BoringVaultSY

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "contracts/BoringVaultSY.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;

// libraries
import {PMath} from "@pendle/core-v2/contracts/core/libraries/math/PMath.sol";
import {ArrayLib} from "@pendle/core-v2/contracts/core/libraries/ArrayLib.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

// contracts
import {SYBaseUpgV2} from "contracts/vendor/Pendle/SYBaseUpgV2.sol";
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {MerklRewardAbstract__NoStorage} from "contracts/vendor/Pendle/MerklRewardAbstract__NoStorage.sol";
import {AccountantWithRateProviders} from "@boring-vault/src/base/Roles/AccountantWithRateProviders.sol";
import {ERC20} from "@solmate/tokens/ERC20.sol";
import {BoringVaultSYStorage} from "contracts/BoringVaultSYStorage.sol";

// types
import {Errors} from "contracts/types/Errors.sol";

// interfaces
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

/// @title BoringVaultSY
/// @author PlumeNetwork
/// @notice A specialized vault that integrates with Pendle and rate providers via an external accountant.
/// @dev Inherits from Pendle SY base contracts, enabling yield-bearing asset management and Merkl reward distribution.
///      Reference : https://github.com/pendle-finance/Pendle-SY-Public/blob/21ccfee6c24936fb73c1ae78d1a87c83b05f105c/contracts/core/StandardizedYield/implementations/PendleERC4626NoRedeemNoDepositUpgSY.sol
contract BoringVaultSY is Initializable, SYBaseUpgV2, MerklRewardAbstract__NoStorage, BoringVaultSYStorage {
    /// @notice The base asset associated with this vault (ERC20 token address)
    /// @dev Immutable; set once at deployment
    address public immutable asset;

    /// @notice The minimum rate allowed for exchange calculation
    /// @dev This constant represents the smallest allowed rate
    uint256 public immutable MIN_RATE;

    /// @notice The maximum rate allowed for certain calculations (e.g., fee rates)
    /// @dev This constant prevents overflow by capping the rate at 1e30 in base units
    uint256 public constant MAX_RATE = 1e30; // Example: prevent overflow

    /// @dev Ensures consistent math when converting between shares and assets
    uint256 internal immutable ONE_SHARE;

    /// @notice Constructs the PendleNestVault contract
    /// @param _erc4626 The ERC4626-compatible yield token (SYBase) to wrap
    /// @param _offchainRewardManager The address managing off-chain Merkl reward reporting
    /// @param _asset The address of underlying asset
    /// @param _minRate The minimum rate allowed for the vault, it should be less than the decimals of the underlying asset
    constructor(address _erc4626, address _offchainRewardManager, address _asset, uint256 _minRate)
        SYBaseUpgV2(_erc4626)
        MerklRewardAbstract__NoStorage(_offchainRewardManager)
    {
        asset = _asset;
        ONE_SHARE = 10 ** IERC20Metadata(_erc4626).decimals();
        if (_minRate >= 10 ** IERC20Metadata(_asset).decimals()) {
            revert Errors.INVALID_RATE();
        }
        MIN_RATE = _minRate;
    }

    /// @notice Initializes the PendleNestVault after deployment
    /// @dev Should be called only once. Sets vault metadata and the rate accountant
    /// @param _accountantWithRateProviders The address of accountant with rate providers
    /// @param _name The vault token name
    /// @param _symbol The vault token symbol
    /// @param _owner The address with ownership privileges
    function initialize(
        address _accountantWithRateProviders,
        string memory _name,
        string memory _symbol,
        address _owner
    ) external virtual initializer {
        accountantWithRateProviders = AccountantWithRateProviders(_accountantWithRateProviders);
        __SYBaseUpgV2_init(_name, _symbol, _owner);
    }

    /// @dev Returns 1:1 shares for deposited amount since vault and token are equivalent.
    /// @param amountDeposited The amount of token deposited.
    /// @return amountSharesOut The amount of shares issued (equal to amountDeposited).
    function _deposit(
        address,
        /*tokenIn*/
        uint256 amountDeposited
    )
        internal
        virtual
        override
        returns (
            uint256 /*amountSharesOut*/
        )
    {
        return amountDeposited;
    }

    /// @dev Transfers out the corresponding amount of yield tokens to the receiver.
    /// @param receiver The address receiving redeemed tokens.
    /// @param amountSharesToRedeem The amount of shares to redeem.
    /// @return amountRedeemed The amount of underlying tokens redeemed (equal to shares).
    function _redeem(
        address receiver,
        address,
        /*tokenOut*/
        uint256 amountSharesToRedeem
    )
        internal
        virtual
        override
        returns (uint256)
    {
        _transferOut(yieldToken, receiver, amountSharesToRedeem);
        return amountSharesToRedeem;
    }

    /// @notice Returns the current exchange rate between assets and shares
    /// @dev Uses rate provided by the accountant and normalized by `ONE_SHARE`
    /// @return The exchange rate as a fixed-point number
    function exchangeRate() public view virtual override returns (uint256) {
        return Math.mulDiv(PMath.ONE, _getValidatedRate(), ONE_SHARE, Math.Rounding.Floor);
    }

    /// @dev Returns 1:1 shares for deposit previews.
    /// @param amountTokenToDeposit The amount of input tokens to deposit.
    /// @return amountSharesOut The expected number of shares to be minted.
    function _previewDeposit(
        address,
        /*tokenIn*/
        uint256 amountTokenToDeposit
    )
        internal
        view
        virtual
        override
        returns (
            uint256 /*amountSharesOut*/
        )
    {
        return amountTokenToDeposit;
    }

    /// @dev Returns 1:1 token output for shares redeemed.
    /// @param amountSharesToRedeem The number of shares to redeem.
    /// @return amountTokenOut The expected token output amount.
    function _previewRedeem(
        address,
        /*tokenOut*/
        uint256 amountSharesToRedeem
    )
        internal
        view
        virtual
        override
        returns (
            uint256 /*amountTokenOut*/
        )
    {
        return amountSharesToRedeem;
    }

    /// @notice Returns the list of valid input tokens for deposits.
    /// @dev Always returns the yield token.
    /// @return res Array containing only the yield token address.
    function getTokensIn() public view virtual override returns (address[] memory res) {
        return ArrayLib.create(yieldToken);
    }

    /// @notice Returns the list of valid output tokens for withdrawals
    /// @dev Always returns the yield token
    /// @return res Array containing only the yield token address
    function getTokensOut() public view virtual override returns (address[] memory res) {
        return ArrayLib.create(yieldToken);
    }

    /// @notice Checks if a token is valid for deposits
    /// @param token The address of the token to check
    /// @return True if the token matches the yield token, false otherwise
    function isValidTokenIn(address token) public view virtual override returns (bool) {
        return token == yieldToken;
    }

    /// @notice Checks if a token is valid for redemptions.
    /// @param token The address of the token to check.
    /// @return True if the token matches the yield token, false otherwise.
    function isValidTokenOut(address token) public view virtual override returns (bool) {
        return token == yieldToken;
    }

    /// @notice Returns information about the underlying asset.
    /// @return assetType The type of asset (always TOKEN).
    /// @return assetAddress The address of the underlying ERC20 asset.
    /// @return assetDecimals The decimals of the underlying asset.
    function assetInfo()
        external
        view
        virtual
        returns (AssetType assetType, address assetAddress, uint8 assetDecimals)
    {
        return (AssetType.TOKEN, asset, IERC20Metadata(asset).decimals());
    }

    /// @dev Internal helper to validate rate from external oracle
    function _getValidatedRate() internal view returns (uint256 rate) {
        rate = accountantWithRateProviders.getRateInQuoteSafe(ERC20(asset));

        // prevent division by zero
        if (rate == 0) revert Errors.INVALID_RATE();

        // prevent extreme values
        if (rate < MIN_RATE || rate > MAX_RATE) {
            revert Errors.RATE_OUT_OF_BOUNDS();
        }

        return rate;
    }

    /*//////////////////////////////////////////////////////////////
                        ADMIN FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @notice Updates accountant with rate provider
    /// @dev Only authorized entity can update rate provider
    /// @param _accountantWithRateProviders rate provider address
    function setAccountantWithRateProviders(address _accountantWithRateProviders) external onlyOwner {
        if (_accountantWithRateProviders == address(0)) {
            revert Errors.ZERO_ADDRESS();
        }
        accountantWithRateProviders = AccountantWithRateProviders(_accountantWithRateProviders);
    }
}
"
    },
    "node_modules/@pendle/core-v2/contracts/core/libraries/math/PMath.sol": {
      "content": "// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.8.0;

/* solhint-disable private-vars-leading-underscore, reason-string */

library PMath {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    int256 internal constant IONE = 1e18; // 18 decimal places

    function subMax0(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            return (a >= b ? a - b : 0);
        }
    }

    function subNoNeg(int256 a, int256 b) internal pure returns (int256) {
        require(a >= b, "negative");
        return a - b; // no unchecked since if b is very negative, a - b might overflow
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        unchecked {
            return product / ONE;
        }
    }

    function mulDown(int256 a, int256 b) internal pure returns (int256) {
        int256 product = a * b;
        unchecked {
            return product / IONE;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 aInflated = a * ONE;
        unchecked {
            return aInflated / b;
        }
    }

    function divDown(int256 a, int256 b) internal pure returns (int256) {
        int256 aInflated = a * IONE;
        unchecked {
            return aInflated / b;
        }
    }

    function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) {
        return (a + b - 1) / b;
    }

    function rawDivUp(int256 a, int256 b) internal pure returns (int256) {
        return (a + b - 1) / b;
    }

    function tweakUp(uint256 a, uint256 factor) internal pure returns (uint256) {
        return mulDown(a, ONE + factor);
    }

    function tweakDown(uint256 a, uint256 factor) internal pure returns (uint256) {
        return mulDown(a, ONE - factor);
    }

    /// @return res = min(a + b, bound)
    /// @dev This function should handle arithmetic operation and bound check without overflow/underflow
    function addWithUpperBound(uint256 a, uint256 b, uint256 bound) internal pure returns (uint256 res) {
        unchecked {
            if (type(uint256).max - b < a) res = bound;
            else res = min(bound, a + b);
        }
    }

    /// @return res = max(a - b, bound)
    /// @dev This function should handle arithmetic operation and bound check without overflow/underflow
    function subWithLowerBound(uint256 a, uint256 b, uint256 bound) internal pure returns (uint256 res) {
        unchecked {
            if (b > a) res = bound;
            else res = max(a - b, bound);
        }
    }

    function clamp(uint256 x, uint256 lower, uint256 upper) internal pure returns (uint256 res) {
        res = x;
        if (x < lower) res = lower;
        else if (x > upper) res = upper;
    }

    // @author Uniswap
    function sqrt(uint256 y) internal pure returns (uint256 z) {
        if (y > 3) {
            z = y;
            uint256 x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
    }

    function square(uint256 x) internal pure returns (uint256) {
        return x * x;
    }

    function squareDown(uint256 x) internal pure returns (uint256) {
        return mulDown(x, x);
    }

    function abs(int256 x) internal pure returns (uint256) {
        return uint256(x > 0 ? x : -x);
    }

    function neg(int256 x) internal pure returns (int256) {
        return x * (-1);
    }

    function neg(uint256 x) internal pure returns (int256) {
        return Int(x) * (-1);
    }

    function max(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x > y ? x : y);
    }

    function max(int256 x, int256 y) internal pure returns (int256) {
        return (x > y ? x : y);
    }

    function min(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x < y ? x : y);
    }

    function min(int256 x, int256 y) internal pure returns (int256) {
        return (x < y ? x : y);
    }

    /*///////////////////////////////////////////////////////////////
                               SIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Int(uint256 x) internal pure returns (int256) {
        require(x <= uint256(type(int256).max));
        return int256(x);
    }

    function Int128(int256 x) internal pure returns (int128) {
        require(type(int128).min <= x && x <= type(int128).max);
        return int128(x);
    }

    function Int128(uint256 x) internal pure returns (int128) {
        return Int128(Int(x));
    }

    /*///////////////////////////////////////////////////////////////
                               UNSIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Uint(int256 x) internal pure returns (uint256) {
        require(x >= 0);
        return uint256(x);
    }

    function Uint32(uint256 x) internal pure returns (uint32) {
        require(x <= type(uint32).max);
        return uint32(x);
    }

    function Uint64(uint256 x) internal pure returns (uint64) {
        require(x <= type(uint64).max);
        return uint64(x);
    }

    function Uint112(uint256 x) internal pure returns (uint112) {
        require(x <= type(uint112).max);
        return uint112(x);
    }

    function Uint96(uint256 x) internal pure returns (uint96) {
        require(x <= type(uint96).max);
        return uint96(x);
    }

    function Uint128(uint256 x) internal pure returns (uint128) {
        require(x <= type(uint128).max);
        return uint128(x);
    }

    function Uint192(uint256 x) internal pure returns (uint192) {
        require(x <= type(uint192).max);
        return uint192(x);
    }

    function Uint80(uint256 x) internal pure returns (uint80) {
        require(x <= type(uint80).max);
        return uint80(x);
    }

    function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps);
    }

    function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return a >= b && a <= mulDown(b, ONE + eps);
    }

    function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return a <= b && a >= mulDown(b, ONE - eps);
    }
}
"
    },
    "node_modules/@pendle/core-v2/contracts/core/libraries/ArrayLib.sol": {
      "content": "// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

library ArrayLib {
    function sum(uint256[] memory input) internal pure returns (uint256) {
        uint256 value = 0;
        for (uint256 i = 0; i < input.length; ) {
            value += input[i];
            unchecked {
                i++;
            }
        }
        return value;
    }

    /// @notice return index of the element if found, else return uint256.max
    function find(address[] memory array, address element) internal pure returns (uint256 index) {
        uint256 length = array.length;
        for (uint256 i = 0; i < length; ) {
            if (array[i] == element) return i;
            unchecked {
                i++;
            }
        }
        return type(uint256).max;
    }

    function append(address[] memory inp, address element) internal pure returns (address[] memory out) {
        uint256 length = inp.length;
        out = new address[](length + 1);
        for (uint256 i = 0; i < length; ) {
            out[i] = inp[i];
            unchecked {
                i++;
            }
        }
        out[length] = element;
    }

    function appendHead(address[] memory inp, address element) internal pure returns (address[] memory out) {
        uint256 length = inp.length;
        out = new address[](length + 1);
        out[0] = element;
        for (uint256 i = 1; i <= length; ) {
            out[i] = inp[i - 1];
            unchecked {
                i++;
            }
        }
    }

    /**
     * @dev This function assumes a and b each contains unidentical elements
     * @param a array of addresses a
     * @param b array of addresses b
     * @return out Concatenation of a and b containing unidentical elements
     */
    function merge(address[] memory a, address[] memory b) internal pure returns (address[] memory out) {
        unchecked {
            uint256 countUnidenticalB = 0;
            bool[] memory isUnidentical = new bool[](b.length);
            for (uint256 i = 0; i < b.length; ++i) {
                if (!contains(a, b[i])) {
                    countUnidenticalB++;
                    isUnidentical[i] = true;
                }
            }

            out = new address[](a.length + countUnidenticalB);
            for (uint256 i = 0; i < a.length; ++i) {
                out[i] = a[i];
            }
            uint256 id = a.length;
            for (uint256 i = 0; i < b.length; ++i) {
                if (isUnidentical[i]) {
                    out[id++] = b[i];
                }
            }
        }
    }

    // various version of contains
    function contains(address[] memory array, address element) internal pure returns (bool) {
        uint256 length = array.length;
        for (uint256 i = 0; i < length; ) {
            if (array[i] == element) return true;
            unchecked {
                i++;
            }
        }
        return false;
    }

    function contains(bytes4[] memory array, bytes4 element) internal pure returns (bool) {
        uint256 length = array.length;
        for (uint256 i = 0; i < length; ) {
            if (array[i] == element) return true;
            unchecked {
                i++;
            }
        }
        return false;
    }

    function create(address a) internal pure returns (address[] memory res) {
        res = new address[](1);
        res[0] = a;
    }

    function create(address a, address b) internal pure returns (address[] memory res) {
        res = new address[](2);
        res[0] = a;
        res[1] = b;
    }

    function create(address a, address b, address c) internal pure returns (address[] memory res) {
        res = new address[](3);
        res[0] = a;
        res[1] = b;
        res[2] = c;
    }

    function create(address a, address b, address c, address d) internal pure returns (address[] memory res) {
        res = new address[](4);
        res[0] = a;
        res[1] = b;
        res[2] = c;
        res[3] = d;
    }

    function create(
        address a,
        address b,
        address c,
        address d,
        address e
    ) internal pure returns (address[] memory res) {
        res = new address[](5);
        res[0] = a;
        res[1] = b;
        res[2] = c;
        res[3] = d;
        res[4] = e;
    }

    function create(uint256 a) internal pure returns (uint256[] memory res) {
        res = new uint256[](1);
        res[0] = a;
    }
}
"
    },
    "node_modules/@openzeppelin/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
"
    },
    "contracts/vendor/Pendle/SYBaseUpgV2.sol": {
      "content": "// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;

import {PendleERC20Upg} from "@pendle/core-v2/contracts/core/erc20/PendleERC20Upg.sol";
import {PMath} from "@pendle/core-v2/contracts/core/libraries/math/PMath.sol";
import {ArrayLib} from "@pendle/core-v2/contracts/core/libraries/ArrayLib.sol";
import {TokenHelper} from "@pendle/core-v2/contracts/core/libraries/TokenHelper.sol";
import {Errors} from "@pendle/core-v2/contracts/core/libraries/Errors.sol";
import {BoringOwnableUpgradeableV2} from "@pendle/core-v2/contracts/core/libraries/BoringOwnableUpgradeableV2.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {IStandardizedYield} from "@pendle/core-v2/contracts/interfaces/IStandardizedYield.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

abstract contract SYBaseUpgV2 is IStandardizedYield, PendleERC20Upg, TokenHelper, BoringOwnableUpgradeableV2, Pausable {
    using PMath for uint256;

    address public immutable yieldToken;

    uint256[100] private __gap;

    constructor(address _yieldToken) PendleERC20Upg(IERC20Metadata(_yieldToken).decimals()) {
        yieldToken = _yieldToken;
        _disableInitializers();
    }

    function __SYBaseUpgV2_init(string memory name_, string memory symbol_, address _owner) internal onlyInitializing {
        __ERC20Upg_init(name_, symbol_);
        __BoringOwnableV2_init(_owner);
    }

    // solhint-disable no-empty-blocks
    receive() external payable {}

    /*///////////////////////////////////////////////////////////////
                    DEPOSIT/REDEEM USING BASE TOKENS
    //////////////////////////////////////////////////////////////*/

    /**
     * @dev See {IStandardizedYield-deposit}
     */
    function deposit(address receiver, address tokenIn, uint256 amountTokenToDeposit, uint256 minSharesOut)
        external
        payable
        nonReentrant
        returns (uint256 amountSharesOut)
    {
        if (!isValidTokenIn(tokenIn)) revert Errors.SYInvalidTokenIn(tokenIn);
        if (amountTokenToDeposit == 0) revert Errors.SYZeroDeposit();

        _transferIn(tokenIn, msg.sender, amountTokenToDeposit);

        amountSharesOut = _deposit(tokenIn, amountTokenToDeposit);
        if (amountSharesOut < minSharesOut) revert Errors.SYInsufficientSharesOut(amountSharesOut, minSharesOut);

        _mint(receiver, amountSharesOut);
        emit Deposit(msg.sender, receiver, tokenIn, amountTokenToDeposit, amountSharesOut);
    }

    /**
     * @dev See {IStandardizedYield-redeem}
     */
    function redeem(
        address receiver,
        uint256 amountSharesToRedeem,
        address tokenOut,
        uint256 minTokenOut,
        bool burnFromInternalBalance
    ) external nonReentrant returns (uint256 amountTokenOut) {
        if (!isValidTokenOut(tokenOut)) revert Errors.SYInvalidTokenOut(tokenOut);
        if (amountSharesToRedeem == 0) revert Errors.SYZeroRedeem();

        if (burnFromInternalBalance) {
            _burn(address(this), amountSharesToRedeem);
        } else {
            _burn(msg.sender, amountSharesToRedeem);
        }

        amountTokenOut = _redeem(receiver, tokenOut, amountSharesToRedeem);
        if (amountTokenOut < minTokenOut) revert Errors.SYInsufficientTokenOut(amountTokenOut, minTokenOut);
        emit Redeem(msg.sender, receiver, tokenOut, amountSharesToRedeem, amountTokenOut);
    }

    /**
     * @notice mint shares based on the deposited base tokens
     * @param tokenIn base token address used to mint shares
     * @param amountDeposited amount of base tokens deposited
     * @return amountSharesOut amount of shares minted
     */
    function _deposit(address tokenIn, uint256 amountDeposited) internal virtual returns (uint256 amountSharesOut);

    /**
     * @notice redeems base tokens based on amount of shares to be burned
     * @param tokenOut address of the base token to be redeemed
     * @param amountSharesToRedeem amount of shares to be burned
     * @return amountTokenOut amount of base tokens redeemed
     */
    function _redeem(address receiver, address tokenOut, uint256 amountSharesToRedeem)
        internal
        virtual
        returns (uint256 amountTokenOut);

    /*///////////////////////////////////////////////////////////////
                               EXCHANGE-RATE
    //////////////////////////////////////////////////////////////*/

    /**
     * @dev See {IStandardizedYield-exchangeRate}
     */
    function exchangeRate() external view virtual override returns (uint256 res);

    /*///////////////////////////////////////////////////////////////
                               REWARDS-RELATED
    //////////////////////////////////////////////////////////////*/

    /**
     * @dev See {IStandardizedYield-claimRewards}
     */
    function claimRewards(
        address /*user*/
    )
        external
        virtual
        override
        returns (uint256[] memory rewardAmounts)
    {
        rewardAmounts = new uint256[](0);
    }

    /**
     * @dev See {IStandardizedYield-getRewardTokens}
     */
    function getRewardTokens() external view virtual override returns (address[] memory rewardTokens) {
        rewardTokens = new address[](0);
    }

    /**
     * @dev See {IStandardizedYield-accruedRewards}
     */
    function accruedRewards(
        address /*user*/
    )
        external
        view
        virtual
        override
        returns (uint256[] memory rewardAmounts)
    {
        rewardAmounts = new uint256[](0);
    }

    function rewardIndexesCurrent() external virtual override returns (uint256[] memory indexes) {
        indexes = new uint256[](0);
    }

    function rewardIndexesStored() external view virtual override returns (uint256[] memory indexes) {
        indexes = new uint256[](0);
    }

    /*///////////////////////////////////////////////////////////////
                MISC METADATA FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function previewDeposit(address tokenIn, uint256 amountTokenToDeposit)
        external
        view
        virtual
        returns (uint256 amountSharesOut)
    {
        if (!isValidTokenIn(tokenIn)) revert Errors.SYInvalidTokenIn(tokenIn);
        return _previewDeposit(tokenIn, amountTokenToDeposit);
    }

    function previewRedeem(address tokenOut, uint256 amountSharesToRedeem)
        external
        view
        virtual
        returns (uint256 amountTokenOut)
    {
        if (!isValidTokenOut(tokenOut)) revert Errors.SYInvalidTokenOut(tokenOut);
        return _previewRedeem(tokenOut, amountSharesToRedeem);
    }

    function pause() external onlyOwner {
        _pause();
    }

    function unpause() external onlyOwner {
        _unpause();
    }

    function _beforeTokenTransfer(address, address, uint256) internal virtual override whenNotPaused {}

    function _previewDeposit(address tokenIn, uint256 amountTokenToDeposit)
        internal
        view
        virtual
        returns (uint256 amountSharesOut);

    function _previewRedeem(address tokenOut, uint256 amountSharesToRedeem)
        internal
        view
        virtual
        returns (uint256 amountTokenOut);

    function getTokensIn() public view virtual returns (address[] memory res);

    function getTokensOut() public view virtual returns (address[] memory res);

    function isValidTokenIn(address token) public view virtual returns (bool);

    function isValidTokenOut(address token) public view virtual returns (bool);

    function pricingInfo() external view virtual returns (address refToken, bool refStrictlyEqual) {
        return (yieldToken, true);
    }
}
"
    },
    "node_modules/@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to redu

Tags:
ERC20, ERC165, Multisig, Pausable, Swap, Liquidity, Yield, Upgradeable, Multi-Signature, Factory, Oracle|addr:0x6f68fd09489bd9dd5a56c3c85178734bb709ba87|verified:true|block:23727385|tx:0xd094c1e632f5889bb776d6bd74c0ea668be75f32bbb30119643ad5f32f1f0c8f|first_check:1762280203

Submitted on: 2025-11-04 19:16:44

Comments

Log in to comment.

No comments yet.