CFHelpersUsersv0

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "@openzeppelin/contracts/access/Ownable.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
"
    },
    "@openzeppelin/contracts/interfaces/draft-IERC6093.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
"
    },
    "@openzeppelin/contracts/interfaces/IERC5267.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}
"
    },
    "@openzeppelin/contracts/metatx/ERC2771Context.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (metatx/ERC2771Context.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Context variant with ERC-2771 support.
 *
 * WARNING: Avoid using this pattern in contracts that rely in a specific calldata length as they'll
 * be affected by any forwarder whose `msg.data` is suffixed with the `from` address according to the ERC-2771
 * specification adding the address size in bytes (20) to the calldata size. An example of an unexpected
 * behavior could be an unintended fallback (or another function) invocation while trying to invoke the `receive`
 * function only accessible if `msg.data.length == 0`.
 *
 * WARNING: The usage of `delegatecall` in this contract is dangerous and may result in context corruption.
 * Any forwarded request to this contract triggering a `delegatecall` to itself will result in an invalid {_msgSender}
 * recovery.
 */
abstract contract ERC2771Context is Context {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable _trustedForwarder;

    /**
     * @dev Initializes the contract with a trusted forwarder, which will be able to
     * invoke functions on this contract on behalf of other accounts.
     *
     * NOTE: The trusted forwarder can be replaced by overriding {trustedForwarder}.
     */
    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor(address trustedForwarder_) {
        _trustedForwarder = trustedForwarder_;
    }

    /**
     * @dev Returns the address of the trusted forwarder.
     */
    function trustedForwarder() public view virtual returns (address) {
        return _trustedForwarder;
    }

    /**
     * @dev Indicates whether any particular address is the trusted forwarder.
     */
    function isTrustedForwarder(address forwarder) public view virtual returns (bool) {
        return forwarder == trustedForwarder();
    }

    /**
     * @dev Override for `msg.sender`. Defaults to the original `msg.sender` whenever
     * a call is not performed by the trusted forwarder or the calldata length is less than
     * 20 bytes (an address length).
     */
    function _msgSender() internal view virtual override returns (address) {
        uint256 calldataLength = msg.data.length;
        uint256 contextSuffixLength = _contextSuffixLength();
        if (isTrustedForwarder(msg.sender) && calldataLength >= contextSuffixLength) {
            return address(bytes20(msg.data[calldataLength - contextSuffixLength:]));
        } else {
            return super._msgSender();
        }
    }

    /**
     * @dev Override for `msg.data`. Defaults to the original `msg.data` whenever
     * a call is not performed by the trusted forwarder or the calldata length is less than
     * 20 bytes (an address length).
     */
    function _msgData() internal view virtual override returns (bytes calldata) {
        uint256 calldataLength = msg.data.length;
        uint256 contextSuffixLength = _contextSuffixLength();
        if (isTrustedForwarder(msg.sender) && calldataLength >= contextSuffixLength) {
            return msg.data[:calldataLength - contextSuffixLength];
        } else {
            return super._msgData();
        }
    }

    /**
     * @dev ERC-2771 specifies the context as being a single address (20 bytes).
     */
    function _contextSuffixLength() internal view virtual override returns (uint256) {
        return 20;
    }
}
"
    },
    "@openzeppelin/contracts/metatx/ERC2771Forwarder.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (metatx/ERC2771Forwarder.sol)

pragma solidity ^0.8.20;

import {ERC2771Context} from "./ERC2771Context.sol";
import {ECDSA} from "../utils/cryptography/ECDSA.sol";
import {EIP712} from "../utils/cryptography/EIP712.sol";
import {Nonces} from "../utils/Nonces.sol";
import {Address} from "../utils/Address.sol";
import {Errors} from "../utils/Errors.sol";

/**
 * @dev A forwarder compatible with ERC-2771 contracts. See {ERC2771Context}.
 *
 * This forwarder operates on forward requests that include:
 *
 * * `from`: An address to operate on behalf of. It is required to be equal to the request signer.
 * * `to`: The address that should be called.
 * * `value`: The amount of native token to attach with the requested call.
 * * `gas`: The amount of gas limit that will be forwarded with the requested call.
 * * `nonce`: A unique transaction ordering identifier to avoid replayability and request invalidation.
 * * `deadline`: A timestamp after which the request is not executable anymore.
 * * `data`: Encoded `msg.data` to send with the requested call.
 *
 * Relayers are able to submit batches if they are processing a high volume of requests. With high
 * throughput, relayers may run into limitations of the chain such as limits on the number of
 * transactions in the mempool. In these cases the recommendation is to distribute the load among
 * multiple accounts.
 *
 * NOTE: Batching requests includes an optional refund for unused `msg.value` that is achieved by
 * performing a call with empty calldata. While this is within the bounds of ERC-2771 compliance,
 * if the refund receiver happens to consider the forwarder a trusted forwarder, it MUST properly
 * handle `msg.data.length == 0`. `ERC2771Context` in OpenZeppelin Contracts versions prior to 4.9.3
 * do not handle this properly.
 *
 * ==== Security Considerations
 *
 * If a relayer submits a forward request, it should be willing to pay up to 100% of the gas amount
 * specified in the request. This contract does not implement any kind of retribution for this gas,
 * and it is assumed that there is an out of band incentive for relayers to pay for execution on
 * behalf of signers. Often, the relayer is operated by a project that will consider it a user
 * acquisition cost.
 *
 * By offering to pay for gas, relayers are at risk of having that gas used by an attacker toward
 * some other purpose that is not aligned with the expected out of band incentives. If you operate a
 * relayer, consider whitelisting target contracts and function selectors. When relaying ERC-721 or
 * ERC-1155 transfers specifically, consider rejecting the use of the `data` field, since it can be
 * used to execute arbitrary code.
 */
contract ERC2771Forwarder is EIP712, Nonces {
    using ECDSA for bytes32;

    struct ForwardRequestData {
        address from;
        address to;
        uint256 value;
        uint256 gas;
        uint48 deadline;
        bytes data;
        bytes signature;
    }

    bytes32 internal constant _FORWARD_REQUEST_TYPEHASH =
        keccak256(
            "ForwardRequest(address from,address to,uint256 value,uint256 gas,uint256 nonce,uint48 deadline,bytes data)"
        );

    /**
     * @dev Emitted when a `ForwardRequest` is executed.
     *
     * NOTE: An unsuccessful forward request could be due to an invalid signature, an expired deadline,
     * or simply a revert in the requested call. The contract guarantees that the relayer is not able to force
     * the requested call to run out of gas.
     */
    event ExecutedForwardRequest(address indexed signer, uint256 nonce, bool success);

    /**
     * @dev The request `from` doesn't match with the recovered `signer`.
     */
    error ERC2771ForwarderInvalidSigner(address signer, address from);

    /**
     * @dev The `requestedValue` doesn't match with the available `msgValue`.
     */
    error ERC2771ForwarderMismatchedValue(uint256 requestedValue, uint256 msgValue);

    /**
     * @dev The request `deadline` has expired.
     */
    error ERC2771ForwarderExpiredRequest(uint48 deadline);

    /**
     * @dev The request target doesn't trust the `forwarder`.
     */
    error ERC2771UntrustfulTarget(address target, address forwarder);

    /**
     * @dev See {EIP712-constructor}.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @dev Returns `true` if a request is valid for a provided `signature` at the current block timestamp.
     *
     * A transaction is considered valid when the target trusts this forwarder, the request hasn't expired
     * (deadline is not met), and the signer matches the `from` parameter of the signed request.
     *
     * NOTE: A request may return false here but it won't cause {executeBatch} to revert if a refund
     * receiver is provided.
     */
    function verify(ForwardRequestData calldata request) public view virtual returns (bool) {
        (bool isTrustedForwarder, bool active, bool signerMatch, ) = _validate(request);
        return isTrustedForwarder && active && signerMatch;
    }

    /**
     * @dev Executes a `request` on behalf of `signature`'s signer using the ERC-2771 protocol. The gas
     * provided to the requested call may not be exactly the amount requested, but the call will not run
     * out of gas. Will revert if the request is invalid or the call reverts, in this case the nonce is not consumed.
     *
     * Requirements:
     *
     * - The request value should be equal to the provided `msg.value`.
     * - The request should be valid according to {verify}.
     */
    function execute(ForwardRequestData calldata request) public payable virtual {
        // We make sure that msg.value and request.value match exactly.
        // If the request is invalid or the call reverts, this whole function
        // will revert, ensuring value isn't stuck.
        if (msg.value != request.value) {
            revert ERC2771ForwarderMismatchedValue(request.value, msg.value);
        }

        if (!_execute(request, true)) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Batch version of {execute} with optional refunding and atomic execution.
     *
     * In case a batch contains at least one invalid request (see {verify}), the
     * request will be skipped and the `refundReceiver` parameter will receive back the
     * unused requested value at the end of the execution. This is done to prevent reverting
     * the entire batch when a request is invalid or has already been submitted.
     *
     * If the `refundReceiver` is the `address(0)`, this function will revert when at least
     * one of the requests was not valid instead of skipping it. This could be useful if
     * a batch is required to get executed atomically (at least at the top-level). For example,
     * refunding (and thus atomicity) can be opt-out if the relayer is using a service that avoids
     * including reverted transactions.
     *
     * Requirements:
     *
     * - The sum of the requests' values should be equal to the provided `msg.value`.
     * - All of the requests should be valid (see {verify}) when `refundReceiver` is the zero address.
     *
     * NOTE: Setting a zero `refundReceiver` guarantees an all-or-nothing requests execution only for
     * the first-level forwarded calls. In case a forwarded request calls to a contract with another
     * subcall, the second-level call may revert without the top-level call reverting.
     */
    function executeBatch(
        ForwardRequestData[] calldata requests,
        address payable refundReceiver
    ) public payable virtual {
        bool atomic = refundReceiver == address(0);

        uint256 requestsValue;
        uint256 refundValue;

        for (uint256 i; i < requests.length; ++i) {
            requestsValue += requests[i].value;
            bool success = _execute(requests[i], atomic);
            if (!success) {
                refundValue += requests[i].value;
            }
        }

        // The batch should revert if there's a mismatched msg.value provided
        // to avoid request value tampering
        if (requestsValue != msg.value) {
            revert ERC2771ForwarderMismatchedValue(requestsValue, msg.value);
        }

        // Some requests with value were invalid (possibly due to frontrunning).
        // To avoid leaving ETH in the contract this value is refunded.
        if (refundValue != 0) {
            // We know refundReceiver != address(0) && requestsValue == msg.value
            // meaning we can ensure refundValue is not taken from the original contract's balance
            // and refundReceiver is a known account.
            Address.sendValue(refundReceiver, refundValue);
        }
    }

    /**
     * @dev Validates if the provided request can be executed at current block timestamp with
     * the given `request.signature` on behalf of `request.signer`.
     */
    function _validate(
        ForwardRequestData calldata request
    ) internal view virtual returns (bool isTrustedForwarder, bool active, bool signerMatch, address signer) {
        (bool isValid, address recovered) = _recoverForwardRequestSigner(request);

        return (
            _isTrustedByTarget(request.to),
            request.deadline >= block.timestamp,
            isValid && recovered == request.from,
            recovered
        );
    }

    /**
     * @dev Returns a tuple with the recovered the signer of an EIP712 forward request message hash
     * and a boolean indicating if the signature is valid.
     *
     * NOTE: The signature is considered valid if {ECDSA-tryRecover} indicates no recover error for it.
     */
    function _recoverForwardRequestSigner(
        ForwardRequestData calldata request
    ) internal view virtual returns (bool isValid, address signer) {
        (address recovered, ECDSA.RecoverError err, ) = _hashTypedDataV4(
            keccak256(
                abi.encode(
                    _FORWARD_REQUEST_TYPEHASH,
                    request.from,
                    request.to,
                    request.value,
                    request.gas,
                    nonces(request.from),
                    request.deadline,
                    keccak256(request.data)
                )
            )
        ).tryRecover(request.signature);

        return (err == ECDSA.RecoverError.NoError, recovered);
    }

    /**
     * @dev Validates and executes a signed request returning the request call `success` value.
     *
     * Internal function without msg.value validation.
     *
     * Requirements:
     *
     * - The caller must have provided enough gas to forward with the call.
     * - The request must be valid (see {verify}) if the `requireValidRequest` is true.
     *
     * Emits an {ExecutedForwardRequest} event.
     *
     * IMPORTANT: Using this function doesn't check that all the `msg.value` was sent, potentially
     * leaving value stuck in the contract.
     */
    function _execute(
        ForwardRequestData calldata request,
        bool requireValidRequest
    ) internal virtual returns (bool success) {
        (bool isTrustedForwarder, bool active, bool signerMatch, address signer) = _validate(request);

        // Need to explicitly specify if a revert is required since non-reverting is default for
        // batches and reversion is opt-in since it could be useful in some scenarios
        if (requireValidRequest) {
            if (!isTrustedForwarder) {
                revert ERC2771UntrustfulTarget(request.to, address(this));
            }

            if (!active) {
                revert ERC2771ForwarderExpiredRequest(request.deadline);
            }

            if (!signerMatch) {
                revert ERC2771ForwarderInvalidSigner(signer, request.from);
            }
        }

        // Ignore an invalid request because requireValidRequest = false
        if (isTrustedForwarder && signerMatch && active) {
            // Nonce should be used before the call to prevent reusing by reentrancy
            uint256 currentNonce = _useNonce(signer);

            uint256 reqGas = request.gas;
            address to = request.to;
            uint256 value = request.value;
            bytes memory data = abi.encodePacked(request.data, request.from);

            uint256 gasLeft;

            assembly ("memory-safe") {
                success := call(reqGas, to, value, add(data, 0x20), mload(data), 0, 0)
                gasLeft := gas()
            }

            _checkForwardedGas(gasLeft, request);

            emit ExecutedForwardRequest(signer, currentNonce, success);
        }
    }

    /**
     * @dev Returns whether the target trusts this forwarder.
     *
     * This function performs a static call to the target contract calling the
     * {ERC2771Context-isTrustedForwarder} function.
     *
     * NOTE: Consider the execution of this forwarder is permissionless. Without this check, anyone may transfer assets
     * that are owned by, or are approved to this forwarder.
     */
    function _isTrustedByTarget(address target) internal view virtual returns (bool) {
        bytes memory encodedParams = abi.encodeCall(ERC2771Context.isTrustedForwarder, (address(this)));

        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            // Perform the staticcall and save the result in the scratch space.
            // | Location  | Content  | Content (Hex)                                                      |
            // |-----------|----------|--------------------------------------------------------------------|
            // |           |          |                                                           result ↓ |
            // | 0x00:0x1F | selector | 0x0000000000000000000000000000000000000000000000000000000000000001 |
            success := staticcall(gas(), target, add(encodedParams, 0x20), mload(encodedParams), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        return success && returnSize >= 0x20 && returnValue > 0;
    }

    /**
     * @dev Checks if the requested gas was correctly forwarded to the callee.
     *
     * As a consequence of https://eips.ethereum.org/EIPS/eip-150[EIP-150]:
     * - At most `gasleft() - floor(gasleft() / 64)` is forwarded to the callee.
     * - At least `floor(gasleft() / 64)` is kept in the caller.
     *
     * It reverts consuming all the available gas if the forwarded gas is not the requested gas.
     *
     * IMPORTANT: The `gasLeft` parameter should be measured exactly at the end of the forwarded call.
     * Any gas consumed in between will make room for bypassing this check.
     */
    function _checkForwardedGas(uint256 gasLeft, ForwardRequestData calldata request) private pure {
        // To avoid insufficient gas griefing attacks, as referenced in https://ronan.eth.limo/blog/ethereum-gas-dangers/
        //
        // A malicious relayer can attempt to shrink the gas forwarded so that the underlying call reverts out-of-gas
        // but the forwarding itself still succeeds. In order to make sure that the subcall received sufficient gas,
        // we will inspect gasleft() after the forwarding.
        //
        // Let X be the gas available before the subcall, such that the subcall gets at most X * 63 / 64.
        // We can't know X after CALL dynamic costs, but we want it to be such that X * 63 / 64 >= req.gas.
        // Let Y be the gas used in the subcall. gasleft() measured immediately after the subcall will be gasleft() = X - Y.
        // If the subcall ran out of gas, then Y = X * 63 / 64 and gasleft() = X - Y = X / 64.
        // Under this assumption req.gas / 63 > gasleft() is true if and only if
        // req.gas / 63 > X / 64, or equivalently req.gas > X * 63 / 64.
        // This means that if the subcall runs out of gas we are able to detect that insufficient gas was passed.
        //
        // We will now also see that req.gas / 63 > gasleft() implies that req.gas >= X * 63 / 64.
        // The contract guarantees Y <= req.gas, thus gasleft() = X - Y >= X - req.gas.
        // -    req.gas / 63 > gasleft()
        // -    req.gas / 63 >= X - req.gas
        // -    req.gas >= X * 63 / 64
        // In other words if req.gas < X * 63 / 64 then req.gas / 63 <= gasleft(), thus if the relayer behaves honestly
        // the forwarding does not revert.
        if (gasLeft < request.gas / 63) {
            // We explicitly trigger invalid opcode to consume all gas and bubble-up the effects, since
            // neither revert or assert consume all gas since Solidity 0.8.20
            // https://docs.soliditylang.org/en/v0.8.20/control-structures.html#panic-via-assert-and-error-via-require
            assembly ("memory-safe") {
                invalid()
            }
        }
    }
}
"
    },
    "@openzeppelin/contracts/proxy/Clones.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    error CloneArgumentsTooLong();

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple times will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(value, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create opcode, which should never revert.
     */
    function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
        return cloneWithImmutableArgs(implementation, args, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
     * parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneWithImmutableArgs(
        address implementation,
        bytes memory args,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        assembly ("memory-safe") {
            instance := create(value, add(bytecode, 0x20), mload(bytecode))
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
     * `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice
     * at the same address.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
     * but with a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.deploy(value, salt, bytecode);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.computeAddress(salt, keccak256(bytecode), deployer);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
    }

    /**
     * @dev Get the immutable args attached to a clone.
     *
     * - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
     *   function will return an empty array.
     * - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
     *   `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
     *   creation.
     * - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
     *   function should only be used to check addresses that are known to be clones.
     */
    function fetchCloneArgs(address instance) internal view returns (bytes memory) {
        bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short
        assembly ("memory-safe") {
            extcodecopy(instance, add(result, 32), 45, mload(result))
        }
        return result;
    }

    /**
     * @dev Helper that prepares the initcode of the proxy with immutable args.
     *
     * An assembly variant of this function requires copying the `args` array, which can be efficiently done using
     * `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
     * abi.encodePacked is more expensive but also more portable and easier to review.
     *
     * NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
     * With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
     */
    function _cloneCodeWithImmutableArgs(
        address implementation,
        bytes memory args
    ) private pure returns (bytes memory) {
        if (args.length > 24531) revert CloneArgumentsTooLong();
        return
            abi.encodePacked(
                hex"61",
                uint16(args.length + 45),
                hex"3d81600a3d39f3363d3d373d3d3d363d73",
                implementation,
                hex"5af43d82803e903d91602b57fd5bf3",
                args
            );
    }
}
"
    },
    "@openzeppelin/contracts/token/ERC20/ERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}
"
    },
    "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
"
    },
    "@openzeppelin/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/Address.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, bytes memory returndata) = recipient.call{value: amount}("");
        if (!success) {
            _revert(returndata);
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, re

Tags:
ERC20, Multisig, Mintable, Upgradeable, Multi-Signature, Factory|addr:0xacf7b8144e9e47912091869da11287cafef911ed|verified:true|block:23418694|tx:0xf2d0049b1cd559922c94c88dfef3a6b360a2e1b0d0c771effda996a76e0dabeb|first_check:1758545760

Submitted on: 2025-09-22 14:56:01

Comments

Log in to comment.

No comments yet.