Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/integrations/curve/OnlyBoostAllocator.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Allocator} from "src/Allocator.sol";
import {ISidecar} from "src/interfaces/ISidecar.sol";
import {IBalanceProvider} from "src/interfaces/IBalanceProvider.sol";
import {IProtocolController} from "src/interfaces/IProtocolController.sol";
import {IConvexSidecarFactory} from "src/interfaces/IConvexSidecarFactory.sol";
/// @title OnlyBoostAllocator.
/// @author Stake DAO
/// @custom:github @stake-dao
/// @custom:contact contact@stakedao.org
/// @notice Calculates the optimal LP token allocation for Stake DAO Locker and Convex.
contract OnlyBoostAllocator is Allocator {
using Math for uint256;
/// @notice Gauge-specific configuration when manual weights are enabled.
struct CustomWeights {
uint128 lockerWeight;
bool enabled;
}
/// @notice Address of the Curve Boost Delegation V3 contract
address public immutable BOOST_PROVIDER;
/// @notice Address of the Convex Boost Holder contract
address public immutable CONVEX_BOOST_HOLDER;
/// @notice Address of the Convex Sidecar Factory contract
IConvexSidecarFactory public immutable CONVEX_SIDECAR_FACTORY;
/// @notice Protocol controller that manages permissions.
IProtocolController public immutable PROTOCOL_CONTROLLER;
/// @notice Scaling factor for manual weight configuration (1e18 precision).
uint256 private constant WEIGHT_SCALE = 1e18;
/// @notice Gauges forced to allocate 100% to the locker (used during migrations).
mapping(address => bool) public lockerOnly;
/// @notice Gauge-specific manual allocation overrides.
mapping(address => CustomWeights) public customWeights;
/// @notice Emitted when the locker-only override is toggled for a gauge.
event LockerOnlyUpdated(address indexed gauge, bool lockerOnly);
/// @notice Emitted when manual weights are set for a gauge.
event CustomWeightsSet(address indexed gauge, uint256 lockerWeight);
/// @notice Emitted when manual weights are cleared for a gauge.
event GaugeWeightsCleared(address indexed gauge);
/// @notice Error thrown when caller is not authorized through the protocol controller.
error OnlyAllowed();
/// @notice Error thrown when attempting to set invalid gauge weights.
error InvalidGaugeWeights();
/// @notice Error thrown when provided gauge is invalid for overrides.
error InvalidGauge();
/// @notice Restricts function access to addresses permissioned via the protocol controller.
modifier onlyAllowed() {
require(PROTOCOL_CONTROLLER.allowed(address(this), msg.sender, msg.sig), OnlyAllowed());
_;
}
/// @notice Initializes the OnlyBoostAllocator contract
/// @param _locker Address of the Stake DAO Liquidity Locker
/// @param _gateway Address of the gateway contract
/// @param _convexSidecarFactory Address of the Convex Sidecar Factory contract
constructor(
address _locker,
address _gateway,
address _protocolController,
address _convexSidecarFactory,
address _boostProvider,
address _convexBoostHolder
) Allocator(_locker, _gateway) {
PROTOCOL_CONTROLLER = IProtocolController(_protocolController);
BOOST_PROVIDER = _boostProvider;
CONVEX_BOOST_HOLDER = _convexBoostHolder;
CONVEX_SIDECAR_FACTORY = IConvexSidecarFactory(_convexSidecarFactory);
}
/// @notice Enables or disables sidecar allocations for a gauge.
/// @dev Need to rebalance the allocator to update the allocation targets, else the deposit/withdrawal will fail.
function setLockerOnly(address gauge, bool value) external onlyAllowed {
lockerOnly[gauge] = value;
emit LockerOnlyUpdated(gauge, value);
}
/// @notice Sets manual allocation weights for a gauge, overriding automated boost logic.
/// @param gauge Gauge address to configure.
/// @param lockerWeight Relative weight for the locker target expressed on WEIGHT_SCALE (1e18 precision).
function setGaugeWeights(address gauge, uint256 lockerWeight) external onlyAllowed {
_setGaugeWeights(gauge, lockerWeight);
}
/// @notice Clears manual allocation weights for a gauge.
/// @param gauge Gauge address to clear.
function clearGaugeWeights(address gauge) external onlyAllowed {
delete customWeights[gauge];
emit GaugeWeightsCleared(gauge);
}
//////////////////////////////////////////////////////
// --- DEPOSIT ALLOCATION
//////////////////////////////////////////////////////
/// @inheritdoc Allocator
function getDepositAllocation(address asset, address gauge, uint256 amount)
public
view
override
returns (Allocation memory alloc)
{
// 1. Resolve the sidecar for the gauge.
address sidecar = CONVEX_SIDECAR_FACTORY.getSidecar(gauge);
if (sidecar == address(0)) {
return super.getDepositAllocation(asset, gauge, amount);
}
// 3. Prepare targets and amounts containers.
alloc.asset = asset;
alloc.gauge = gauge;
alloc.targets = _targets(sidecar);
alloc.amounts = _pair(0, 0);
if (lockerOnly[gauge]) {
alloc.amounts[1] = amount;
return alloc;
}
// 4a. If manual override is active, allocate according to manual locker share.
CustomWeights memory customConfig = customWeights[gauge];
if (customConfig.enabled) {
alloc.amounts[1] = amount.mulDiv(customConfig.lockerWeight, WEIGHT_SCALE);
alloc.amounts[0] = amount - alloc.amounts[1];
return alloc;
}
// 4. Fetch current balances.
uint256 balanceOfLocker = IBalanceProvider(gauge).balanceOf(LOCKER);
// 5. Get the optimal balance based on Convex balance and veBoost ratio.
uint256 optimalBalanceOfLocker = getOptimalLockerBalance(gauge);
// 6. Calculate the amount of lps to deposit into the locker.
alloc.amounts[1] =
optimalBalanceOfLocker > balanceOfLocker ? Math.min(optimalBalanceOfLocker - balanceOfLocker, amount) : 0;
// 7. Calculate the amount of lps to deposit into the sidecar.
alloc.amounts[0] = amount - alloc.amounts[1];
}
//////////////////////////////////////////////////////
// --- WITHDRAWAL ALLOCATION
//////////////////////////////////////////////////////
/// @inheritdoc Allocator
function getWithdrawalAllocation(address asset, address gauge, uint256 amount)
public
view
override
returns (Allocation memory alloc)
{
// 1. Resolve the sidecar.
address sidecar = CONVEX_SIDECAR_FACTORY.getSidecar(gauge);
// 2. Fallback to base allocator if none.
if (sidecar == address(0)) {
return super.getWithdrawalAllocation(asset, gauge, amount);
}
// 3. Prepare return struct.
alloc.asset = asset;
alloc.gauge = gauge;
alloc.targets = _targets(sidecar);
alloc.amounts = _pair(0, 0);
// 4. Current balances.
uint256 balanceOfSidecar = ISidecar(sidecar).balanceOf();
uint256 balanceOfLocker = IBalanceProvider(gauge).balanceOf(LOCKER);
// 5. Calculate the optimal amount of lps that must be held by the locker.
uint256 optimalBalanceOfLocker = getOptimalLockerBalance(gauge);
// 6. Calculate the total balance.
uint256 totalBalance = balanceOfSidecar + balanceOfLocker;
if (lockerOnly[gauge]) {
// 6a. Locker-only mode: withdraw entirely from locker unless sidecar still holds funds.
if (totalBalance <= amount) {
alloc.amounts[0] = balanceOfSidecar;
alloc.amounts[1] = balanceOfLocker;
} else {
alloc.amounts[0] = Math.min(amount, balanceOfSidecar);
uint256 remaining = amount - alloc.amounts[0];
alloc.amounts[1] = Math.min(remaining, balanceOfLocker);
}
return alloc;
}
// 6b. Apply manual override if enabled: target the configured locker share post-withdrawal.
CustomWeights memory customConfig = customWeights[gauge];
if (customConfig.enabled) {
// 6b.i. If the withdrawal amount empties both targets, return full balances.
if (totalBalance <= amount) {
alloc.amounts[0] = balanceOfSidecar;
alloc.amounts[1] = balanceOfLocker;
return alloc;
}
// 6b.ii. Compute post-withdrawal targets under the manual locker share.
uint256 finalTotal = totalBalance - amount;
uint256 desiredLocker = finalTotal.mulDiv(customConfig.lockerWeight, WEIGHT_SCALE);
uint256 desiredSidecar = finalTotal - desiredLocker;
// 6b.iii. Determine how much each target can shed while respecting the target share.
uint256 lockerWithdraw = balanceOfLocker > desiredLocker ? balanceOfLocker - desiredLocker : 0;
uint256 sidecarWithdraw = balanceOfSidecar > desiredSidecar ? balanceOfSidecar - desiredSidecar : 0;
// 6b.iv. Withdraw from locker up to its allowable delta, then satisfy the remainder from the sidecar.
alloc.amounts[1] = Math.min(lockerWithdraw, amount);
alloc.amounts[0] = Math.min(sidecarWithdraw, amount - alloc.amounts[1]);
return alloc;
}
// 7. Adjust the withdrawal based on the optimal amount for Stake DAO
if (totalBalance <= amount) {
// 7a. If the total balance is less than or equal to the withdrawal amount, withdraw everything
alloc.amounts[0] = balanceOfSidecar;
alloc.amounts[1] = balanceOfLocker;
} else if (optimalBalanceOfLocker >= balanceOfLocker) {
// 7b. If Stake DAO balance is below optimal, prioritize withdrawing from Convex
alloc.amounts[0] = Math.min(amount, balanceOfSidecar);
alloc.amounts[1] = amount > alloc.amounts[0] ? amount - alloc.amounts[0] : 0;
} else {
// 7c. If Stake DAO is above optimal, prioritize withdrawing from Stake DAO,
// but only withdraw as much as needed to bring the balance down to the optimal amount.
alloc.amounts[1] = Math.min(amount, balanceOfLocker - optimalBalanceOfLocker);
alloc.amounts[0] = amount > alloc.amounts[1] ? Math.min(amount - alloc.amounts[1], balanceOfSidecar) : 0;
// 7d. If there is still more to withdraw, withdraw the rest from Stake DAO.
if (amount > alloc.amounts[0] + alloc.amounts[1]) {
alloc.amounts[1] += amount - alloc.amounts[0] - alloc.amounts[1];
}
}
}
//////////////////////////////////////////////////////
// --- REBALANCE ALLOCATION
//////////////////////////////////////////////////////
/// @inheritdoc Allocator
function getRebalancedAllocation(address asset, address gauge, uint256 totalBalance)
public
view
override
returns (Allocation memory alloc)
{
// 1. Resolve sidecar.
address sidecar = CONVEX_SIDECAR_FACTORY.getSidecar(gauge);
if (sidecar == address(0)) {
return super.getRebalancedAllocation(asset, gauge, totalBalance);
}
// 2. Prepare struct.
alloc.asset = asset;
alloc.gauge = gauge;
alloc.targets = _targets(sidecar);
alloc.amounts = _pair(0, 0);
if (lockerOnly[gauge]) {
alloc.amounts[0] = 0;
alloc.amounts[1] = totalBalance;
} else {
// 2a. If manual override is set, rebalance to the configured locker share.
CustomWeights memory customConfig = customWeights[gauge];
if (customConfig.enabled) {
alloc.amounts[1] = totalBalance.mulDiv(customConfig.lockerWeight, WEIGHT_SCALE);
alloc.amounts[0] = totalBalance - alloc.amounts[1];
return alloc;
}
// 3. For rebalancing, we still want to match the optimal balance based on Convex holdings
// This ensures we maintain the boost-maximizing ratio
uint256 optimalLockerBalance = getOptimalLockerBalance(gauge);
// Cap the locker amount to the total balance available
alloc.amounts[1] = Math.min(optimalLockerBalance, totalBalance);
alloc.amounts[0] = totalBalance - alloc.amounts[1];
}
}
//////////////////////////////////////////////////////
// --- VIEW HELPER FUNCTIONS
//////////////////////////////////////////////////////
/// @inheritdoc Allocator
function getAllocationTargets(address gauge) public view override returns (address[] memory) {
address sidecar = CONVEX_SIDECAR_FACTORY.getSidecar(gauge);
if (sidecar == address(0)) {
return super.getAllocationTargets(gauge);
}
return _targets(sidecar);
}
/// @notice Returns the optimal amount of LP token that must be held by Stake DAO Locker
/// @dev Calculates the optimal balance to maximize boost efficiency
/// @param gauge Address of the Curve gauge
/// @return balanceOfLocker Optimal amount of LP token that should be held by Stake DAO Locker
function getOptimalLockerBalance(address gauge) public view returns (uint256 balanceOfLocker) {
// 1. Get the balance of veBoost on Stake DAO and Convex
uint256 veBoostOfLocker = IBalanceProvider(BOOST_PROVIDER).balanceOf(LOCKER);
uint256 veBoostOfConvex = IBalanceProvider(BOOST_PROVIDER).balanceOf(CONVEX_BOOST_HOLDER);
// 2. Get the balance of the liquidity gauge on Convex
uint256 balanceOfConvex = IBalanceProvider(gauge).balanceOf(CONVEX_BOOST_HOLDER);
// 3. If there is no balance of Convex or no veBoost on Convex, return 0
if (balanceOfConvex == 0 || veBoostOfConvex == 0) return 0;
// 4. Compute the optimal balance for Stake DAO based on veBoost ratio
// This ensures Stake DAO gets LP tokens proportional to its veBoost advantage
balanceOfLocker = balanceOfConvex.mulDiv(veBoostOfLocker, veBoostOfConvex);
}
//////////////////////////////////////////////////////
// --- HELPER FUNCTIONS
//////////////////////////////////////////////////////
/// @dev Returns the pair `[sidecar, LOCKER]` used by allocation targets.
function _targets(address sidecar) private view returns (address[] memory arr) {
arr = new address[](2);
arr[0] = sidecar;
arr[1] = LOCKER;
}
/// @dev Utility to allocate a two‑element uint256 array.
function _pair(uint256 a0, uint256 a1) private pure returns (uint256[] memory arr) {
arr = new uint256[](2);
arr[0] = a0;
arr[1] = a1;
}
/// @dev Stores manual locker weight configuration for a gauge.
/// @param gauge Gauge address to configure.
/// @param lockerWeight Locker share scaled with WEIGHT_SCALE.
function _setGaugeWeights(address gauge, uint256 lockerWeight) private {
// 1. Ensure the gauge has a sidecar, meaning manual splits are applicable.
address sidecar = CONVEX_SIDECAR_FACTORY.getSidecar(gauge);
require(sidecar != address(0), InvalidGauge());
// 2. Guard against invalid weights (greater than 100%).
require(lockerWeight <= WEIGHT_SCALE, InvalidGaugeWeights());
// 3. Persist configuration and emit the update event.
customWeights[gauge] = CustomWeights({lockerWeight: uint128(lockerWeight), enabled: true});
emit CustomWeightsSet(gauge, lockerWeight);
}
}
"
},
"node_modules/@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
"
},
"src/Allocator.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {IAllocator} from "src/interfaces/IAllocator.sol";
/// @title Allocator.
/// @author Stake DAO
/// @custom:github @stake-dao
/// @custom:contact contact@stakedao.org
/// @notice Allocator determines where to deploy capital for optimal yield generation.
/// The base implementation sends everything to the locker, while protocol-specific allocators
/// (e.g., OnlyBoostAllocator) can override to split funds between locker and sidecars
/// based on yield optimization strategies.
contract Allocator is IAllocator {
/// @notice The locker that holds and stakes protocol tokens (e.g., veCRV holder)
address public immutable LOCKER;
/// @notice Safe multisig that executes transactions (same as locker on L2s)
address public immutable GATEWAY;
/// @notice Error thrown when the gateway is zero address
error GatewayZeroAddress();
/// @notice Error thrown when the caller is not the locker
error OnlyLocker();
/// @notice Modifier to restrict functions to the gateway
modifier onlyLocker() {
require(msg.sender == LOCKER, OnlyLocker());
_;
}
/// @notice Initializes the allocator with locker and gateway addresses
/// @param _locker Protocol's token holder (pass 0 for L2s where gateway holds tokens)
/// @param _gateway Safe multisig that executes transactions
constructor(address _locker, address _gateway) {
require(_gateway != address(0), GatewayZeroAddress());
GATEWAY = _gateway;
// L2 optimization: gateway acts as both executor and token holder
// @dev Security: ensures LOCKER is never zero, critical for fund routing
LOCKER = _locker == address(0) ? _gateway : _locker;
}
/// @notice Calculates where to send deposited LP tokens
/// @dev Base: 100% to locker. Override for complex strategies (e.g., split with Convex)
/// @param asset LP token being deposited
/// @param gauge Target gauge for staking
/// @param amount Total amount to allocate
/// @return Allocation with single target (locker) and full amount
function getDepositAllocation(address asset, address gauge, uint256 amount)
public
view
virtual
returns (Allocation memory)
{
address[] memory targets = new address[](1);
targets[0] = LOCKER;
uint256[] memory amounts = new uint256[](1);
amounts[0] = amount;
return Allocation({asset: asset, gauge: gauge, targets: targets, amounts: amounts});
}
/// @notice Calculates where to pull LP tokens from during withdrawal
/// @dev Base: 100% from locker. Override to handle multiple sources
/// @param asset LP token being withdrawn
/// @param gauge Source gauge
/// @param amount Total amount to withdraw
/// @return Allocation with single source (locker) and full amount
function getWithdrawalAllocation(address asset, address gauge, uint256 amount)
public
view
virtual
returns (Allocation memory)
{
address[] memory targets = new address[](1);
targets[0] = LOCKER;
uint256[] memory amounts = new uint256[](1);
amounts[0] = amount;
return Allocation({asset: asset, gauge: gauge, targets: targets, amounts: amounts});
}
/// @notice Calculates optimal distribution when rebalancing positions
/// @dev Base: same as deposit. Override to implement rebalancing logic
/// @param asset LP token to rebalance
/// @param gauge Target gauge
/// @param amount Total amount to redistribute
/// @return Allocation with rebalancing targets and amounts
function getRebalancedAllocation(address asset, address gauge, uint256 amount)
public
view
virtual
returns (Allocation memory)
{
return getDepositAllocation(asset, gauge, amount);
}
/// @notice Lists all possible allocation targets for a gauge
/// @dev Base: only locker. Override to include sidecars
/// @return targets Array of addresses that can receive allocations
function getAllocationTargets(
address /*gauge*/
)
public
view
virtual
returns (address[] memory)
{
address[] memory targets = new address[](1);
targets[0] = LOCKER;
return targets;
}
}
"
},
"src/interfaces/ISidecar.sol": {
"content": "/// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface ISidecar {
function balanceOf() external view returns (uint256);
function deposit(uint256 amount) external;
function withdraw(uint256 amount, address receiver) external;
function getPendingRewards() external returns (uint256);
function getRewardTokens() external view returns (address[] memory);
function claim() external returns (uint256);
function asset() external view returns (IERC20);
}
"
},
"src/interfaces/IBalanceProvider.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
interface IBalanceProvider {
function balanceOf(address _address) external view returns (uint256);
function totalSupply() external view returns (uint256);
}
"
},
"src/interfaces/IProtocolController.sol": {
"content": "/// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
interface IProtocolController {
function vault(address) external view returns (address);
function asset(address) external view returns (address);
function rewardReceiver(address) external view returns (address);
function allowed(address, address, bytes4 selector) external view returns (bool);
function permissionSetters(address) external view returns (bool);
function isRegistrar(address) external view returns (bool);
function locker(bytes4 protocolId) external view returns (address);
function gateway(bytes4 protocolId) external view returns (address);
function strategy(bytes4 protocolId) external view returns (address);
function allocator(bytes4 protocolId) external view returns (address);
function accountant(bytes4 protocolId) external view returns (address);
function feeReceiver(bytes4 protocolId) external view returns (address);
function factory(bytes4 protocolId) external view returns (address);
function isPaused(bytes4) external view returns (bool);
function isShutdown(address) external view returns (bool);
function registerVault(address _gauge, address _vault, address _asset, address _rewardReceiver, bytes4 _protocolId)
external;
function setValidAllocationTarget(address _gauge, address _target) external;
function removeValidAllocationTarget(address _gauge, address _target) external;
function isValidAllocationTarget(address _gauge, address _target) external view returns (bool);
function pause(bytes4 protocolId) external;
function unpause(bytes4 protocolId) external;
function shutdown(address _gauge) external;
function unshutdown(address _gauge) external;
function setPermissionSetter(address _setter, bool _allowed) external;
function setPermission(address _contract, address _caller, bytes4 _selector, bool _allowed) external;
}
"
},
"src/interfaces/IConvexSidecarFactory.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
interface IConvexSidecarFactory {
function getSidecar(address gauge) external view returns (address);
}
"
},
"node_modules/@openzeppelin/contracts/utils/Panic.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
"
},
"node_modules/@openzeppelin/contracts/utils/math/SafeCast.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120)
Submitted on: 2025-11-04 19:05:01
Comments
Log in to comment.
No comments yet.