Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/Holder.sol": {
"content": "// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.18;
import {BaseStrategy} from "@tokenized-strategy/BaseStrategy.sol";
/// @title Holder
/// @author kexley, Cap Labs
/// @notice A strategy that holds tokens and only does nothing else with them.
contract Holder is BaseStrategy {
/// @dev Constructor
/// @param _asset The asset address
/// @param _name The name of the strategy
constructor(
address _asset,
string memory _name
) BaseStrategy(_asset, _name) {}
/// @dev Left empty as funds do not leave the contract
/// @param _amount The amount of 'asset' deployed
function _deployFunds(uint256 _amount) internal override {}
/// @dev Left empty as funds do not leave the contract
/// @param _amount The amount of 'asset' freed
function _freeFunds(uint256 _amount) internal override {}
/// @dev Returns the balance of 'asset' in the contract
/// @return _totalAssets The balance of 'asset' in the contract
function _harvestAndReport() internal view override returns (uint256 _totalAssets) {
_totalAssets = asset.balanceOf(address(this));
}
}
"
},
"lib/tokenized-strategy/src/BaseStrategy.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
// TokenizedStrategy interface used for internal view delegateCalls.
import {ITokenizedStrategy} from "./interfaces/ITokenizedStrategy.sol";
/**
* @title YearnV3 Base Strategy
* @author yearn.finance
* @notice
* BaseStrategy implements all of the required functionality to
* seamlessly integrate with the `TokenizedStrategy` implementation contract
* allowing anyone to easily build a fully permissionless ERC-4626 compliant
* Vault by inheriting this contract and overriding three simple functions.
* It utilizes an immutable proxy pattern that allows the BaseStrategy
* to remain simple and small. All standard logic is held within the
* `TokenizedStrategy` and is reused over any n strategies all using the
* `fallback` function to delegatecall the implementation so that strategists
* can only be concerned with writing their strategy specific code.
*
* This contract should be inherited and the three main abstract methods
* `_deployFunds`, `_freeFunds` and `_harvestAndReport` implemented to adapt
* the Strategy to the particular needs it has to generate yield. There are
* other optional methods that can be implemented to further customize
* the strategy if desired.
*
* All default storage for the strategy is controlled and updated by the
* `TokenizedStrategy`. The implementation holds a storage struct that
* contains all needed global variables in a manual storage slot. This
* means strategists can feel free to implement their own custom storage
* variables as they need with no concern of collisions. All global variables
* can be viewed within the Strategy by a simple call using the
* `TokenizedStrategy` variable. IE: TokenizedStrategy.globalVariable();.
*/
abstract contract BaseStrategy {
/*//////////////////////////////////////////////////////////////
MODIFIERS
//////////////////////////////////////////////////////////////*/
/**
* @dev Used on TokenizedStrategy callback functions to make sure it is post
* a delegateCall from this address to the TokenizedStrategy.
*/
modifier onlySelf() {
_onlySelf();
_;
}
/**
* @dev Use to assure that the call is coming from the strategies management.
*/
modifier onlyManagement() {
TokenizedStrategy.requireManagement(msg.sender);
_;
}
/**
* @dev Use to assure that the call is coming from either the strategies
* management or the keeper.
*/
modifier onlyKeepers() {
TokenizedStrategy.requireKeeperOrManagement(msg.sender);
_;
}
/**
* @dev Use to assure that the call is coming from either the strategies
* management or the emergency admin.
*/
modifier onlyEmergencyAuthorized() {
TokenizedStrategy.requireEmergencyAuthorized(msg.sender);
_;
}
/**
* @dev Require that the msg.sender is this address.
*/
function _onlySelf() internal view {
require(msg.sender == address(this), "!self");
}
/*//////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////*/
/**
* @dev This is the address of the TokenizedStrategy implementation
* contract that will be used by all strategies to handle the
* accounting, logic, storage etc.
*
* Any external calls to the that don't hit one of the functions
* defined in this base or the strategy will end up being forwarded
* through the fallback function, which will delegateCall this address.
*
* This address should be the same for every strategy, never be adjusted
* and always be checked before any integration with the Strategy.
*/
address public constant tokenizedStrategyAddress =
0x254A93feff3BEeF9cA004E913bB5443754e8aB19;
/*//////////////////////////////////////////////////////////////
IMMUTABLES
//////////////////////////////////////////////////////////////*/
/**
* @dev Underlying asset the Strategy is earning yield on.
* Stored here for cheap retrievals within the strategy.
*/
ERC20 internal immutable asset;
/**
* @dev This variable is set to address(this) during initialization of each strategy.
*
* This can be used to retrieve storage data within the strategy
* contract as if it were a linked library.
*
* i.e. uint256 totalAssets = TokenizedStrategy.totalAssets()
*
* Using address(this) will mean any calls using this variable will lead
* to a call to itself. Which will hit the fallback function and
* delegateCall that to the actual TokenizedStrategy.
*/
ITokenizedStrategy internal immutable TokenizedStrategy;
/**
* @notice Used to initialize the strategy on deployment.
*
* This will set the `TokenizedStrategy` variable for easy
* internal view calls to the implementation. As well as
* initializing the default storage variables based on the
* parameters and using the deployer for the permissioned roles.
*
* @param _asset Address of the underlying asset.
* @param _name Name the strategy will use.
*/
constructor(address _asset, string memory _name) {
asset = ERC20(_asset);
// Set instance of the implementation for internal use.
TokenizedStrategy = ITokenizedStrategy(address(this));
// Initialize the strategy's storage variables.
_delegateCall(
abi.encodeCall(
ITokenizedStrategy.initialize,
(_asset, _name, msg.sender, msg.sender, msg.sender)
)
);
// Store the tokenizedStrategyAddress at the standard implementation
// address storage slot so etherscan picks up the interface. This gets
// stored on initialization and never updated.
assembly {
sstore(
// keccak256('eip1967.proxy.implementation' - 1)
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc,
tokenizedStrategyAddress
)
}
}
/*//////////////////////////////////////////////////////////////
NEEDED TO BE OVERRIDDEN BY STRATEGIST
//////////////////////////////////////////////////////////////*/
/**
* @dev Can deploy up to '_amount' of 'asset' in the yield source.
*
* This function is called at the end of a {deposit} or {mint}
* call. Meaning that unless a whitelist is implemented it will
* be entirely permissionless and thus can be sandwiched or otherwise
* manipulated.
*
* @param _amount The amount of 'asset' that the strategy can attempt
* to deposit in the yield source.
*/
function _deployFunds(uint256 _amount) internal virtual;
/**
* @dev Should attempt to free the '_amount' of 'asset'.
*
* NOTE: The amount of 'asset' that is already loose has already
* been accounted for.
*
* This function is called during {withdraw} and {redeem} calls.
* Meaning that unless a whitelist is implemented it will be
* entirely permissionless and thus can be sandwiched or otherwise
* manipulated.
*
* Should not rely on asset.balanceOf(address(this)) calls other than
* for diff accounting purposes.
*
* Any difference between `_amount` and what is actually freed will be
* counted as a loss and passed on to the withdrawer. This means
* care should be taken in times of illiquidity. It may be better to revert
* if withdraws are simply illiquid so not to realize incorrect losses.
*
* @param _amount, The amount of 'asset' to be freed.
*/
function _freeFunds(uint256 _amount) internal virtual;
/**
* @dev Internal function to harvest all rewards, redeploy any idle
* funds and return an accurate accounting of all funds currently
* held by the Strategy.
*
* This should do any needed harvesting, rewards selling, accrual,
* redepositing etc. to get the most accurate view of current assets.
*
* NOTE: All applicable assets including loose assets should be
* accounted for in this function.
*
* Care should be taken when relying on oracles or swap values rather
* than actual amounts as all Strategy profit/loss accounting will
* be done based on this returned value.
*
* This can still be called post a shutdown, a strategist can check
* `TokenizedStrategy.isShutdown()` to decide if funds should be
* redeployed or simply realize any profits/losses.
*
* @return _totalAssets A trusted and accurate account for the total
* amount of 'asset' the strategy currently holds including idle funds.
*/
function _harvestAndReport()
internal
virtual
returns (uint256 _totalAssets);
/*//////////////////////////////////////////////////////////////
OPTIONAL TO OVERRIDE BY STRATEGIST
//////////////////////////////////////////////////////////////*/
/**
* @dev Optional function for strategist to override that can
* be called in between reports.
*
* If '_tend' is used tendTrigger() will also need to be overridden.
*
* This call can only be called by a permissioned role so may be
* through protected relays.
*
* This can be used to harvest and compound rewards, deposit idle funds,
* perform needed position maintenance or anything else that doesn't need
* a full report for.
*
* EX: A strategy that can not deposit funds without getting
* sandwiched can use the tend when a certain threshold
* of idle to totalAssets has been reached.
*
* This will have no effect on PPS of the strategy till report() is called.
*
* @param _totalIdle The current amount of idle funds that are available to deploy.
*/
function _tend(uint256 _totalIdle) internal virtual {}
/**
* @dev Optional trigger to override if tend() will be used by the strategy.
* This must be implemented if the strategy hopes to invoke _tend().
*
* @return . Should return true if tend() should be called by keeper or false if not.
*/
function _tendTrigger() internal view virtual returns (bool) {
return false;
}
/**
* @notice Returns if tend() should be called by a keeper.
*
* @return . Should return true if tend() should be called by keeper or false if not.
* @return . Calldata for the tend call.
*/
function tendTrigger() external view virtual returns (bool, bytes memory) {
return (
// Return the status of the tend trigger.
_tendTrigger(),
// And the needed calldata either way.
abi.encodeWithSelector(ITokenizedStrategy.tend.selector)
);
}
/**
* @notice Gets the max amount of `asset` that an address can deposit.
* @dev Defaults to an unlimited amount for any address. But can
* be overridden by strategists.
*
* This function will be called before any deposit or mints to enforce
* any limits desired by the strategist. This can be used for either a
* traditional deposit limit or for implementing a whitelist etc.
*
* EX:
* if(isAllowed[_owner]) return super.availableDepositLimit(_owner);
*
* This does not need to take into account any conversion rates
* from shares to assets. But should know that any non max uint256
* amounts may be converted to shares. So it is recommended to keep
* custom amounts low enough as not to cause overflow when multiplied
* by `totalSupply`.
*
* @param . The address that is depositing into the strategy.
* @return . The available amount the `_owner` can deposit in terms of `asset`
*/
function availableDepositLimit(
address /*_owner*/
) public view virtual returns (uint256) {
return type(uint256).max;
}
/**
* @notice Gets the max amount of `asset` that can be withdrawn.
* @dev Defaults to an unlimited amount for any address. But can
* be overridden by strategists.
*
* This function will be called before any withdraw or redeem to enforce
* any limits desired by the strategist. This can be used for illiquid
* or sandwichable strategies. It should never be lower than `totalIdle`.
*
* EX:
* return TokenIzedStrategy.totalIdle();
*
* This does not need to take into account the `_owner`'s share balance
* or conversion rates from shares to assets.
*
* @param . The address that is withdrawing from the strategy.
* @return . The available amount that can be withdrawn in terms of `asset`
*/
function availableWithdrawLimit(
address /*_owner*/
) public view virtual returns (uint256) {
return type(uint256).max;
}
/**
* @dev Optional function for a strategist to override that will
* allow management to manually withdraw deployed funds from the
* yield source if a strategy is shutdown.
*
* This should attempt to free `_amount`, noting that `_amount` may
* be more than is currently deployed.
*
* NOTE: This will not realize any profits or losses. A separate
* {report} will be needed in order to record any profit/loss. If
* a report may need to be called after a shutdown it is important
* to check if the strategy is shutdown during {_harvestAndReport}
* so that it does not simply re-deploy all funds that had been freed.
*
* EX:
* if(freeAsset > 0 && !TokenizedStrategy.isShutdown()) {
* depositFunds...
* }
*
* @param _amount The amount of asset to attempt to free.
*/
function _emergencyWithdraw(uint256 _amount) internal virtual {}
/*//////////////////////////////////////////////////////////////
TokenizedStrategy HOOKS
//////////////////////////////////////////////////////////////*/
/**
* @notice Can deploy up to '_amount' of 'asset' in yield source.
* @dev Callback for the TokenizedStrategy to call during a {deposit}
* or {mint} to tell the strategy it can deploy funds.
*
* Since this can only be called after a {deposit} or {mint}
* delegateCall to the TokenizedStrategy msg.sender == address(this).
*
* Unless a whitelist is implemented this will be entirely permissionless
* and thus can be sandwiched or otherwise manipulated.
*
* @param _amount The amount of 'asset' that the strategy can
* attempt to deposit in the yield source.
*/
function deployFunds(uint256 _amount) external virtual onlySelf {
_deployFunds(_amount);
}
/**
* @notice Should attempt to free the '_amount' of 'asset'.
* @dev Callback for the TokenizedStrategy to call during a withdraw
* or redeem to free the needed funds to service the withdraw.
*
* This can only be called after a 'withdraw' or 'redeem' delegateCall
* to the TokenizedStrategy so msg.sender == address(this).
*
* @param _amount The amount of 'asset' that the strategy should attempt to free up.
*/
function freeFunds(uint256 _amount) external virtual onlySelf {
_freeFunds(_amount);
}
/**
* @notice Returns the accurate amount of all funds currently
* held by the Strategy.
* @dev Callback for the TokenizedStrategy to call during a report to
* get an accurate accounting of assets the strategy controls.
*
* This can only be called after a report() delegateCall to the
* TokenizedStrategy so msg.sender == address(this).
*
* @return . A trusted and accurate account for the total amount
* of 'asset' the strategy currently holds including idle funds.
*/
function harvestAndReport() external virtual onlySelf returns (uint256) {
return _harvestAndReport();
}
/**
* @notice Will call the internal '_tend' when a keeper tends the strategy.
* @dev Callback for the TokenizedStrategy to initiate a _tend call in the strategy.
*
* This can only be called after a tend() delegateCall to the TokenizedStrategy
* so msg.sender == address(this).
*
* We name the function `tendThis` so that `tend` calls are forwarded to
* the TokenizedStrategy.
* @param _totalIdle The amount of current idle funds that can be
* deployed during the tend
*/
function tendThis(uint256 _totalIdle) external virtual onlySelf {
_tend(_totalIdle);
}
/**
* @notice Will call the internal '_emergencyWithdraw' function.
* @dev Callback for the TokenizedStrategy during an emergency withdraw.
*
* This can only be called after a emergencyWithdraw() delegateCall to
* the TokenizedStrategy so msg.sender == address(this).
*
* We name the function `shutdownWithdraw` so that `emergencyWithdraw`
* calls are forwarded to the TokenizedStrategy.
*
* @param _amount The amount of asset to attempt to free.
*/
function shutdownWithdraw(uint256 _amount) external virtual onlySelf {
_emergencyWithdraw(_amount);
}
/**
* @dev Function used to delegate call the TokenizedStrategy with
* certain `_calldata` and return any return values.
*
* This is used to setup the initial storage of the strategy, and
* can be used by strategist to forward any other call to the
* TokenizedStrategy implementation.
*
* @param _calldata The abi encoded calldata to use in delegatecall.
* @return . The return value if the call was successful in bytes.
*/
function _delegateCall(
bytes memory _calldata
) internal returns (bytes memory) {
// Delegate call the tokenized strategy with provided calldata.
(bool success, bytes memory result) = tokenizedStrategyAddress
.delegatecall(_calldata);
// If the call reverted. Return the error.
if (!success) {
assembly {
let ptr := mload(0x40)
let size := returndatasize()
returndatacopy(ptr, 0, size)
revert(ptr, size)
}
}
// Return the result.
return result;
}
/**
* @dev Execute a function on the TokenizedStrategy and return any value.
*
* This fallback function will be executed when any of the standard functions
* defined in the TokenizedStrategy are called since they wont be defined in
* this contract.
*
* It will delegatecall the TokenizedStrategy implementation with the exact
* calldata and return any relevant values.
*
*/
fallback() external {
// load our target address
address _tokenizedStrategyAddress = tokenizedStrategyAddress;
// Execute external function using delegatecall and return any value.
assembly {
// Copy function selector and any arguments.
calldatacopy(0, 0, calldatasize())
// Execute function delegatecall.
let result := delegatecall(
gas(),
_tokenizedStrategyAddress,
0,
calldatasize(),
0,
0
)
// Get any return value
returndatacopy(0, 0, returndatasize())
// Return any return value or error back to the caller
switch result
case 0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
"
},
"lib/tokenized-strategy/src/interfaces/ITokenizedStrategy.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
// Interface that implements the 4626 standard and the implementation functions
interface ITokenizedStrategy is IERC4626, IERC20Permit {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event StrategyShutdown();
event NewTokenizedStrategy(
address indexed strategy,
address indexed asset,
string apiVersion
);
event Reported(
uint256 profit,
uint256 loss,
uint256 protocolFees,
uint256 performanceFees
);
event UpdatePerformanceFeeRecipient(
address indexed newPerformanceFeeRecipient
);
event UpdateKeeper(address indexed newKeeper);
event UpdatePerformanceFee(uint16 newPerformanceFee);
event UpdateManagement(address indexed newManagement);
event UpdateEmergencyAdmin(address indexed newEmergencyAdmin);
event UpdateProfitMaxUnlockTime(uint256 newProfitMaxUnlockTime);
event UpdatePendingManagement(address indexed newPendingManagement);
/*//////////////////////////////////////////////////////////////
INITIALIZATION
//////////////////////////////////////////////////////////////*/
function initialize(
address _asset,
string memory _name,
address _management,
address _performanceFeeRecipient,
address _keeper
) external;
/*//////////////////////////////////////////////////////////////
NON-STANDARD 4626 OPTIONS
//////////////////////////////////////////////////////////////*/
function withdraw(
uint256 assets,
address receiver,
address owner,
uint256 maxLoss
) external returns (uint256);
function redeem(
uint256 shares,
address receiver,
address owner,
uint256 maxLoss
) external returns (uint256);
function maxWithdraw(
address owner,
uint256 /*maxLoss*/
) external view returns (uint256);
function maxRedeem(
address owner,
uint256 /*maxLoss*/
) external view returns (uint256);
/*//////////////////////////////////////////////////////////////
MODIFIER HELPERS
//////////////////////////////////////////////////////////////*/
function requireManagement(address _sender) external view;
function requireKeeperOrManagement(address _sender) external view;
function requireEmergencyAuthorized(address _sender) external view;
/*//////////////////////////////////////////////////////////////
KEEPERS FUNCTIONS
//////////////////////////////////////////////////////////////*/
function tend() external;
function report() external returns (uint256 _profit, uint256 _loss);
/*//////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////*/
function MAX_FEE() external view returns (uint16);
function FACTORY() external view returns (address);
/*//////////////////////////////////////////////////////////////
GETTERS
//////////////////////////////////////////////////////////////*/
function apiVersion() external view returns (string memory);
function pricePerShare() external view returns (uint256);
function management() external view returns (address);
function pendingManagement() external view returns (address);
function keeper() external view returns (address);
function emergencyAdmin() external view returns (address);
function performanceFee() external view returns (uint16);
function performanceFeeRecipient() external view returns (address);
function fullProfitUnlockDate() external view returns (uint256);
function profitUnlockingRate() external view returns (uint256);
function profitMaxUnlockTime() external view returns (uint256);
function lastReport() external view returns (uint256);
function isShutdown() external view returns (bool);
function unlockedShares() external view returns (uint256);
/*//////////////////////////////////////////////////////////////
SETTERS
//////////////////////////////////////////////////////////////*/
function setPendingManagement(address) external;
function acceptManagement() external;
function setKeeper(address _keeper) external;
function setEmergencyAdmin(address _emergencyAdmin) external;
function setPerformanceFee(uint16 _performanceFee) external;
function setPerformanceFeeRecipient(
address _performanceFeeRecipient
) external;
function setProfitMaxUnlockTime(uint256 _profitMaxUnlockTime) external;
function setName(string calldata _newName) external;
function shutdownStrategy() external;
function emergencyWithdraw(uint256 _amount) external;
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
"
},
"lib/openzeppelin-contracts/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
"
},
"lib/openzeppelin-contracts/contracts/interfaces/IERC4626.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20.sol";
import "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*
* _Available since v4.7._
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
"
}
},
"settings": {
"remappings": [
"@openzeppelin/=lib/openzeppelin-contracts/",
"forge-std/=lib/forge-std/src/",
"@tokenized-strategy/=lib/tokenized-strategy/src/",
"@periphery/=lib/tokenized-strategy-periphery/src/",
"@yearn-vaults/=lib/tokenized-strategy-periphery/lib/yearn-vaults-v3/contracts/",
"ds-test/=lib/tokenized-strategy-periphery/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/tokenized-strategy/lib/erc4626-tests/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin/=lib/openzeppelin-contracts/contracts/",
"tokenized-strategy-periphery/=lib/tokenized-strategy-periphery/",
"tokenized-strategy/=lib/tokenized-strategy/",
"yearn-vaults-v3/=lib/tokenized-strategy-periphery/lib/yearn-vaults-v3/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "paris",
"viaIR": false
}
}}
Submitted on: 2025-11-05 22:07:11
Comments
Log in to comment.
No comments yet.