @dev Returns 0 if oracle rate is unavailable
function ptToAssets(uint256 _ptAmount) public view returns (uint256) {
if (_ptAmount == 0) return 0;
uint256 ptToSyAssetTokenRate =
IPendleOracle(pendleOracle).getPtToAssetRate(address(pendleMarket), _PENDLE_ORACLE_TWAP_DURATION);
if (ptToSyAssetTokenRate == 0) return 0;
uint256 syAssetTokenAmount = _ptAmount.mulWadDown(ptToSyAssetTokenRate);
return convert(pivotToken, assetToken, syAssetTokenAmount);
}
/// @notice Calculates the asset value of a given amount of PTs, at maturity
/// @param _ptAmount Amount of PTs to value
/// @return PT value in assetTokens
/// @dev At maturity, PTs have a 1:1 conversion with pivot token, and PT token has the
/// same amount of decimals as the pivot token, therefore we can do a conversion from
/// pivot token to asset token to price the PTs at maturity.
/// @dev this returns a raw value where maturityPTDiscount is not applied
function ptToAssetsAtMaturity(uint256 _ptAmount) public view returns (uint256) {
return convert(pivotToken, assetToken, _ptAmount);
}
/// ============================================================
/// Internal functions
/// ============================================================
/// @notice Updates farm accounting when PT balance changes
/// @param _assetsIn Change in assets (positive for deposits, negative for withdrawals)
/// @dev Updates accrual rate and interpolation parameters for yield distribution
/// @dev Clears accrual data after maturity as no more yield can be earned
function _handleBalanceChange(int256 _assetsIn) internal {
uint256 ptBalance = PT.balanceOf(address(this));
totalReceivedPTs = ptBalance;
if (block.timestamp >= maturity) {
delete accrualRate;
delete totalWrappedAssets;
return;
}
uint256 currentAssets = totalWrappedAssets + interpolatedYield();
if (_assetsIn > 0) {
currentAssets += uint256(_assetsIn);
} else {
currentAssets = _safeSubtract(currentAssets, uint256(-_assetsIn));
}
uint256 assetsAtMaturity = ptToAssetsAtMaturity(ptBalance).mulWadDown(maturityPTDiscount);
uint256 yieldDifference = _safeSubtract(assetsAtMaturity, currentAssets);
uint256 _accrualRate = yieldDifference.divWadUp(maturity - block.timestamp);
accrualRate = _accrualRate;
lastCheckpointTimestamp = block.timestamp;
totalWrappedAssets = assetsAtMaturity - yieldDifference;
}
/// @notice estimates asset value based on the current exchange rate between:
/// the PTs held and the assets reported by the farm
function _estimateAssetsValue(int256 _ptAmount) internal view returns (int256) {
if (block.timestamp >= maturity) return 0;
// farm must have actived wrap to be able to give estimates
require(totalWrappedAssets > 0, FarmNotUsed(totalReceivedPTs, totalWrappedAssets));
require(totalReceivedPTs > 0, FarmNotUsed(totalReceivedPTs, totalWrappedAssets));
uint256 currentAssets = totalWrappedAssets + interpolatedYield();
uint256 assetsAtMaturity = ptToAssetsAtMaturity(totalReceivedPTs);
uint256 currentRatio = currentAssets.divWadUp(assetsAtMaturity);
if (_ptAmount > 0) {
uint256 _assetAmount = uint256(_ptAmount).mulWadDown(currentRatio);
return int256(convert(pivotToken, assetToken, _assetAmount));
}
uint256 assetAmount = uint256(-_ptAmount).mulWadDown(currentRatio);
return -int256(convert(pivotToken, assetToken, assetAmount));
}
/// @inheritdoc CoWSwapBase
function _validateSwap(CoWSwapData memory _data) internal virtual override {
require(isAssetSupported(_data.tokenIn), InvalidToken(_data.tokenIn));
require(isAssetSupported(_data.tokenOut), InvalidToken(_data.tokenOut));
require(_data.tokenIn != _data.tokenOut, InvalidToken(_data.tokenOut));
uint256 minOutSlippage = convert(_data.tokenIn, _data.tokenOut, _data.amountIn).mulWadDown(_data.maxSlippage);
require(_data.minAmountOut > minOutSlippage, SlippageTooHigh(minOutSlippage, _data.minAmountOut));
}
/// @notice Validates slippage for unwrap operations
/// @param _tokenOut Token received from unwrapping
/// @param _amountIn Amount of PTs unwrapped
/// @param _amountOut Amount of tokens received
/// @dev Ensures actual output meets minimum slippage requirements
function _checkSlippageOut(address _tokenOut, uint256 _amountIn, uint256 _amountOut) private view {
uint256 minOut = ptToAssets(_amountIn).mulWadDown(maxSlippage);
uint256 assetsOut = convert(_tokenOut, assetToken, _amountOut);
require(assetsOut >= minOut, SlippageTooHigh(minOut, assetsOut));
}
/// @notice Validates slippage for wrap operations
/// @param _tokenIn Token used for wrapping
/// @param _amountIn Amount of tokens wrapped
/// @param _amountOut Amount of PTs received
/// @dev Ensures actual output meets minimum slippage requirements
function _checkSlippageIn(address _tokenIn, uint256 _amountIn, uint256 _amountOut) private view {
uint256 assetsOut = convert(_tokenIn, assetToken, _amountIn);
uint256 minOut = assetsOut.mulWadDown(maxSlippage);
uint256 actualOut = ptToAssets(_amountOut);
require(actualOut >= minOut, SlippageTooHigh(minOut, actualOut));
}
/// @notice Validates that the specified amount is valid and available
/// @param _asset Address of the token to check
/// @param _amount Amount to validate
/// @dev Ensures amount is positive and doesn't exceed the contract's balance
function _validateAmount(address _asset, uint256 _amount) internal view {
require(_amount > 0, InvalidAmountIn(_amount));
uint256 balance = IERC20(_asset).balanceOf(address(this));
require(_amount <= balance, InsufficientBalance(_asset, _amount));
}
/// @notice Ensures the farm's PT balance is reconciled before executing operations
/// @dev Prevents operations when there's a significant discrepancy between tracked and actual PT balances
/// @dev In case there were no deposits in the farm or no unwraps allows operations
/// @dev Allows small differences up to ptThreshold to account for rounding errors
function _checkIsReconciled() internal view {
if (totalReceivedPTs == 0) return;
uint256 balanceOfPTs = PT.balanceOf(address(this));
if (balanceOfPTs != totalReceivedPTs) {
int256 ptDifference = int256(balanceOfPTs) - int256(totalReceivedPTs);
uint256 ptDifferenceAbs = uint256(ptDifference > 0 ? ptDifference : -ptDifference);
require(ptDifferenceAbs <= ptThreshold, FarmNotReconciled(totalReceivedPTs, balanceOfPTs));
}
}
/// @notice Safely subtracts two numbers, returning 0 if underflow would occur
/// @param _a First number
/// @param _b Second number to subtract
/// @return Result of subtraction or 0 if underflow
/// @dev Used for approximations where underflow is acceptable
function _safeSubtract(uint256 _a, uint256 _b) internal pure returns (uint256) {
return _a > _b ? _a - _b : 0;
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}
"
},
"lib/openzeppelin-contracts/contracts/utils/structs/EnumerableSet.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.20;
import {Arrays} from "../Arrays.sol";
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
* - Set can be cleared (all elements removed) in O(n).
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes32 value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function _clear(Set storage set) private {
uint256 len = _length(set);
for (uint256 i = 0; i < len; ++i) {
delete set._positions[set._values[i]];
}
Arrays.unsafeSetLength(set._values, 0);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(Bytes32Set storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(AddressSet storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(UintSet storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
}
"
},
"lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
"
},
"lib/solmate/src/utils/FixedPointMathLib.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant MAX_UINT256 = 2**256 - 1;
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// Divide x * y by the denominator.
z := div(mul(x, y), denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// If x * y modulo the denominator is strictly greater than 0,
// 1 is added to round up the division of x * y by the denominator.
z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx :
Submitted on: 2025-11-04 15:58:03
Comments
Log in to comment.
No comments yet.