OnlyBoostAllocator

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/integrations/curve/OnlyBoostAllocator.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

import {Allocator} from "src/Allocator.sol";

import {ISidecar} from "src/interfaces/ISidecar.sol";
import {IBalanceProvider} from "src/interfaces/IBalanceProvider.sol";
import {IProtocolController} from "src/interfaces/IProtocolController.sol";
import {IConvexSidecarFactory} from "src/interfaces/IConvexSidecarFactory.sol";

/// @title OnlyBoostAllocator.
/// @author Stake DAO
/// @custom:github @stake-dao
/// @custom:contact contact@stakedao.org

/// @notice Calculates the optimal LP token allocation for Stake DAO Locker and Convex.
contract OnlyBoostAllocator is Allocator {
    using Math for uint256;

    /// @notice Gauge-specific configuration when manual weights are enabled.
    struct CustomWeights {
        uint128 lockerWeight;
        bool enabled;
    }

    /// @notice Address of the Curve Boost Delegation V3 contract
    address public immutable BOOST_PROVIDER;

    /// @notice Address of the Convex Boost Holder contract
    address public immutable CONVEX_BOOST_HOLDER;

    /// @notice Address of the Convex Sidecar Factory contract
    IConvexSidecarFactory public immutable CONVEX_SIDECAR_FACTORY;

    /// @notice Protocol controller that manages permissions.
    IProtocolController public immutable PROTOCOL_CONTROLLER;

    /// @notice Scaling factor for manual weight configuration (1e18 precision).
    uint256 private constant WEIGHT_SCALE = 1e18;

    /// @notice Gauges forced to allocate 100% to the locker (used during migrations).
    mapping(address => bool) public lockerOnly;

    /// @notice Gauge-specific manual allocation overrides.
    mapping(address => CustomWeights) public customWeights;

    /// @notice Emitted when the locker-only override is toggled for a gauge.
    event LockerOnlyUpdated(address indexed gauge, bool lockerOnly);

    /// @notice Emitted when manual weights are set for a gauge.
    event CustomWeightsSet(address indexed gauge, uint256 lockerWeight);

    /// @notice Emitted when manual weights are cleared for a gauge.
    event GaugeWeightsCleared(address indexed gauge);

    /// @notice Error thrown when caller is not authorized through the protocol controller.
    error OnlyAllowed();

    /// @notice Error thrown when attempting to set invalid gauge weights.
    error InvalidGaugeWeights();

    /// @notice Error thrown when provided gauge is invalid for overrides.
    error InvalidGauge();

    /// @notice Restricts function access to addresses permissioned via the protocol controller.
    modifier onlyAllowed() {
        require(PROTOCOL_CONTROLLER.allowed(address(this), msg.sender, msg.sig), OnlyAllowed());
        _;
    }

    /// @notice Initializes the OnlyBoostAllocator contract
    /// @param _locker Address of the Stake DAO Liquidity Locker
    /// @param _gateway Address of the gateway contract
    /// @param _convexSidecarFactory Address of the Convex Sidecar Factory contract
    constructor(
        address _locker,
        address _gateway,
        address _protocolController,
        address _convexSidecarFactory,
        address _boostProvider,
        address _convexBoostHolder
    ) Allocator(_locker, _gateway) {
        PROTOCOL_CONTROLLER = IProtocolController(_protocolController);
        BOOST_PROVIDER = _boostProvider;
        CONVEX_BOOST_HOLDER = _convexBoostHolder;
        CONVEX_SIDECAR_FACTORY = IConvexSidecarFactory(_convexSidecarFactory);
    }

    /// @notice Enables or disables sidecar allocations for a gauge.
    /// @dev Need to rebalance the allocator to update the allocation targets, else the deposit/withdrawal will fail.
    function setLockerOnly(address gauge, bool value) external onlyAllowed {
        lockerOnly[gauge] = value;
        emit LockerOnlyUpdated(gauge, value);
    }

    /// @notice Sets manual allocation weights for a gauge, overriding automated boost logic.
    /// @param gauge Gauge address to configure.
    /// @param lockerWeight Relative weight for the locker target expressed on WEIGHT_SCALE (1e18 precision).
    function setGaugeWeights(address gauge, uint256 lockerWeight) external onlyAllowed {
        _setGaugeWeights(gauge, lockerWeight);
    }

    /// @notice Clears manual allocation weights for a gauge.
    /// @param gauge Gauge address to clear.
    function clearGaugeWeights(address gauge) external onlyAllowed {
        delete customWeights[gauge];
        emit GaugeWeightsCleared(gauge);
    }

    //////////////////////////////////////////////////////
    // --- DEPOSIT ALLOCATION
    //////////////////////////////////////////////////////

    /// @inheritdoc Allocator
    function getDepositAllocation(address asset, address gauge, uint256 amount)
        public
        view
        override
        returns (Allocation memory alloc)
    {
        // 1. Resolve the sidecar for the gauge.
        address sidecar = CONVEX_SIDECAR_FACTORY.getSidecar(gauge);

        if (sidecar == address(0)) {
            return super.getDepositAllocation(asset, gauge, amount);
        }

        // 3. Prepare targets and amounts containers.
        alloc.asset = asset;
        alloc.gauge = gauge;
        alloc.targets = _targets(sidecar);
        alloc.amounts = _pair(0, 0);

        if (lockerOnly[gauge]) {
            alloc.amounts[1] = amount;
            return alloc;
        }

        // 4a. If manual override is active, allocate according to manual locker share.
        CustomWeights memory customConfig = customWeights[gauge];
        if (customConfig.enabled) {
            alloc.amounts[1] = amount.mulDiv(customConfig.lockerWeight, WEIGHT_SCALE);
            alloc.amounts[0] = amount - alloc.amounts[1];
            return alloc;
        }

        // 4. Fetch current balances.
        uint256 balanceOfLocker = IBalanceProvider(gauge).balanceOf(LOCKER);

        // 5. Get the optimal balance based on Convex balance and veBoost ratio.
        uint256 optimalBalanceOfLocker = getOptimalLockerBalance(gauge);

        // 6. Calculate the amount of lps to deposit into the locker.
        alloc.amounts[1] =
            optimalBalanceOfLocker > balanceOfLocker ? Math.min(optimalBalanceOfLocker - balanceOfLocker, amount) : 0;

        // 7. Calculate the amount of lps to deposit into the sidecar.
        alloc.amounts[0] = amount - alloc.amounts[1];
    }

    //////////////////////////////////////////////////////
    // --- WITHDRAWAL ALLOCATION
    //////////////////////////////////////////////////////

    /// @inheritdoc Allocator
    function getWithdrawalAllocation(address asset, address gauge, uint256 amount)
        public
        view
        override
        returns (Allocation memory alloc)
    {
        // 1. Resolve the sidecar.
        address sidecar = CONVEX_SIDECAR_FACTORY.getSidecar(gauge);

        // 2. Fallback to base allocator if none.
        if (sidecar == address(0)) {
            return super.getWithdrawalAllocation(asset, gauge, amount);
        }

        // 3. Prepare return struct.
        alloc.asset = asset;
        alloc.gauge = gauge;
        alloc.targets = _targets(sidecar);
        alloc.amounts = _pair(0, 0);

        // 4. Current balances.
        uint256 balanceOfSidecar = ISidecar(sidecar).balanceOf();
        uint256 balanceOfLocker = IBalanceProvider(gauge).balanceOf(LOCKER);

        // 5. Calculate the optimal amount of lps that must be held by the locker.
        uint256 optimalBalanceOfLocker = getOptimalLockerBalance(gauge);

        // 6. Calculate the total balance.
        uint256 totalBalance = balanceOfSidecar + balanceOfLocker;

        if (lockerOnly[gauge]) {
            // 6a. Locker-only mode: withdraw entirely from locker unless sidecar still holds funds.
            if (totalBalance <= amount) {
                alloc.amounts[0] = balanceOfSidecar;
                alloc.amounts[1] = balanceOfLocker;
            } else {
                alloc.amounts[0] = Math.min(amount, balanceOfSidecar);
                uint256 remaining = amount - alloc.amounts[0];
                alloc.amounts[1] = Math.min(remaining, balanceOfLocker);
            }
            return alloc;
        }

        // 6b. Apply manual override if enabled: target the configured locker share post-withdrawal.
        CustomWeights memory customConfig = customWeights[gauge];
        if (customConfig.enabled) {
            // 6b.i. If the withdrawal amount empties both targets, return full balances.
            if (totalBalance <= amount) {
                alloc.amounts[0] = balanceOfSidecar;
                alloc.amounts[1] = balanceOfLocker;
                return alloc;
            }

            // 6b.ii. Compute post-withdrawal targets under the manual locker share.
            uint256 finalTotal = totalBalance - amount;
            uint256 desiredLocker = finalTotal.mulDiv(customConfig.lockerWeight, WEIGHT_SCALE);
            uint256 desiredSidecar = finalTotal - desiredLocker;

            // 6b.iii. Determine how much each target can shed while respecting the target share.
            uint256 lockerWithdraw = balanceOfLocker > desiredLocker ? balanceOfLocker - desiredLocker : 0;
            uint256 sidecarWithdraw = balanceOfSidecar > desiredSidecar ? balanceOfSidecar - desiredSidecar : 0;

            // 6b.iv. Withdraw from locker up to its allowable delta, then satisfy the remainder from the sidecar.
            alloc.amounts[1] = Math.min(lockerWithdraw, amount);
            alloc.amounts[0] = Math.min(sidecarWithdraw, amount - alloc.amounts[1]);
            return alloc;
        }

        // 7. Adjust the withdrawal based on the optimal amount for Stake DAO
        if (totalBalance <= amount) {
            // 7a. If the total balance is less than or equal to the withdrawal amount, withdraw everything
            alloc.amounts[0] = balanceOfSidecar;
            alloc.amounts[1] = balanceOfLocker;
        } else if (optimalBalanceOfLocker >= balanceOfLocker) {
            // 7b. If Stake DAO balance is below optimal, prioritize withdrawing from Convex
            alloc.amounts[0] = Math.min(amount, balanceOfSidecar);
            alloc.amounts[1] = amount > alloc.amounts[0] ? amount - alloc.amounts[0] : 0;
        } else {
            // 7c. If Stake DAO is above optimal, prioritize withdrawing from Stake DAO,
            //     but only withdraw as much as needed to bring the balance down to the optimal amount.
            alloc.amounts[1] = Math.min(amount, balanceOfLocker - optimalBalanceOfLocker);
            alloc.amounts[0] = amount > alloc.amounts[1] ? Math.min(amount - alloc.amounts[1], balanceOfSidecar) : 0;

            // 7d. If there is still more to withdraw, withdraw the rest from Stake DAO.
            if (amount > alloc.amounts[0] + alloc.amounts[1]) {
                alloc.amounts[1] += amount - alloc.amounts[0] - alloc.amounts[1];
            }
        }
    }

    //////////////////////////////////////////////////////
    // --- REBALANCE ALLOCATION
    //////////////////////////////////////////////////////

    /// @inheritdoc Allocator
    function getRebalancedAllocation(address asset, address gauge, uint256 totalBalance)
        public
        view
        override
        returns (Allocation memory alloc)
    {
        // 1. Resolve sidecar.
        address sidecar = CONVEX_SIDECAR_FACTORY.getSidecar(gauge);
        if (sidecar == address(0)) {
            return super.getRebalancedAllocation(asset, gauge, totalBalance);
        }

        // 2. Prepare struct.
        alloc.asset = asset;
        alloc.gauge = gauge;
        alloc.targets = _targets(sidecar);
        alloc.amounts = _pair(0, 0);

        if (lockerOnly[gauge]) {
            alloc.amounts[0] = 0;
            alloc.amounts[1] = totalBalance;
        } else {
            // 2a. If manual override is set, rebalance to the configured locker share.
            CustomWeights memory customConfig = customWeights[gauge];
            if (customConfig.enabled) {
                alloc.amounts[1] = totalBalance.mulDiv(customConfig.lockerWeight, WEIGHT_SCALE);
                alloc.amounts[0] = totalBalance - alloc.amounts[1];
                return alloc;
            }

            // 3. For rebalancing, we still want to match the optimal balance based on Convex holdings
            // This ensures we maintain the boost-maximizing ratio
            uint256 optimalLockerBalance = getOptimalLockerBalance(gauge);

            // Cap the locker amount to the total balance available
            alloc.amounts[1] = Math.min(optimalLockerBalance, totalBalance);
            alloc.amounts[0] = totalBalance - alloc.amounts[1];
        }
    }

    //////////////////////////////////////////////////////
    // --- VIEW HELPER FUNCTIONS
    //////////////////////////////////////////////////////

    /// @inheritdoc Allocator
    function getAllocationTargets(address gauge) public view override returns (address[] memory) {
        address sidecar = CONVEX_SIDECAR_FACTORY.getSidecar(gauge);
        if (sidecar == address(0)) {
            return super.getAllocationTargets(gauge);
        }

        return _targets(sidecar);
    }

    /// @notice Returns the optimal amount of LP token that must be held by Stake DAO Locker
    /// @dev Calculates the optimal balance to maximize boost efficiency
    /// @param gauge Address of the Curve gauge
    /// @return balanceOfLocker Optimal amount of LP token that should be held by Stake DAO Locker
    function getOptimalLockerBalance(address gauge) public view returns (uint256 balanceOfLocker) {
        // 1. Get the balance of veBoost on Stake DAO and Convex
        uint256 veBoostOfLocker = IBalanceProvider(BOOST_PROVIDER).balanceOf(LOCKER);
        uint256 veBoostOfConvex = IBalanceProvider(BOOST_PROVIDER).balanceOf(CONVEX_BOOST_HOLDER);

        // 2. Get the balance of the liquidity gauge on Convex
        uint256 balanceOfConvex = IBalanceProvider(gauge).balanceOf(CONVEX_BOOST_HOLDER);

        // 3. If there is no balance of Convex or no veBoost on Convex, return 0
        if (balanceOfConvex == 0 || veBoostOfConvex == 0) return 0;

        // 4. Compute the optimal balance for Stake DAO based on veBoost ratio
        // This ensures Stake DAO gets LP tokens proportional to its veBoost advantage
        balanceOfLocker = balanceOfConvex.mulDiv(veBoostOfLocker, veBoostOfConvex);
    }

    //////////////////////////////////////////////////////
    // --- HELPER FUNCTIONS
    //////////////////////////////////////////////////////

    /// @dev Returns the pair `[sidecar, LOCKER]` used by allocation targets.
    function _targets(address sidecar) private view returns (address[] memory arr) {
        arr = new address[](2);
        arr[0] = sidecar;
        arr[1] = LOCKER;
    }

    /// @dev Utility to allocate a two‑element uint256 array.
    function _pair(uint256 a0, uint256 a1) private pure returns (uint256[] memory arr) {
        arr = new uint256[](2);
        arr[0] = a0;
        arr[1] = a1;
    }

    /// @dev Stores manual locker weight configuration for a gauge.
    /// @param gauge Gauge address to configure.
    /// @param lockerWeight Locker share scaled with WEIGHT_SCALE.
    function _setGaugeWeights(address gauge, uint256 lockerWeight) private {
        // 1. Ensure the gauge has a sidecar, meaning manual splits are applicable.
        address sidecar = CONVEX_SIDECAR_FACTORY.getSidecar(gauge);
        require(sidecar != address(0), InvalidGauge());

        // 2. Guard against invalid weights (greater than 100%).
        require(lockerWeight <= WEIGHT_SCALE, InvalidGaugeWeights());

        // 3. Persist configuration and emit the update event.
        customWeights[gauge] = CustomWeights({lockerWeight: uint128(lockerWeight), enabled: true});

        emit CustomWeightsSet(gauge, lockerWeight);
    }
}
"
    },
    "node_modules/@openzeppelin/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "src/Allocator.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {IAllocator} from "src/interfaces/IAllocator.sol";

/// @title Allocator.
/// @author Stake DAO
/// @custom:github @stake-dao
/// @custom:contact contact@stakedao.org

/// @notice Allocator determines where to deploy capital for optimal yield generation.
///         The base implementation sends everything to the locker, while protocol-specific allocators
///         (e.g., OnlyBoostAllocator) can override to split funds between locker and sidecars
///         based on yield optimization strategies.
contract Allocator is IAllocator {
    /// @notice The locker that holds and stakes protocol tokens (e.g., veCRV holder)
    address public immutable LOCKER;

    /// @notice Safe multisig that executes transactions (same as locker on L2s)
    address public immutable GATEWAY;

    /// @notice Error thrown when the gateway is zero address
    error GatewayZeroAddress();

    /// @notice Error thrown when the caller is not the locker
    error OnlyLocker();

    /// @notice Modifier to restrict functions to the gateway
    modifier onlyLocker() {
        require(msg.sender == LOCKER, OnlyLocker());
        _;
    }

    /// @notice Initializes the allocator with locker and gateway addresses
    /// @param _locker Protocol's token holder (pass 0 for L2s where gateway holds tokens)
    /// @param _gateway Safe multisig that executes transactions
    constructor(address _locker, address _gateway) {
        require(_gateway != address(0), GatewayZeroAddress());

        GATEWAY = _gateway;
        // L2 optimization: gateway acts as both executor and token holder
        // @dev Security: ensures LOCKER is never zero, critical for fund routing
        LOCKER = _locker == address(0) ? _gateway : _locker;
    }

    /// @notice Calculates where to send deposited LP tokens
    /// @dev Base: 100% to locker. Override for complex strategies (e.g., split with Convex)
    /// @param asset LP token being deposited
    /// @param gauge Target gauge for staking
    /// @param amount Total amount to allocate
    /// @return Allocation with single target (locker) and full amount
    function getDepositAllocation(address asset, address gauge, uint256 amount)
        public
        view
        virtual
        returns (Allocation memory)
    {
        address[] memory targets = new address[](1);
        targets[0] = LOCKER;

        uint256[] memory amounts = new uint256[](1);
        amounts[0] = amount;

        return Allocation({asset: asset, gauge: gauge, targets: targets, amounts: amounts});
    }

    /// @notice Calculates where to pull LP tokens from during withdrawal
    /// @dev Base: 100% from locker. Override to handle multiple sources
    /// @param asset LP token being withdrawn
    /// @param gauge Source gauge
    /// @param amount Total amount to withdraw
    /// @return Allocation with single source (locker) and full amount
    function getWithdrawalAllocation(address asset, address gauge, uint256 amount)
        public
        view
        virtual
        returns (Allocation memory)
    {
        address[] memory targets = new address[](1);
        targets[0] = LOCKER;

        uint256[] memory amounts = new uint256[](1);
        amounts[0] = amount;

        return Allocation({asset: asset, gauge: gauge, targets: targets, amounts: amounts});
    }

    /// @notice Calculates optimal distribution when rebalancing positions
    /// @dev Base: same as deposit. Override to implement rebalancing logic
    /// @param asset LP token to rebalance
    /// @param gauge Target gauge
    /// @param amount Total amount to redistribute
    /// @return Allocation with rebalancing targets and amounts
    function getRebalancedAllocation(address asset, address gauge, uint256 amount)
        public
        view
        virtual
        returns (Allocation memory)
    {
        return getDepositAllocation(asset, gauge, amount);
    }

    /// @notice Lists all possible allocation targets for a gauge
    /// @dev Base: only locker. Override to include sidecars
    /// @return targets Array of addresses that can receive allocations
    function getAllocationTargets(
        address /*gauge*/
    )
        public
        view
        virtual
        returns (address[] memory)
    {
        address[] memory targets = new address[](1);
        targets[0] = LOCKER;

        return targets;
    }
}
"
    },
    "src/interfaces/ISidecar.sol": {
      "content": "/// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface ISidecar {
    function balanceOf() external view returns (uint256);
    function deposit(uint256 amount) external;
    function withdraw(uint256 amount, address receiver) external;
    function getPendingRewards() external returns (uint256);
    function getRewardTokens() external view returns (address[] memory);

    function claim() external returns (uint256);

    function asset() external view returns (IERC20);
}
"
    },
    "src/interfaces/IBalanceProvider.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

interface IBalanceProvider {
    function balanceOf(address _address) external view returns (uint256);
    function totalSupply() external view returns (uint256);
}
"
    },
    "src/interfaces/IProtocolController.sol": {
      "content": "/// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

interface IProtocolController {
    function vault(address) external view returns (address);
    function asset(address) external view returns (address);
    function rewardReceiver(address) external view returns (address);

    function allowed(address, address, bytes4 selector) external view returns (bool);
    function permissionSetters(address) external view returns (bool);
    function isRegistrar(address) external view returns (bool);

    function locker(bytes4 protocolId) external view returns (address);
    function gateway(bytes4 protocolId) external view returns (address);
    function strategy(bytes4 protocolId) external view returns (address);
    function allocator(bytes4 protocolId) external view returns (address);
    function accountant(bytes4 protocolId) external view returns (address);
    function feeReceiver(bytes4 protocolId) external view returns (address);
    function factory(bytes4 protocolId) external view returns (address);

    function isPaused(bytes4) external view returns (bool);
    function isShutdown(address) external view returns (bool);

    function registerVault(address _gauge, address _vault, address _asset, address _rewardReceiver, bytes4 _protocolId)
        external;

    function setValidAllocationTarget(address _gauge, address _target) external;
    function removeValidAllocationTarget(address _gauge, address _target) external;
    function isValidAllocationTarget(address _gauge, address _target) external view returns (bool);

    function pause(bytes4 protocolId) external;
    function unpause(bytes4 protocolId) external;
    function shutdown(address _gauge) external;
    function unshutdown(address _gauge) external;

    function setPermissionSetter(address _setter, bool _allowed) external;
    function setPermission(address _contract, address _caller, bytes4 _selector, bool _allowed) external;
}
"
    },
    "src/interfaces/IConvexSidecarFactory.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

interface IConvexSidecarFactory {
    function getSidecar(address gauge) external view returns (address);
}


"
    },
    "node_modules/@openzeppelin/contracts/utils/Panic.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}
"
    },
    "node_modules/@openzeppelin/contracts/utils/math/SafeCast.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120)

Tags:
ERC20, Multisig, Pausable, Liquidity, Staking, Yield, Multi-Signature, Factory|addr:0x3680cce0d97bbbfa47765d7429ff207d03a7364f|verified:true|block:23727609|tx:0x03a23df4c354e8b00093ed354b22259a41ba80fcf41f410f5be78bf58a43c7c7|first_check:1762279501

Submitted on: 2025-11-04 19:05:01

Comments

Log in to comment.

No comments yet.