Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"settings": {
"evmVersion": "shanghai",
"optimizer": {
"enabled": true,
"runs": 1000
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"remappings": [
"npm/@chainlink/contracts-ccip@1.6.2/:@chainlink/contracts/=npm/@chainlink/contracts@1.5.0/",
"npm/@chainlink/contracts-ccip@1.6.2/:@chainlink/contracts/=npm/@chainlink/contracts@1.5.0/",
"npm/@chainlink/contracts-ccip@1.6.2/:@chainlink/contracts/=npm/@chainlink/contracts@1.5.0/",
"npm/@chainlink/contracts-ccip@1.6.2/:@chainlink/contracts/=npm/@chainlink/contracts@1.5.0/",
"npm/@chainlink/contracts-ccip@1.6.2/:@openzeppelin/contracts@4.8.3/=npm/@openzeppelin/contracts@4.8.3/",
"npm/@chainlink/contracts-ccip@1.6.2/:@openzeppelin/contracts@4.8.3/=npm/@openzeppelin/contracts@4.8.3/",
"npm/@chainlink/contracts-ccip@1.6.2/:@openzeppelin/contracts@5.0.2/=npm/@openzeppelin/contracts@5.0.2/",
"npm/@chainlink/contracts-ccip@1.6.2/:@openzeppelin/contracts@5.0.2/=npm/@openzeppelin/contracts@5.0.2/",
"npm/@chainlink/contracts-ccip@1.6.2/:@openzeppelin/contracts@5.0.2/=npm/@openzeppelin/contracts@5.0.2/",
"npm/@chainlink/contracts@1.5.0/:@openzeppelin/contracts@4.8.3/=npm/@openzeppelin/contracts@4.8.3/"
]
},
"sources": {
"npm/@chainlink/contracts-ccip@1.6.2/contracts/interfaces/IPool.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Pool} from "../libraries/Pool.sol";
import {IERC165} from "@openzeppelin/contracts@5.0.2/utils/introspection/IERC165.sol";
/// @notice Shared public interface for multiple V1 pool types.
/// Each pool type handles a different child token model e.g. lock/unlock, mint/burn.
interface IPoolV1 is IERC165 {
/// @notice Lock tokens into the pool or burn the tokens.
/// @param lockOrBurnIn Encoded data fields for the processing of tokens on the source chain.
/// @return lockOrBurnOut Encoded data fields for the processing of tokens on the destination chain.
function lockOrBurn(
Pool.LockOrBurnInV1 calldata lockOrBurnIn
) external returns (Pool.LockOrBurnOutV1 memory lockOrBurnOut);
/// @notice Releases or mints tokens to the receiver address.
/// @param releaseOrMintIn All data required to release or mint tokens.
/// @return releaseOrMintOut The amount of tokens released or minted on the local chain, denominated
/// in the local token's decimals.
/// @dev The offRamp asserts that the balanceOf of the receiver has been incremented by exactly the number
/// of tokens that is returned in ReleaseOrMintOutV1.destinationAmount. If the amounts do not match, the tx reverts.
function releaseOrMint(
Pool.ReleaseOrMintInV1 calldata releaseOrMintIn
) external returns (Pool.ReleaseOrMintOutV1 memory);
/// @notice Checks whether a remote chain is supported in the token pool.
/// @param remoteChainSelector The selector of the remote chain.
/// @return true if the given chain is a permissioned remote chain.
function isSupportedChain(
uint64 remoteChainSelector
) external view returns (bool);
/// @notice Returns if the token pool supports the given token.
/// @param token The address of the token.
/// @return true if the token is supported by the pool.
function isSupportedToken(
address token
) external view returns (bool);
}
"
},
"npm/@chainlink/contracts-ccip@1.6.2/contracts/interfaces/IRMN.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice This interface contains the only RMN-related functions that might be used on-chain by other CCIP contracts.
interface IRMN {
/// @notice A Merkle root tagged with the address of the commit store contract it is destined for.
struct TaggedRoot {
address commitStore;
bytes32 root;
}
/// @notice Callers MUST NOT cache the return value as a blessed tagged root could become unblessed.
function isBlessed(
TaggedRoot calldata taggedRoot
) external view returns (bool);
/// @notice Iff there is an active global or legacy curse, this function returns true.
function isCursed() external view returns (bool);
/// @notice Iff there is an active global curse, or an active curse for `subject`, this function returns true.
/// @param subject To check whether a particular chain is cursed, set to bytes16(uint128(chainSelector)).
function isCursed(
bytes16 subject
) external view returns (bool);
}
"
},
"npm/@chainlink/contracts-ccip@1.6.2/contracts/interfaces/IRouter.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Client} from "../libraries/Client.sol";
interface IRouter {
error OnlyOffRamp();
/// @notice Route the message to its intended receiver contract.
/// @param message Client.Any2EVMMessage struct.
/// @param gasForCallExactCheck of params for exec.
/// @param gasLimit set of params for exec.
/// @param receiver set of params for exec.
/// @dev if the receiver is a contracts that signals support for CCIP execution through EIP-165.
/// the contract is called. If not, only tokens are transferred.
/// @return success A boolean value indicating whether the ccip message was received without errors.
/// @return retBytes A bytes array containing return data form CCIP receiver.
/// @return gasUsed the gas used by the external customer call. Does not include any overhead.
function routeMessage(
Client.Any2EVMMessage calldata message,
uint16 gasForCallExactCheck,
uint256 gasLimit,
address receiver
) external returns (bool success, bytes memory retBytes, uint256 gasUsed);
/// @notice Returns the configured onRamp for a specific destination chain.
/// @param destChainSelector The destination chain Id to get the onRamp for.
/// @return onRampAddress The address of the onRamp.
function getOnRamp(
uint64 destChainSelector
) external view returns (address onRampAddress);
/// @notice Return true if the given offRamp is a configured offRamp for the given source chain.
/// @param sourceChainSelector The source chain selector to check.
/// @param offRamp The address of the offRamp to check.
function isOffRamp(uint64 sourceChainSelector, address offRamp) external view returns (bool isOffRamp);
}
"
},
"npm/@chainlink/contracts-ccip@1.6.2/contracts/libraries/Client.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// End consumer library.
library Client {
/// @dev RMN depends on this struct, if changing, please notify the RMN maintainers.
struct EVMTokenAmount {
address token; // token address on the local chain.
uint256 amount; // Amount of tokens.
}
struct Any2EVMMessage {
bytes32 messageId; // MessageId corresponding to ccipSend on source.
uint64 sourceChainSelector; // Source chain selector.
bytes sender; // abi.decode(sender) if coming from an EVM chain.
bytes data; // payload sent in original message.
EVMTokenAmount[] destTokenAmounts; // Tokens and their amounts in their destination chain representation.
}
// If extraArgs is empty bytes, the default is 200k gas limit.
struct EVM2AnyMessage {
bytes receiver; // abi.encode(receiver address) for dest EVM chains.
bytes data; // Data payload.
EVMTokenAmount[] tokenAmounts; // Token transfers.
address feeToken; // Address of feeToken. address(0) means you will send msg.value.
bytes extraArgs; // Populate this with _argsToBytes(EVMExtraArgsV2).
}
// Tag to indicate only a gas limit. Only usable for EVM as destination chain.
bytes4 public constant EVM_EXTRA_ARGS_V1_TAG = 0x97a657c9;
struct EVMExtraArgsV1 {
uint256 gasLimit;
}
function _argsToBytes(
EVMExtraArgsV1 memory extraArgs
) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(EVM_EXTRA_ARGS_V1_TAG, extraArgs);
}
// Tag to indicate a gas limit (or dest chain equivalent processing units) and Out Of Order Execution. This tag is
// available for multiple chain families. If there is no chain family specific tag, this is the default available
// for a chain.
// Note: not available for Solana VM based chains.
bytes4 public constant GENERIC_EXTRA_ARGS_V2_TAG = 0x181dcf10;
/// @param gasLimit: gas limit for the callback on the destination chain.
/// @param allowOutOfOrderExecution: if true, it indicates that the message can be executed in any order relative to
/// other messages from the same sender. This value's default varies by chain. On some chains, a particular value is
/// enforced, meaning if the expected value is not set, the message request will revert.
/// @dev Fully compatible with the previously existing EVMExtraArgsV2.
struct GenericExtraArgsV2 {
uint256 gasLimit;
bool allowOutOfOrderExecution;
}
// Extra args tag for chains that use the Sui VM.
bytes4 public constant SUI_EXTRA_ARGS_V1_TAG = 0x21ea4ca9;
// Extra args tag for chains that use the Solana VM.
bytes4 public constant SVM_EXTRA_ARGS_V1_TAG = 0x1f3b3aba;
struct SVMExtraArgsV1 {
uint32 computeUnits;
uint64 accountIsWritableBitmap;
bool allowOutOfOrderExecution;
bytes32 tokenReceiver;
// Additional accounts needed for execution of CCIP receiver. Must be empty if message.receiver is zero.
// Token transfer related accounts are specified in the token pool lookup table on SVM.
bytes32[] accounts;
}
/// @dev The maximum number of accounts that can be passed in SVMExtraArgs.
uint256 public constant SVM_EXTRA_ARGS_MAX_ACCOUNTS = 64;
/// @dev The expected static payload size of a token transfer when Borsh encoded and submitted to SVM.
/// TokenPool extra data and offchain data sizes are dynamic, and should be accounted for separately.
uint256 public constant SVM_TOKEN_TRANSFER_DATA_OVERHEAD = (4 + 32) // source_pool
+ 32 // token_address
+ 4 // gas_amount
+ 4 // extra_data overhead
+ 32 // amount
+ 32 // size of the token lookup table account
+ 32 // token-related accounts in the lookup table, over-estimated to 32, typically between 11 - 13
+ 32 // token account belonging to the token receiver, e.g ATA, not included in the token lookup table
+ 32 // per-chain token pool config, not included in the token lookup table
+ 32 // per-chain token billing config, not always included in the token lookup table
+ 32; // OffRamp pool signer PDA, not included in the token lookup table
/// @dev Number of overhead accounts needed for message execution on SVM.
/// @dev These are message.receiver, and the OffRamp Signer PDA specific to the receiver.
uint256 public constant SVM_MESSAGING_ACCOUNTS_OVERHEAD = 2;
/// @dev The size of each SVM account address in bytes.
uint256 public constant SVM_ACCOUNT_BYTE_SIZE = 32;
struct SuiExtraArgsV1 {
uint256 gasLimit;
bool allowOutOfOrderExecution;
bytes32 tokenReceiver;
bytes32[] receiverObjectIds;
}
/// @dev The expected static payload size of a token transfer when Borsh encoded and submitted to SUI.
/// TokenPool extra data and offchain data sizes are dynamic, and should be accounted for separately.
uint256 public constant SUI_TOKEN_TRANSFER_DATA_OVERHEAD = (4 + 32) // source_pool
+ 32 // token_address
+ 4 // gas_amount
+ 4 // extra_data overhead
+ 32 // amount
+ 32 // size of the token lookup table account
+ 32 // token-related accounts in the lookup table, over-estimated to 32, typically between 11 - 13
+ 32 // token account belonging to the token receiver, e.g ATA, not included in the token lookup table
+ 32 // per-chain token pool config, not included in the token lookup table
+ 32; // per-chain token billing config, not always included in the token lookup table
/// @dev Number of overhead accounts needed for message execution on SUI.
/// @dev This is the message.receiver.
uint256 public constant SUI_MESSAGING_ACCOUNTS_OVERHEAD = 1;
/// @dev The maximum number of receiver object ids that can be passed in SuiExtraArgs.
uint256 public constant SUI_EXTRA_ARGS_MAX_RECEIVER_OBJECT_IDS = 64;
/// @dev The size of each SUI account address in bytes.
uint256 public constant SUI_ACCOUNT_BYTE_SIZE = 32;
function _argsToBytes(
GenericExtraArgsV2 memory extraArgs
) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(GENERIC_EXTRA_ARGS_V2_TAG, extraArgs);
}
function _svmArgsToBytes(
SVMExtraArgsV1 memory extraArgs
) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(SVM_EXTRA_ARGS_V1_TAG, extraArgs);
}
function _suiArgsToBytes(
SuiExtraArgsV1 memory extraArgs
) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(SUI_EXTRA_ARGS_V1_TAG, extraArgs);
}
/// @notice The CCV struct is used to represent a cross-chain verifier.
struct CCV {
/// @param The ccvAddress is the address of the verifier contract on the source chain
address ccvAddress;
/// @param args The args are the arguments that the verifier contract expects. They are opaque to CCIP and are only
/// used in the CCV.
bytes args;
}
bytes4 public constant GENERIC_EXTRA_ARGS_V3_TAG = 0x302326cb;
struct EVMExtraArgsV3 {
CCV[] requiredCCV;
CCV[] optionalCCV;
uint8 optionalThreshold;
/// @notice The finality config, 0 means the default finality that the CCV considers final. Any non-zero value means
/// a block depth.
uint16 finalityConfig;
address executor;
bytes executorArgs;
bytes tokenArgs;
}
function _argsToBytes(
EVMExtraArgsV3 memory extraArgs
) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(GENERIC_EXTRA_ARGS_V3_TAG, extraArgs);
}
}
"
},
"npm/@chainlink/contracts-ccip@1.6.2/contracts/libraries/Pool.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice This library contains various token pool functions to aid constructing the return data.
library Pool {
// The tag used to signal support for the pool v1 standard.
// bytes4(keccak256("CCIP_POOL_V1"))
bytes4 public constant CCIP_POOL_V1 = 0xaff2afbf;
// The tag used to signal support for the pool v1 standard.
// bytes4(keccak256("CCIP_POOL_V2"))
bytes4 public constant CCIP_POOL_V2 = 0xf208a58f;
// The number of bytes in the return data for a pool v1 releaseOrMint call.
// This should match the size of the ReleaseOrMintOutV1 struct.
uint16 public constant CCIP_POOL_V1_RET_BYTES = 32;
// The default max number of bytes in the return data for a pool v1 lockOrBurn call.
// This data can be used to send information to the destination chain token pool. Can be overwritten
// in the TokenTransferFeeConfig.destBytesOverhead if more data is required.
uint32 public constant CCIP_LOCK_OR_BURN_V1_RET_BYTES = 32;
struct LockOrBurnInV1 {
bytes receiver; // The recipient of the tokens on the destination chain, abi encoded.
uint64 remoteChainSelector; // ─╮ The chain ID of the destination chain.
address originalSender; // ─────╯ The original sender of the tx on the source chain.
uint256 amount; // The amount of tokens to lock or burn, denominated in the source token's decimals.
address localToken; // The address on this chain of the token to lock or burn.
}
struct LockOrBurnOutV1 {
// The address of the destination token, abi encoded in the case of EVM chains.
// This value is UNTRUSTED as any pool owner can return whatever value they want.
bytes destTokenAddress;
// Optional pool data to be transferred to the destination chain. Be default this is capped at
// CCIP_LOCK_OR_BURN_V1_RET_BYTES bytes. If more data is required, the TokenTransferFeeConfig.destBytesOverhead
// has to be set for the specific token.
bytes destPoolData;
}
struct ReleaseOrMintInV1 {
bytes originalSender; // The original sender of the tx on the source chain.
uint64 remoteChainSelector; // ───╮ The chain ID of the source chain.
address receiver; // ─────────────╯ The recipient of the tokens on the destination chain.
uint256 sourceDenominatedAmount; // The amount of tokens to release or mint, denominated in the source token's decimals.
address localToken; // The address on this chain of the token to release or mint.
/// @dev WARNING: sourcePoolAddress should be checked prior to any processing of funds. Make sure it matches the
/// expected pool address for the given remoteChainSelector.
bytes sourcePoolAddress; // The address of the source pool, abi encoded in the case of EVM chains.
bytes sourcePoolData; // The data received from the source pool to process the release or mint.
/// @dev WARNING: offchainTokenData is untrusted data.
bytes offchainTokenData; // The offchain data to process the release or mint.
}
struct ReleaseOrMintOutV1 {
// The number of tokens released or minted on the destination chain, denominated in the local token's decimals.
// This value is expected to be equal to the ReleaseOrMintInV1.amount in the case where the source and destination
// chain have the same number of decimals.
uint256 destinationAmount;
}
}
"
},
"npm/@chainlink/contracts-ccip@1.6.2/contracts/libraries/RateLimiter.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.4;
/// @notice Implements Token Bucket rate limiting.
/// @dev uint128 is safe for rate limiter state.
/// - For USD value rate limiting, it can adequately store USD value in 18 decimals.
/// - For ERC20 token amount rate limiting, all tokens that will be listed will have at most a supply of uint128.max
/// tokens, and it will therefore not overflow the bucket. In exceptional scenarios where tokens consumed may be larger
/// than uint128, e.g. compromised issuer, an enabled RateLimiter will check and revert.
library RateLimiter {
error BucketOverfilled();
error TokenMaxCapacityExceeded(uint256 capacity, uint256 requested, address tokenAddress);
error TokenRateLimitReached(uint256 minWaitInSeconds, uint256 available, address tokenAddress);
error InvalidRateLimitRate(Config rateLimiterConfig);
error DisabledNonZeroRateLimit(Config config);
event ConfigChanged(Config config);
struct TokenBucket {
uint128 tokens; // ────╮ Current number of tokens that are in the bucket.
uint32 lastUpdated; // │ Timestamp in seconds of the last token refill, good for 100+ years.
bool isEnabled; // ────╯ Indication whether the rate limiting is enabled or not.
uint128 capacity; // ──╮ Maximum number of tokens that can be in the bucket.
uint128 rate; // ──────╯ Number of tokens per second that the bucket is refilled.
}
struct Config {
bool isEnabled; // Indication whether the rate limiting should be enabled.
uint128 capacity; // ──╮ Specifies the capacity of the rate limiter.
uint128 rate; // ─────╯ Specifies the rate of the rate limiter.
}
/// @notice _consume removes the given tokens from the pool, lowering the rate tokens allowed to be
/// consumed for subsequent calls.
/// @param requestTokens The total tokens to be consumed from the bucket.
/// @param tokenAddress The token to consume capacity for, use 0x0 to indicate aggregate value capacity.
/// @dev Reverts when requestTokens exceeds bucket capacity or available tokens in the bucket.
/// @dev emits removal of requestTokens if requestTokens is > 0.
function _consume(TokenBucket storage s_bucket, uint256 requestTokens, address tokenAddress) internal {
// If there is no value to remove or rate limiting is turned off, skip this step to reduce gas usage.
if (!s_bucket.isEnabled || requestTokens == 0) {
return;
}
uint256 tokens = s_bucket.tokens;
uint256 capacity = s_bucket.capacity;
uint256 timeDiff = block.timestamp - s_bucket.lastUpdated;
if (timeDiff != 0) {
if (tokens > capacity) revert BucketOverfilled();
// Refill tokens when arriving at a new block time.
tokens = _calculateRefill(capacity, tokens, timeDiff, s_bucket.rate);
s_bucket.lastUpdated = uint32(block.timestamp);
}
if (capacity < requestTokens) {
revert TokenMaxCapacityExceeded(capacity, requestTokens, tokenAddress);
}
if (tokens < requestTokens) {
uint256 rate = s_bucket.rate;
// Wait required until the bucket is refilled enough to accept this value, round up to next higher second.
// Consume is not guaranteed to succeed after wait time passes if there is competing traffic.
// This acts as a lower bound of wait time.
uint256 minWaitInSeconds = ((requestTokens - tokens) + (rate - 1)) / rate;
revert TokenRateLimitReached(minWaitInSeconds, tokens, tokenAddress);
}
tokens -= requestTokens;
// Downcast is safe here, as tokens is not larger than capacity.
s_bucket.tokens = uint128(tokens);
}
/// @notice Gets the token bucket with its values for the block it was requested at.
/// @return The token bucket.
function _currentTokenBucketState(
TokenBucket memory bucket
) internal view returns (TokenBucket memory) {
// We update the bucket to reflect the status at the exact time of the call. This means we might need to refill a
// part of the bucket based on the time that has passed since the last update.
bucket.tokens =
uint128(_calculateRefill(bucket.capacity, bucket.tokens, block.timestamp - bucket.lastUpdated, bucket.rate));
bucket.lastUpdated = uint32(block.timestamp);
return bucket;
}
/// @notice Sets the rate limited config.
/// @param s_bucket The token bucket.
/// @param config The new config.
function _setTokenBucketConfig(TokenBucket storage s_bucket, Config memory config) internal {
// First update the bucket to make sure the proper rate is used for all the time up until the config change.
uint256 timeDiff = block.timestamp - s_bucket.lastUpdated;
if (timeDiff != 0) {
s_bucket.tokens = uint128(_calculateRefill(s_bucket.capacity, s_bucket.tokens, timeDiff, s_bucket.rate));
s_bucket.lastUpdated = uint32(block.timestamp);
}
s_bucket.tokens = uint128(_min(config.capacity, s_bucket.tokens));
s_bucket.isEnabled = config.isEnabled;
s_bucket.capacity = config.capacity;
s_bucket.rate = config.rate;
emit ConfigChanged(config);
}
/// @notice Validates the token bucket config.
function _validateTokenBucketConfig(
Config memory config
) internal pure {
if (config.isEnabled) {
if (config.rate > config.capacity) {
revert InvalidRateLimitRate(config);
}
} else {
if (config.rate != 0 || config.capacity != 0) {
revert DisabledNonZeroRateLimit(config);
}
}
}
/// @notice Calculate refilled tokens.
/// @param capacity bucket capacity.
/// @param tokens current bucket tokens.
/// @param timeDiff block time difference since last refill.
/// @param rate bucket refill rate.
/// @return the value of tokens after refill.
function _calculateRefill(
uint256 capacity,
uint256 tokens,
uint256 timeDiff,
uint256 rate
) private pure returns (uint256) {
return _min(capacity, tokens + timeDiff * rate);
}
/// @notice Return the smallest of two integers.
/// @param a first int.
/// @param b second int.
/// @return smallest.
function _min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
}
"
},
"npm/@chainlink/contracts-ccip@1.6.2/contracts/pools/BurnMintTokenPool.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.24;
import {ITypeAndVersion} from "@chainlink/contracts/src/v0.8/shared/interfaces/ITypeAndVersion.sol";
import {IBurnMintERC20} from "@chainlink/contracts/src/v0.8/shared/token/ERC20/IBurnMintERC20.sol";
import {BurnMintTokenPoolAbstract} from "./BurnMintTokenPoolAbstract.sol";
import {TokenPool} from "./TokenPool.sol";
/// @notice This pool mints and burns a 3rd-party token.
/// @dev Pool whitelisting mode is set in the constructor and cannot be modified later.
/// It either accepts any address as originalSender, or only accepts whitelisted originalSender.
/// The only way to change whitelisting mode is to deploy a new pool.
/// If that is expected, please make sure the token's burner/minter roles are adjustable.
/// @dev This contract is a variant of BurnMintTokenPool that uses `burn(amount)`.
contract BurnMintTokenPool is BurnMintTokenPoolAbstract, ITypeAndVersion {
string public constant override typeAndVersion = "BurnMintTokenPool 1.6.3-dev";
constructor(
IBurnMintERC20 token,
uint8 localTokenDecimals,
address[] memory allowlist,
address rmnProxy,
address router
) TokenPool(token, localTokenDecimals, allowlist, rmnProxy, router) {}
/// @inheritdoc TokenPool
function _lockOrBurn(
uint256 amount
) internal virtual override {
IBurnMintERC20(address(i_token)).burn(amount);
}
}
"
},
"npm/@chainlink/contracts-ccip@1.6.2/contracts/pools/BurnMintTokenPoolAbstract.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.24;
import {IBurnMintERC20} from "@chainlink/contracts/src/v0.8/shared/token/ERC20/IBurnMintERC20.sol";
import {TokenPool} from "./TokenPool.sol";
abstract contract BurnMintTokenPoolAbstract is TokenPool {
/// @notice Contains the specific release or mint token logic for a pool.
/// @dev overriding this method allows us to create pools with different release/mint signatures
/// without duplicating the underlying logic.
function _releaseOrMint(address receiver, uint256 amount) internal virtual override {
IBurnMintERC20(address(i_token)).mint(receiver, amount);
}
}
"
},
"npm/@chainlink/contracts-ccip@1.6.2/contracts/pools/TokenPool.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.24;
import {IPoolV1} from "../interfaces/IPool.sol";
import {IRMN} from "../interfaces/IRMN.sol";
import {IRouter} from "../interfaces/IRouter.sol";
import {Pool} from "../libraries/Pool.sol";
import {RateLimiter} from "../libraries/RateLimiter.sol";
import {Ownable2StepMsgSender} from "@chainlink/contracts/src/v0.8/shared/access/Ownable2StepMsgSender.sol";
import {IERC20} from "@openzeppelin/contracts@4.8.3/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts@4.8.3/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC165} from "@openzeppelin/contracts@5.0.2/utils/introspection/IERC165.sol";
import {EnumerableSet} from "@openzeppelin/contracts@5.0.2/utils/structs/EnumerableSet.sol";
/// @notice Base abstract class with common functions for all token pools.
/// A token pool serves as isolated place for holding tokens and token specific logic
/// that may execute as tokens move across the bridge.
/// @dev This pool supports different decimals on different chains but using this feature could impact the total number
/// of tokens in circulation. Since all of the tokens are locked/burned on the source, and a rounded amount is
/// minted/released on the destination, the number of tokens minted/released could be less than the number of tokens
/// burned/locked. This is because the source chain does not know about the destination token decimals. This is not a
/// problem if the decimals are the same on both chains.
///
/// Example:
/// Assume there is a token with 6 decimals on chain A and 3 decimals on chain B.
/// - 1.234567 tokens are burned on chain A.
/// - 1.234 tokens are minted on chain B.
/// When sending the 1.234 tokens back to chain A, you will receive 1.234000 tokens on chain A, effectively losing
/// 0.000567 tokens.
/// In the case of a burnMint pool on chain A, these funds are burned in the pool on chain A.
/// In the case of a lockRelease pool on chain A, these funds accumulate in the pool on chain A.
abstract contract TokenPool is IPoolV1, Ownable2StepMsgSender {
using EnumerableSet for EnumerableSet.Bytes32Set;
using EnumerableSet for EnumerableSet.AddressSet;
using EnumerableSet for EnumerableSet.UintSet;
using RateLimiter for RateLimiter.TokenBucket;
error CallerIsNotARampOnRouter(address caller);
error ZeroAddressInvalid();
error SenderNotAllowed(address sender);
error AllowListNotEnabled();
error NonExistentChain(uint64 remoteChainSelector);
error ChainNotAllowed(uint64 remoteChainSelector);
error CursedByRMN();
error ChainAlreadyExists(uint64 chainSelector);
error InvalidSourcePoolAddress(bytes sourcePoolAddress);
error InvalidToken(address token);
error Unauthorized(address caller);
error PoolAlreadyAdded(uint64 remoteChainSelector, bytes remotePoolAddress);
error InvalidRemotePoolForChain(uint64 remoteChainSelector, bytes remotePoolAddress);
error InvalidRemoteChainDecimals(bytes sourcePoolData);
error MismatchedArrayLengths();
error OverflowDetected(uint8 remoteDecimals, uint8 localDecimals, uint256 remoteAmount);
error InvalidDecimalArgs(uint8 expected, uint8 actual);
event LockedOrBurned(uint64 indexed remoteChainSelector, address token, address sender, uint256 amount);
event ReleasedOrMinted(
uint64 indexed remoteChainSelector, address token, address sender, address recipient, uint256 amount
);
event ChainAdded(
uint64 remoteChainSelector,
bytes remoteToken,
RateLimiter.Config outboundRateLimiterConfig,
RateLimiter.Config inboundRateLimiterConfig
);
event ChainConfigured(
uint64 remoteChainSelector,
RateLimiter.Config outboundRateLimiterConfig,
RateLimiter.Config inboundRateLimiterConfig
);
event ChainRemoved(uint64 remoteChainSelector);
event RemotePoolAdded(uint64 indexed remoteChainSelector, bytes remotePoolAddress);
event RemotePoolRemoved(uint64 indexed remoteChainSelector, bytes remotePoolAddress);
event AllowListAdd(address sender);
event AllowListRemove(address sender);
event RouterUpdated(address oldRouter, address newRouter);
event RateLimitAdminSet(address rateLimitAdmin);
event OutboundRateLimitConsumed(uint64 indexed remoteChainSelector, address token, uint256 amount);
event InboundRateLimitConsumed(uint64 indexed remoteChainSelector, address token, uint256 amount);
struct ChainUpdate {
uint64 remoteChainSelector; // Remote chain selector
bytes[] remotePoolAddresses; // Address of the remote pool, ABI encoded in the case of a remote EVM chain.
bytes remoteTokenAddress; // Address of the remote token, ABI encoded in the case of a remote EVM chain.
RateLimiter.Config outboundRateLimiterConfig; // Outbound rate limited config, meaning the rate limits for all of the onRamps for the given chain
RateLimiter.Config inboundRateLimiterConfig; // Inbound rate limited config, meaning the rate limits for all of the offRamps for the given chain
}
struct RemoteChainConfig {
RateLimiter.TokenBucket outboundRateLimiterConfig; // Outbound rate limited config, meaning the rate limits for all of the onRamps for the given chain
RateLimiter.TokenBucket inboundRateLimiterConfig; // Inbound rate limited config, meaning the rate limits for all of the offRamps for the given chain
bytes remoteTokenAddress; // Address of the remote token, ABI encoded in the case of a remote EVM chain.
EnumerableSet.Bytes32Set remotePools; // Set of remote pool hashes, ABI encoded in the case of a remote EVM chain.
}
/// @dev The bridgeable token that is managed by this pool. Pools could support multiple tokens at the same time if
/// required, but this implementation only supports one token.
IERC20 internal immutable i_token;
/// @dev The number of decimals of the token managed by this pool.
uint8 internal immutable i_tokenDecimals;
/// @dev The address of the RMN proxy
address internal immutable i_rmnProxy;
/// @dev The immutable flag that indicates if the pool is access-controlled.
bool internal immutable i_allowlistEnabled;
/// @dev A set of addresses allowed to trigger lockOrBurn as original senders.
/// Only takes effect if i_allowlistEnabled is true.
/// This can be used to ensure only token-issuer specified addresses can move tokens.
EnumerableSet.AddressSet internal s_allowlist;
/// @dev The address of the router
IRouter internal s_router;
/// @dev A set of allowed chain selectors. We want the allowlist to be enumerable to
/// be able to quickly determine (without parsing logs) who can access the pool.
/// @dev The chain selectors are in uint256 format because of the EnumerableSet implementation.
EnumerableSet.UintSet internal s_remoteChainSelectors;
mapping(uint64 remoteChainSelector => RemoteChainConfig) internal s_remoteChainConfigs;
/// @notice A mapping of hashed pool addresses to their unhashed form. This is used to be able to find the actually
/// configured pools and not just their hashed versions.
mapping(bytes32 poolAddressHash => bytes poolAddress) internal s_remotePoolAddresses;
/// @notice The address of the rate limiter admin.
/// @dev Can be address(0) if none is configured.
address internal s_rateLimitAdmin;
constructor(IERC20 token, uint8 localTokenDecimals, address[] memory allowlist, address rmnProxy, address router) {
if (address(token) == address(0) || router == address(0) || rmnProxy == address(0)) {
revert ZeroAddressInvalid();
}
i_token = token;
i_rmnProxy = rmnProxy;
try IERC20Metadata(address(token)).decimals() returns (uint8 actualTokenDecimals) {
if (localTokenDecimals != actualTokenDecimals) {
revert InvalidDecimalArgs(localTokenDecimals, actualTokenDecimals);
}
} catch {
// The decimals function doesn't exist, which is possible since it's optional in the ERC20 spec. We skip the check and
// assume the supplied token decimals are correct.
}
i_tokenDecimals = localTokenDecimals;
s_router = IRouter(router);
// Pool can be set as permissioned or permissionless at deployment time only to save hot-path gas.
i_allowlistEnabled = allowlist.length > 0;
if (i_allowlistEnabled) {
_applyAllowListUpdates(new address[](0), allowlist);
}
}
/// @inheritdoc IPoolV1
function isSupportedToken(
address token
) public view virtual returns (bool) {
return token == address(i_token);
}
/// @notice Gets the IERC20 token that this pool can lock or burn.
/// @return token The IERC20 token representation.
function getToken() public view returns (IERC20 token) {
return i_token;
}
/// @notice Get RMN proxy address
/// @return rmnProxy Address of RMN proxy
function getRmnProxy() public view returns (address rmnProxy) {
return i_rmnProxy;
}
/// @notice Gets the pool's Router
/// @return router The pool's Router
function getRouter() public view virtual returns (address router) {
return address(s_router);
}
/// @notice Sets the pool's Router
/// @param newRouter The new Router
function setRouter(
address newRouter
) public onlyOwner {
if (newRouter == address(0)) revert ZeroAddressInvalid();
address oldRouter = address(s_router);
s_router = IRouter(newRouter);
emit RouterUpdated(oldRouter, newRouter);
}
/// @notice Signals which version of the pool interface is supported
function supportsInterface(
bytes4 interfaceId
) public pure virtual override returns (bool) {
return interfaceId == Pool.CCIP_POOL_V1 || interfaceId == type(IPoolV1).interfaceId
|| interfaceId == type(IERC165).interfaceId;
}
// ================================================================
// │ Lock or Burn │
// ================================================================
/// @notice Burn the token in the pool
/// @dev The _validateLockOrBurn check is an essential security check
function lockOrBurn(
Pool.LockOrBurnInV1 calldata lockOrBurnIn
) public virtual override returns (Pool.LockOrBurnOutV1 memory) {
_validateLockOrBurn(lockOrBurnIn);
_lockOrBurn(lockOrBurnIn.amount);
emit LockedOrBurned({
remoteChainSelector: lockOrBurnIn.remoteChainSelector,
token: address(i_token),
sender: msg.sender,
amount: lockOrBurnIn.amount
});
return Pool.LockOrBurnOutV1({
destTokenAddress: getRemoteToken(lockOrBurnIn.remoteChainSelector),
destPoolData: _encodeLocalDecimals()
});
}
/// @notice Contains the specific lock or burn token logic for a pool.
/// @dev overriding this method allows us to create pools with different lock/burn signatures
/// without duplicating the underlying logic.
function _lockOrBurn(
uint256 amount
) internal virtual {}
// ================================================================
// │ Release or Mint │
// ================================================================
/// @notice Mint tokens from the pool to the recipient
/// @dev The _validateReleaseOrMint check is an essential security check
function releaseOrMint(
Pool.ReleaseOrMintInV1 calldata releaseOrMintIn
) public virtual override returns (Pool.ReleaseOrMintOutV1 memory) {
// Calculate the local amount
uint256 localAmount = _calculateLocalAmount(
releaseOrMintIn.sourceDenominatedAmount, _parseRemoteDecimals(releaseOrMintIn.sourcePoolData)
);
_validateReleaseOrMint(releaseOrMintIn, localAmount);
// Mint to the receiver
_releaseOrMint(releaseOrMintIn.receiver, localAmount);
emit ReleasedOrMinted({
remoteChainSelector: releaseOrMintIn.remoteChainSelector,
token: address(i_token),
sender: msg.sender,
recipient: releaseOrMintIn.receiver,
amount: localAmount
});
return Pool.ReleaseOrMintOutV1({destinationAmount: localAmount});
}
/// @notice Contains the specific release or mint token logic for a pool.
/// @dev overriding this method allows us to create pools with different release/mint signatures
/// without duplicating the underlying logic.
function _releaseOrMint(address receiver, uint256 amount) internal virtual {}
// ================================================================
// │ Validation │
// ================================================================
/// @notice Validates the lock or burn input for correctness on
/// - token to be locked or burned
/// - RMN curse status
/// - allowlist status
/// - if the sender is a valid onRamp
/// - rate limit status
/// @param lockOrBurnIn The input to validate.
/// @dev This function should always be called before executing a lock or burn. Not doing so would allow
/// for various exploits.
function _validateLockOrBurn(
Pool.LockOrBurnInV1 calldata lockOrBurnIn
) internal {
if (!isSupportedToken(lockOrBurnIn.localToken)) revert InvalidToken(lockOrBurnIn.localToken);
if (IRMN(i_rmnProxy).isCursed(bytes16(uint128(lockOrBurnIn.remoteChainSelector)))) revert CursedByRMN();
_checkAllowList(lockOrBurnIn.originalSender);
_onlyOnRamp(lockOrBurnIn.remoteChainSelector);
_consumeOutboundRateLimit(lockOrBurnIn.remoteChainSelector, lockOrBurnIn.amount);
}
/// @notice Validates the release or mint input for correctness on
/// - token to be released or minted
/// - RMN curse status
/// - if the sender is a valid offRamp
/// - if the source pool is valid
/// - rate limit status
/// @param releaseOrMintIn The input to validate.
/// @param localAmount The local amount to be released or minted.
/// @dev This function should always be called before executing a release or mint. Not doing so would allow
/// for various exploits.
function _validateReleaseOrMint(Pool.ReleaseOrMintInV1 calldata releaseOrMintIn, uint256 localAmount) internal {
if (!isSupportedToken(releaseOrMintIn.localToken)) revert InvalidToken(releaseOrMintIn.localToken);
if (IRMN(i_rmnProxy).isCursed(bytes16(uint128(releaseOrMintIn.remoteChainSelector)))) revert CursedByRMN();
_onlyOffRamp(releaseOrMintIn.remoteChainSelector);
// Validates that the source pool address is configured on this pool.
if (!isRemotePool(releaseOrMintIn.remoteChainSelector, releaseOrMintIn.sourcePoolAddress)) {
revert InvalidSourcePoolAddress(releaseOrMintIn.sourcePoolAddress);
}
_consumeInboundRateLimit(releaseOrMintIn.remoteChainSelector, localAmount);
}
// ================================================================
// │ Token decimals │
// ================================================================
/// @notice Gets the IERC20 token decimals on the local chain.
function getTokenDecimals() public view virtual returns (uint8 decimals) {
return i_tokenDecimals;
}
function _encodeLocalDecimals() internal view virtual returns (bytes memory) {
return abi.encode(i_tokenDecimals);
}
function _parseRemoteDecimals(
bytes memory sourcePoolData
) internal view virtual returns (uint8) {
// Fallback to the local token decimals if the source pool data is empty. This allows for backwards compatibility.
if (sourcePoolData.length == 0) {
return i_tokenDecimals;
}
if (sourcePoolData.length != 32) {
revert InvalidRemoteChainDecimals(sourcePoolData);
}
uint256 remoteDecimals = abi.decode(sourcePoolData, (uint256));
if (remoteDecimals > type(uint8).max) {
revert InvalidRemoteChainDecimals(sourcePoolData);
}
return uint8(remoteDecimals);
}
/// @notice Calculates the local amount based on the remote amount and decimals.
/// @param remoteAmount The amount on the remote chain.
/// @param remoteDecimals The decimals of the token on the remote chain.
/// @return The local amount.
/// @dev This function protects against overflows. If there is a transaction that hits the overflow check, it is
/// probably incorrect as that means the amount cannot be represented on this chain. If the local decimals have been
/// wrongly configured, the token issuer could redeploy the pool with the correct decimals and manually re-execute the
/// CCIP tx to fix the issue.
function _calculateLocalAmount(uint256 remoteAmount, uint8 remoteDecimals) internal view virtual returns (uint256) {
if (remoteDecimals == i_tokenDecimals) {
return remoteAmount;
}
if (remoteDecimals > i_tokenDecimals) {
uint8 decimalsDiff = remoteDecimals - i_tokenDecimals;
if (decimalsDiff > 77) {
// This is a safety check to prevent overflow in the next calculation.
revert OverflowDetected(remoteDecimals, i_tokenDecimals, remoteAmount);
}
// Solidity rounds down so there is no risk of minting more tokens than the remote chain sent.
return remoteAmount / (10 ** decimalsDiff);
}
// This is a safety check to prevent overflow in the next calculation.
// More than 77 would never fit in a uint256 and would cause an overflow. We also check if the resulting amount
// would overflow.
uint8 diffDecimals = i_tokenDecimals - remoteDecimals;
if (diffDecimals > 77 || remoteAmount > type(uint256).max / (10 ** diffDecimals)) {
revert OverflowDetected(remoteDecimals, i_tokenDecimals, remoteAmount);
}
return remoteAmount * (10 ** diffDecimals);
}
// ================================================================
// │ Chain permissions │
// ================================================================
/// @notice Gets the pool address on the remote chain.
/// @param remoteChainSelector Remote chain selector.
/// @dev To support non-evm chains, this value is encoded into bytes
function getRemotePools(
uint64 remoteChainSelector
) public view returns (bytes[] memory) {
bytes32[] memory remotePoolHashes = s_remoteChainConfigs[remoteChainSelector].remotePools.values();
bytes[] memory remotePools = new bytes[](remotePoolHashes.length);
for (uint256 i = 0; i < remotePoolHashes.length; ++i) {
remotePools[i] = s_remotePoolAddresses[remotePoolHashes[i]];
}
return remotePools;
}
/// @notice Checks if the pool address is configured on the remote chain.
/// @param remoteChainSelector Remote chain selector.
/// @param remotePoolAddress The address of the remote pool.
function isRemotePool(uint64 remoteChainSelector, bytes memory remotePoolAddress) public view returns (bool) {
return s_remoteChainConfigs[remoteChainSelector].remotePools.contains(keccak256(remotePoolAddress));
}
/// @notice Gets the token address on the remote chain.
/// @param remoteChainSelector Remote chain selector.
/// @dev To support non-evm chains, this value is encoded into bytes
function getRemoteToken(
uint64 remoteChainSelector
) public view returns (bytes memory) {
return s_remoteChainConfigs[remoteChainSelector].remoteTokenAddress;
}
/// @notice Adds a remote pool for a given chain selector. This could be due to a pool being upgraded on the remote
/// chain. We don't simply want to replace the old pool as there could still be valid inflight messages from the old
/// pool. This function allows for multiple pools to be added for a single chain selector.
/// @param remoteChainSelector The remote chain selector for which the remote pool address is being added.
/// @param remotePoolAddress The address of the new remote pool.
function addRemotePool(uint64 remoteChainSelector, bytes calldata remotePoolAddress) external onlyOwner {
if (!isSupportedChain(remoteChainSelector)) revert NonExistentChain(remoteChainSelector);
_setRemotePool(remoteChainSelector, remotePoolAddress);
}
/// @notice Removes the remote pool address for a given chain selector.
/// @dev All inflight txs from the remote pool will be rejected after it is removed. To ensure no loss of funds, there
/// should be no inflight txs from the given pool.
function removeRemotePool(uint64 remoteChainSelector, bytes calldata remotePoolAddress) external onlyOwner {
if (!isSupportedChain(remoteChainSelector)) revert NonExistentChain(remoteChainSelector);
if (!s_remoteChainConfigs[remoteChainSelector].remotePools.remove(keccak256(remotePoolAddress))) {
revert InvalidRemotePoolForChain(remoteChainSelector, remotePoolAddress);
}
emit RemotePoolRemoved(remoteChainSelector, remotePoolAddress);
}
/// @inheritdoc IPoolV1
function isSupportedChain(
uint64 remoteChainSelector
) public view returns (bool) {
return s_remoteChainSelectors.contains(remoteChainSelector);
}
/// @notice Get list of allowed chains
/// @return list of chains.
function getSupportedChains() public view returns (uint64[] memory) {
uint256[] memory uint256ChainSelectors = s_remoteChainSelectors.values();
uint64[] memory chainSelectors = new uint64[](uint256ChainSelectors.length);
for (uint256 i = 0; i < uint256ChainSelectors.length; ++i) {
chainSelectors[i] = uint64(uint256ChainSelectors[i]);
}
return chainSelectors;
}
/// @notice Sets the permissions for a list of chains selectors. Actual senders for these chains
/// need to be allowed on the Router to interact with this pool.
/// @param remoteChainSelectorsToRemove A list of chain selectors to remove.
/// @param chainsToAdd A list of chains and their new permission status & rate limits. Rate limits
/// are only used when the chain is being added through `allowed` being true.
/// @dev Only callable by the owner
function applyChainUpdates(
uint64[] calldata remoteChainSelectorsToRemove,
ChainUpdate[] calldata chainsToAdd
) external virtual onlyOwner {
for (uint256 i = 0; i < remoteChainSelectorsToRemove.length; ++i) {
uint64 remoteChainSelectorToRemove = remoteChainSelectorsToRemove[i];
// If the chain doesn't exist, revert
if (!s_remoteChainSelectors.remove(remoteChainSelectorToRemove)) {
revert NonExistentChain(remoteChainSelectorToRemove);
}
// Remove all remote pool hashes for the chain
bytes32[] memory remotePools = s_remoteChainConfigs[remoteChainSelectorToRemove].remotePools.values();
for (uint256 j = 0; j < remotePools.length; ++j) {
s_remoteChainConfigs[remoteChainSelectorToRemove].remotePools.remove(remotePools[j]);
}
delete s_remoteChainConfigs[remoteChainSelectorToRemove];
emit ChainRemoved(remoteChainSelectorToRemove);
}
for (uint256 i = 0; i < chainsToAdd.length; ++i) {
ChainUpdate memory newChain = chainsToAdd[i];
RateLimiter._validateTokenBucketConfig(newChain.outboundRateLimiterConfig);
RateLimiter._validateTokenBucketConfig(newChain.inboundRateLimiterConfig);
if (newChain.remoteTokenAddress.length == 0) {
revert ZeroAddressInvalid();
}
// If the chain already exists, revert
if (!s_remoteChainSelectors.add(newChain.remoteChainSelector)) {
revert ChainAlreadyExists(newChain.remoteChainSelector);
}
RemoteChainConfig storage remoteChainConfig = s_remoteChainConfigs[newChain.remoteChainSelector];
remoteChainConfig.outboundRateLimiterConfig = RateLimiter.TokenBucket({
rate: newChain.outboundRateLimiterConfig.rate,
capacity: newChain.outboundRateLimiterConfig.capacity,
tokens: newChain.outboundRateLimiterConfig.capacity,
lastUpdated: uint32(block.timestamp),
isEnabled: newChain.outboundRateLimiterConfig.isEnabled
});
remoteChainConfig.inboundRateLimiterConfig = RateLimiter.TokenBucket({
rate: newChain.inboundRateLimiterConfig.rate,
capacity: newChain.inboundRateLimiterConfig.capacity,
tokens: newChain.inboundRateLimiterConfig.capacity,
lastUpdated: uint32(block.timestamp),
isEnabled: newChain.inboundRateLimiterConfig.isEnabled
});
remoteChainConfig.remoteTokenAddress = newChain.remoteTokenAddress;
for (uint256 j = 0; j < newChain.remotePoolAddresses.length; ++j) {
_setRemotePool(newChain.remoteChainSelector, newChain.remotePoolAddresses[j]);
}
emit ChainAdded(
newChain.remoteChainSelector,
newChain.remoteTokenAddress,
newChain.outboundRateLimiterConfig,
newChain.inboundRateLimiterConfig
);
}
}
/// @notice Adds a pool address to the allowed remote token pools for a particular chain.
/// @param remoteChainSelector The remote chain selector for which the remote pool address is being added.
/// @param remotePoolAddress The address of the new remote pool.
function _setRemotePool(uint64 remoteChainSelector, bytes memory remotePoolAddress) internal {
if (remotePoolAddress.length == 0) {
revert ZeroAddressInvalid();
}
bytes32 poolHash = keccak256(remotePoolAddress);
// Check if the pool already exists.
if (!s_remoteChainConfigs[remoteChainSelector].remotePools.add(poolHash)) {
revert PoolAlreadyAdded(remoteChainSelector, remotePoolAddress);
}
// Add the pool to the mapping to be able to un-hash it later.
s_remotePoolAddresses[poolHash] = remotePoolAddress;
emit RemotePoolAdded(remoteChainSelector, remotePoolAddress);
}
// ================================================================
// │ Rate limiting │
// ================================================================
/// @dev The inbound rate limits should be slightly higher than the outbound rate limits. This is because many chains
/// finalize blocks in batches. CCIP also commits messages in batches: the commit plugin bundles multiple messages in
/// a single merkle root.
/// Imagine the following scenario.
/// - Chain A has an inbound and outbound rate limit of 100 tokens capacity and 1 token per second refill rate.
/// - Chain B has an inbound and outbound rate limit of 100 tokens capacity and 1 token per second refill rate.
///
/// At time 0:
/// - Chain A sends 100 tokens to Chain B.
/// At time 5:
/// - Chain A sends 5 tokens to Chain B.
/// At time 6:
/// The epoch that contains blocks [0-5] is finalized.
/// Both transactions will be included in the same merkle root and become executable at the same time. This means
/// the token pool on chain B requires a capacity of 105 to successfully execute both messages at the same time.
/// The exact additional capacity required depends on the refill rate and the size of the source chain epochs and the
/// CCIP round time. For simplicity, a 5-10% buffer should be sufficient in most cases.
/// @notice Sets the rate limiter admin address.
/// @dev Only callable by the owner.
/// @param rateLimitAdmin The new rate limiter admin address.
function setRateLimitAdmin(
address rateLimitAdmin
) external onlyOwner {
s_rateLimitAdmin = rateLimitAdmin;
emit RateLimitAdminSet(rateLimitAdmin);
}
/// @notice Gets the rate limiter admin address.
function getRateLimitAdmin() external view returns (address) {
return s_rateLimitAdmin;
}
/// @notice Consumes outbound rate limiting capacity in this pool
function _consumeOutboundRateLimit(uint64 remoteChainSelector, uint256 amount) internal {
s_remoteChainConfigs[remoteChainSelector].outboundRateLimiterConfig._consume(amount, address(i_token));
emit OutboundRateLimitConsumed({token: address(i_token), remoteChainSelector: remoteChainSelector, amount: amount});
}
/// @notice Consumes inbound rate limiting capacity in this pool
function _consumeInboundRateLimit(uint64 remoteChainSelector, uint256 amount) internal {
s_remoteChainConfigs[remoteChainSelector].inboundRateLimiterConfig._consume(amount, address(i_token));
emit InboundRateLimitConsumed({token: address(i_token), remoteChainSelector: remoteChainSelector, amount: amount});
}
/// @notice Gets the token bucket with its values for the block it was requested at.
/// @return The token bucket.
function getCurrentOutboundRateLimiterState(
uint64 remoteChainSelector
) external view returns (RateLimiter.TokenBucket memory) {
return s_remoteChainConfigs[remoteChainSelector].outboundRateLimiterConfig._currentTokenBucketState();
}
/// @notice Gets the token bucket with its values for the block it was requested at.
/// @return The token bucket.
function getCurrentInboundRateLimiterState(
uint64 remoteChainSelector
) external view returns (RateLimiter.TokenBucket memory) {
return s_remoteChainConfigs[remoteChainSelector].inboundRateLimiterConfig._currentTokenBucketState();
}
/// @notice Sets multiple chain rate limiter configs.
/// @param remoteChainSelectors The remote chain selector for which the rate limits apply.
/// @param outboundConfigs The new outbound rate limiter config, meaning the onRamp rate limits for the given chain.
/// @param inboundConfigs The new inbound rate limiter config, meaning the offRamp rate limits for the given chain.
function setChainRateLimiterConfigs(
uint64[] calldata remoteChainSelectors,
RateLimiter.Config[] calldata outboundConfigs,
RateLimiter.Config[] calldata inboundConfigs
) external {
if (msg.sender != s_rateLimitAdmin && msg.sender != owner()) revert Unauthorized(msg.sender);
if (remoteChainSelectors.length != outboundConfigs.length || remoteChainSelectors.length != inboundConfigs.length) {
revert MismatchedArrayLengths();
}
for (uint256 i = 0; i < remoteChainSelectors.length; ++i) {
_setRateLimitConfig(remoteChainSelectors[i], outboundConfigs[i], inboundConfigs[i]);
}
}
/// @notice Sets the chain rate limiter config.
/// @param remoteChainSelector The remote chain selector for which the rate limits apply.
/// @param outboundConfig The new outbound rate limiter config, meaning the onRamp rate limits for the given chain.
/// @param inboundConfig The new inbound rate limiter config, meaning the offRamp rate limits for the given chain.
function setChainRateLimiterConfig(
uint64 remoteChainSelector,
RateLimiter.Config memory outboundConfig,
RateLimiter.Config memory inboundConfig
) external {
if (msg.sender != s_rateLimitAdmin && msg.sender != owner()) revert Unauthorized(msg.sender);
_setRateLimitConfig(remoteChainSelector, outboundConfig, inboundConfig);
}
function _setRateLimitConfig(
uint64 remoteChainSelector,
RateLimiter.Config memory outboundConfig,
RateLimiter.Config memory inboundConfig
) internal {
if (!isSupportedChain(remoteChainSelector)) revert NonExistentChain(remoteChainSelector);
RateLimiter._validateTokenBucketConfig(outboundConfig);
s_remoteChainConfigs[remoteChainSelector].outboundRateLimiterConfig._setTokenBucketConfig(outboundConfig);
RateLimiter._validateTokenBucketConfig(inboundConfig);
s_remoteChainConfigs[remoteChainSelector].inboundRateLimiterConfig._setTokenBucketConfig(inboundConfig);
emit ChainConfigured(remoteChainSelector, outboundConfig, inboundConfig);
}
// ================================================================
// │ Access │
// ================================================================
/// @notice Checks whether remote chain selector is configured on this contract, and if the msg.sender
/// is a permissioned onRamp for the given chain on the Router.
/// @dev This function is marked virtual as other token pools may inherit from this contract, but do
/// not receive calls from the ramps directly, instead receiving them from a proxy contract. In that
/// situation this function must be overridden and the ramp-check removed and replaced with a different
/// access-control scheme.
function _onlyOnRamp(
uint64 remoteChainSelector
) internal view virtual {
if (!isSupportedChain(remoteChainSelector)) revert ChainNotAllowed(remoteChainSelector);
if (!(msg.sender == s_router.getOnRamp(remoteChainSelector))) revert CallerIsNotARampOnRouter(msg.sender);
}
/// @notice Checks whether remote chain selector is configured on this contract, and if the msg.sender
/// is a permissioned offRamp for the given chain on the Router.
/// @dev This function is marked virtual as other token pools may inherit from this contract, but do
/// not receive calls from the ramps directly, instead receiving them from a proxy contract. In that
/// situation this function must be overridden and the ramp-check removed and replaced with a different
/// access-control scheme.
function _onlyOffRamp(
uint64 remoteChainSelector
) internal view virtual {
if (!isSupportedChain(remoteChainSelector)) revert ChainNotAllowed(remoteChainSelector);
if (!s_router.isOffRamp(remoteChainSelector, msg.sender)) revert CallerIsNotARampOnRouter(msg.sender);
}
// ================================================================
// │ Allowlist │
// ================================================================
function _checkAllowList(
address sender
) internal view {
if (i_allowlistEnabled) {
if (!s_allowlist.contains(sender)) {
revert SenderNotAllowed(sender);
}
}
}
/// @notice Gets whether the allowlist functionality is enabled.
/// @return true is enabled, false if not.
function getAllowListEnabled() external view returns (bool) {
return i_allowlistEnabled;
}
/// @notice Gets the allowed addresses.
/// @return The allowed addresses.
function getAllowList() external view returns (address[] memory) {
return s_allowlist.values();
}
/// @notice Apply updates to the allow list.
/// @param removes The addresses to be removed.
/// @param adds The addresses to be added.
function applyAllowListUpdates(address[] calldata removes, address[] calldata adds) external onlyOwner {
_applyAllowListUpdates(removes, adds);
}
/// @notice Internal version of applyAllowListUpdates to allow for reuse in the constructor.
function _applyAllowListUpdates(address[] memory removes, address[] memory adds) internal {
if (!i_allowlistEnabled) revert AllowListNotEnabled();
for (uint256 i = 0; i < removes.length; ++i) {
address toRemove = removes[i];
if (s_allowlist.remove(toRemove)) {
emit AllowListRemove(toRemove);
}
}
for (uint256 i = 0; i < adds.length; ++i) {
address toAdd = adds[i];
if (toAdd == address(0)) {
continue;
}
if (s_allowlist.add(toAdd)) {
emit AllowListAdd(toAdd);
}
}
}
}
"
},
"npm/@chainlink/contracts@1.5.0/src/v0.8/shared/access/Ownable2Step.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {IOwnable} from "../interfaces/IOwnable.sol";
/// @notice A minimal contract that implements 2-step ownership transfer and nothing more. It's made to be minimal
/// to reduce the impact of the bytecode size on any contract that inherits from it.
contract Ownable2Step is IOwnable {
/// @notice The pending owner is the address to which ownership may be transferred.
address private s_pendingOwner;
/// @notice The owner is the current owner of the contract.
/// @dev The owner is the second storage variable so any implementing contract could pack other state with it
/// instead of the much less used s_pendingOwner.
address private s_owner;
error OwnerCannotBeZero();
error MustBeProposedOwner();
error CannotTransferToSelf();
error OnlyCallableByOwner();
event OwnershipTransferRequested(address indexed from, address indexed to);
event OwnershipTransferred(address indexed from, address indexed to);
constructor(address newOwner, address pendingOwner) {
if (newOwner == address(0)) {
revert OwnerCannotBeZero();
}
s_owner = newOwner;
if (pendingOwner != address(0)) {
_transferOwnership(pendingOwner);
}
}
/// @notice Get the current owner
function owner() public view override returns (address) {
return s_owner;
}
/// @notice Allows an owner to begin transferring ownership to a new address. The new owner needs to call
/// `acceptOwnership` to accept the transfer before any permissions are changed.
/// @param to The address to which ownership will be transferred.
function transferOwnership(
address to
) public override onlyOwner {
_transferOwnership(to);
}
/// @notice validate, transfer ownership, and emit relevant events
/// @param to The address to which ownership will be transferred.
function _transferOwnership(
address to
) private {
if (to == msg.sender) {
revert CannotTransferToSelf();
}
s_pendingOwner = to;
emit OwnershipTransferRequested(s_owner, to);
}
/// @notice Allows an ownership transfer to be completed by the recipient.
function acceptOwnership() external override {
if (msg.sender != s_pendingOwner) {
revert MustBeProposedOwner();
}
address oldOwner = s_owner;
s_owner = msg.sender;
s_pendingOwner = address(0);
emit OwnershipTransferred(oldOwner, msg.sender);
}
/// @notice validate access
function _validateOwnership() internal view {
if (msg.sender != s_owner) {
revert OnlyCallableByOwner();
}
}
/// @notice Reverts if called by anyone other than the contract owner.
modifier onlyOwner() {
_validateOwnership();
_;
}
}
"
},
"npm/@chainlink/contracts@1.5.0/src/v0.8/s
Submitted on: 2025-11-06 12:43:39
Comments
Log in to comment.
No comments yet.