AlgebraV2Adapter

Description:

Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "@openzeppelin/contracts/access/AccessControl.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}
"
    },
    "@openzeppelin/contracts/access/IAccessControl.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}
"
    },
    "@openzeppelin/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
"
    },
    "@openzeppelin/contracts/utils/introspection/ERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
"
    },
    "@openzeppelin/contracts/utils/introspection/IERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/math/SignedMath.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/Strings.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
"
    },
    "contracts/adapters/AlgebraV2Adapter.sol": {
      "content": "//       ╟╗                                                                      ╔╬
//       ╞╬╬                                                                    ╬╠╬
//      ╔╣╬╬╬                                                                  ╠╠╠╠╦
//     ╬╬╬╬╬╩                                                                  ╘╠╠╠╠╬
//    ║╬╬╬╬╬                                                                    ╘╠╠╠╠╬
//    ╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬      ╒╬╬╬╬╬╬╬╜   ╠╠╬╬╬╬╬╬╬         ╠╬╬╬╬╬╬╬    ╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╠
//    ╙╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╕    ╬╬╬╬╬╬╬╜   ╣╠╠╬╬╬╬╬╬╬╬        ╠╬╬╬╬╬╬╬   ╬╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╩
//     ╙╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬  ╔╬╬╬╬╬╬╬    ╔╠╠╠╬╬╬╬╬╬╬╬        ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬╬╬╬╬╠╠╠╠╝╙
//               ╘╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬    ╒╠╠╠╬╠╬╩╬╬╬╬╬╬       ╠╬╬╬╬╬╬╬╣╬╬╬╬╬╬╬╙
//                 ╣╬╬╬╬╬╬╬╬╬╬╠╣     ╣╬╠╠╠╬╩ ╚╬╬╬╬╬╬      ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
//                  ╣╬╬╬╬╬╬╬╬╬╣     ╣╬╠╠╠╬╬   ╣╬╬╬╬╬╬     ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
//                   ╟╬╬╬╬╬╬╬╩      ╬╬╠╠╠╠╬╬╬╬╬╬╬╬╬╬╬     ╠╬╬╬╬╬╬╬╠╬╬╬╬╬╬╬
//                    ╬╬╬╬╬╬╬     ╒╬╬╠╠╬╠╠╬╬╬╬╬╬╬╬╬╬╬╬    ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬
//                    ╬╬╬╬╬╬╬     ╬╬╬╠╠╠╠╝╝╝╝╝╝╝╠╬╬╬╬╬╬   ╠╬╬╬╬╬╬╬  ╚╬╬╬╬╬╬╬╬
//                    ╬╬╬╬╬╬╬    ╣╬╬╬╬╠╠╩       ╘╬╬╬╬╬╬╬  ╠╬╬╬╬╬╬╬   ╙╬╬╬╬╬╬╬╬
//

// SPDX-License-Identifier: GPL-3.0-only
pragma solidity 0.8.30;

import {IERC20} from "contracts/interface/IERC20.sol";
import {SafeERC20} from "contracts/lib/SafeERC20.sol";
import {YakAdapter} from "contracts/YakAdapter.sol";
import {IAlgebraV2Adapter} from "contracts/interface/IAlgebraV2Adapter.sol";
import {IAlgebraV2Factory} from "contracts/interface/IAlgebraV2Factory.sol";
import {IAlgebraV2Pool} from "contracts/interface/IAlgebraV2Pool.sol";

contract AlgebraV2Adapter is YakAdapter, IAlgebraV2Adapter {
    using SafeERC20 for IERC20;

    uint160 internal constant MAX_SQRT_RATIO =
        1_461_446_703_485_210_103_287_273_052_203_988_822_378_723_970_342;
    uint160 internal constant MIN_SQRT_RATIO = 4_295_128_739;

    address public immutable FACTORY;
    address public immutable ROUTER;

    address public quoter;
    address public tempPoolAddress;
    uint256 public quoterGasLimit;

    /// @inheritdoc IAlgebraV2Adapter
    mapping(bytes32 => address[]) public deployers;

    constructor(
        string memory _name,
        uint256 _quoterGasLimit,
        address _router,
        address _quoter,
        address _factory
    ) YakAdapter(_name) {
        if (_factory == address(0) || _router == address(0)) revert AddressZero();
        FACTORY = _factory;
        ROUTER = _router;

        setQuoterGasLimit(_quoterGasLimit);
        setQuoter(_quoter);
    }

    function algebraSwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata)
        external
    {
        if (msg.sender != tempPoolAddress) revert NotPoolAddress();

        if (amount0Delta > 0) {
            IERC20(IAlgebraV2Pool(msg.sender).token0()).transfer(msg.sender, uint256(amount0Delta));
        } else {
            IERC20(IAlgebraV2Pool(msg.sender).token1()).transfer(msg.sender, uint256(amount1Delta));
        }
    }

    function setQuoter(address newQuoter) public onlyMaintainer {
        if (newQuoter == address(0)) revert AddressZero();
        quoter = newQuoter;
        emit QuoterSet(newQuoter);
    }

    function setQuoterGasLimit(uint256 newGasLimit) public onlyMaintainer {
        if (newGasLimit == 0) revert InvalidGasLimit();

        quoterGasLimit = newGasLimit;
        emit QuoterGasLimitSet(newGasLimit);
    }

    /// @inheritdoc IAlgebraV2Adapter
    function addCustomDeployer(address deployer, address tokenA, address tokenB)
        external
        onlyMaintainer
    {
        (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
        bytes32 key = keccak256(abi.encodePacked(token0, token1));
        deployers[key].push(deployer);
    }

    /// @inheritdoc IAlgebraV2Adapter
    function removeCustomDeployer(address tokenA, address tokenB, uint256 index)
        external
        onlyMaintainer
    {
        (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
        bytes32 key = keccak256(abi.encodePacked(token0, token1));
        deployers[key][index] = deployers[key][deployers[key].length - 1];
        deployers[key].pop();
    }

    function getQuoteForPool(
        address pool,
        uint256 amount,
        address tokenIn,
        address tokenOut,
        bool exactIn
    ) external view returns (uint256) {
        QParams memory params;
        params.amount = exactIn ? int256(amount) : -int256(amount);
        params.tokenIn = tokenIn;
        params.tokenOut = tokenOut;
        params.exactIn = exactIn;
        return getQuoteForPool(pool, params);
    }

    /// @inheritdoc IAlgebraV2Adapter
    function getDeployers(bytes32 key) external view override returns (address[] memory) {
        return deployers[key];
    }

    function _query(uint256 _amount, address _tokenIn, address _tokenOut, bool _exactIn)
        internal
        view
        override
        returns (uint256, address)
    {
        QParams memory params = getQParams(_amount, _tokenIn, _tokenOut, _exactIn);
        (uint256 quote,) = getQuoteForBestPool(params);
        address recipient = address(this);

        return (quote, recipient);
    }

    function queryWithDeployer(uint256 _amount, address _tokenIn, address _tokenOut, bool _exactIn)
        external
        view
        returns (uint256, address, address)
    {
        QParams memory params = getQParams(_amount, _tokenIn, _tokenOut, _exactIn);
        (uint256 quote, address deployer) = getQuoteForBestPool(params);
        address recipient = address(this);

        return (quote, recipient, deployer);
    }

    function _swap(
        uint256 _amountIn,
        uint256 _amountOut,
        address _tokenIn,
        address _tokenOut,
        address _to
    ) internal override {
        QParams memory params = getQParams(_amountIn, _tokenIn, _tokenOut, true);

        uint256 amountOutBefore = IERC20(_tokenOut).balanceOf(address(this));
        // Use address(0) as deployer for default pool
        uint256 amountOutAfter = _underlyingSwap(params, new bytes(0), address(0));
        uint256 amountOut = amountOutAfter - amountOutBefore;

        if (amountOut < _amountOut) revert InsufficientAmount();
        tempPoolAddress = address(0);

        uint256 remainingBalance = IERC20(_tokenIn).balanceOf(address(this));
        if (remainingBalance > 0) IERC20(_tokenIn).safeTransfer(ROUTER, remainingBalance);

        _returnTo(_tokenOut, amountOut, _to);
    }

    /**
     * @notice External swap function that accepts a deployer address for custom pools
     * @param _amountIn Amount of input tokens
     * @param _amountOut Minimum amount of output tokens expected
     * @param _tokenIn Address of input token
     * @param _tokenOut Address of output token
     * @param _to Address to receive output tokens
     * @param _deployer Address of the deployer for custom pool (address(0) for factory pool)
     */
    function swap(
        uint256 _amountIn,
        uint256 _amountOut,
        address _tokenIn,
        address _tokenOut,
        address _to,
        address _deployer
    ) external {
        QParams memory params = getQParams(_amountIn, _tokenIn, _tokenOut, true);

        uint256 amountOutBefore = IERC20(_tokenOut).balanceOf(address(this));
        uint256 amountOutAfter = _underlyingSwap(params, new bytes(0), _deployer);
        uint256 amountOut = amountOutAfter - amountOutBefore;

        if (amountOut < _amountOut) revert InsufficientAmount();
        tempPoolAddress = address(0);

        _returnTo(_tokenOut, amountOut, _to);
        emit YakAdapterSwap(_tokenIn, _tokenOut, _amountIn, amountOut);
    }

    function getQParams(uint256 amount, address tokenIn, address tokenOut, bool exactIn)
        internal
        pure
        returns (QParams memory)
    {
        return QParams({
            amount: exactIn ? int256(amount) : -int256(amount),
            tokenIn: tokenIn,
            tokenOut: tokenOut,
            exactIn: exactIn
        });
    }

    function _underlyingSwap(QParams memory params, bytes memory callbackData, address deployer)
        internal
        virtual
        returns (uint256)
    {
        // Use deployer if provided, otherwise use the factory pool
        if (deployer == address(0)) tempPoolAddress = getBestPool(params.tokenIn, params.tokenOut);
        else tempPoolAddress = getCustomPool(deployer, params.tokenIn, params.tokenOut);

        (bool zeroForOne, uint160 priceLimit) =
            getZeroOneAndSqrtPriceLimitX96(params.tokenIn, params.tokenOut);
        (int256 amount0, int256 amount1) = IAlgebraV2Pool(tempPoolAddress).swap(
            address(this), zeroForOne, int256(params.amount), priceLimit, callbackData
        );
        return zeroForOne ? uint256(-amount1) : uint256(-amount0);
    }

    function _underlyingSwap(QParams memory params, bytes memory callbackData)
        internal
        virtual
        returns (uint256)
    {
        return _underlyingSwap(params, callbackData, address(0));
    }

    function getQuoteForBestPool(QParams memory params) internal view returns (uint256, address) {
        uint256 quote;
        address bestDeployer = address(0); // Default for factory pool
        address bestPool = getBestPool(params.tokenIn, params.tokenOut);
        if (bestPool != address(0)) quote = getQuoteForPool(bestPool, params);

        (address token0, address token1) = params.tokenIn < params.tokenOut
            ? (params.tokenIn, params.tokenOut)
            : (params.tokenOut, params.tokenIn);
        bytes32 key = keccak256(abi.encodePacked(token0, token1));
        uint256 deployersLength = deployers[key].length;

        for (uint256 i; i < deployersLength; ++i) {
            address customPool = getCustomPool(deployers[key][i], params.tokenIn, params.tokenOut);
            if (customPool != address(0)) {
                uint256 tempQuote = getQuoteForPool(customPool, params);
                bool isBetter = params.exactIn
                    ? tempQuote > quote
                    : (tempQuote != 0 && (quote == 0 || tempQuote < quote));
                if (isBetter) {
                    quote = tempQuote;
                    bestDeployer = deployers[key][i];
                }
            }
        }

        return (quote, bestDeployer);
    }

    /// @dev Returns the default pool address for a given token0 and token1 combination
    /// @param token0 Address of token0
    /// @param token1 Address of token1
    function getBestPool(address token0, address token1) internal view returns (address) {
        return IAlgebraV2Factory(FACTORY).poolByPair(token0, token1);
    }

    /// @dev Returns a custom pool's address for a given deployer, token0 and token1 combination
    /// @param deployer Address of the deployer of the pool
    /// @param token0 Address of token0
    /// @param token1 Address of token1
    function getCustomPool(address deployer, address token0, address token1)
        internal
        view
        returns (address)
    {
        return IAlgebraV2Factory(FACTORY).customPoolByPair(deployer, token0, token1);
    }

    function getQuoteForPool(address pool, QParams memory params) internal view returns (uint256) {
        (bool zeroForOne, uint160 priceLimit) =
            getZeroOneAndSqrtPriceLimitX96(params.tokenIn, params.tokenOut);
        (int256 amount0, int256 amount1) = getQuoteSafe(pool, zeroForOne, params.amount, priceLimit);
        return params.exactIn
            ? (zeroForOne ? uint256(-amount1) : uint256(-amount0))
            : (zeroForOne ? uint256(amount0) : uint256(amount1));
    }

    function getQuoteSafe(address pool, bool zeroForOne, int256 amount, uint160 priceLimit)
        internal
        view
        returns (int256, int256)
    {
        bytes memory calldata_ = abi.encodeWithSignature(
            "quote(address,bool,int256,uint160)", pool, zeroForOne, amount, priceLimit
        );
        (bool success, bytes memory data) = staticCallQuoterRaw(calldata_);

        int256 amount0;
        int256 amount1;
        if (success) (amount0, amount1) = abi.decode(data, (int256, int256));

        return (amount0, amount1);
    }

    function staticCallQuoterRaw(bytes memory calldata_)
        internal
        view
        returns (bool, bytes memory)
    {
        (bool success, bytes memory data) = quoter.staticcall{gas: quoterGasLimit}(calldata_);
        return (success, data);
    }

    function getZeroOneAndSqrtPriceLimitX96(address tokenIn, address tokenOut)
        internal
        pure
        returns (bool, uint160)
    {
        bool zeroForOne = tokenIn < tokenOut;
        uint160 sqrtPriceLimitX96 = zeroForOne ? MIN_SQRT_RATIO + 1 : MAX_SQRT_RATIO - 1;

        return (zeroForOne, sqrtPriceLimitX96);
    }
}
"
    },
    "contracts/interface/IAdapter.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * @title IAdapter
 * @author Yak Exchange
 * @notice Interface for DEX adapter contracts that integrate various AMMs
 * @dev Each adapter implements swap functionality for a specific DEX protocol
 */
interface IAdapter {
    /**
     * @notice Returns the name of the adapter
     * @return name The adapter's descriptive name (e.g., "UniswapV2Adapter")
     */
    function name() external view returns (string memory);

    /**
     * @notice Executes a token swap through the adapter's underlying DEX
     * @param _amountIn Amount of input tokens to swap
     * @param _amountOut Minimum amount of output tokens expected
     * @param _fromToken Address of the input token
     * @param _toToken Address of the output token
     * @param _to Address that will receive the output tokens
     * @dev Adapter must ensure _to receives at least _amountOut tokens
     */
    function swap(uint256 _amountIn, uint256 _amountOut, address _fromToken, address _toToken, address _to) external;

    /**
     * @notice Queries the adapter for expected swap output/input amount
     * @param _amount Input amount (if exactIn) or output amount (if !exactIn)
     * @param _tokenIn Address of the input token
     * @param _tokenOut Address of the output token
     * @param _exactIn True for exact input quote, false for exact output quote
     * @return amountOut The output amount (if exactIn) or required input amount (if !exactIn)
     * @return recipient The address that should receive tokens for this adapter
     * @dev Should return (0, address(0)) if swap is not available
     */
    function query(uint256 _amount, address _tokenIn, address _tokenOut, bool _exactIn) 
        external 
        view 
        returns (uint256 amountOut, address recipient);
}
"
    },
    "contracts/interface/IAlgebraV2Adapter.sol": {
      "content": "// SPDX-License-Identifier: GPL-3.0-only

pragma solidity ^0.8.0;

interface IAlgebraV2Adapter {
    /// @dev Output amount is lower than expected amount out
    error InsufficientAmount();

    /// @dev Thrown when the caller is not the pool address
    error NotPoolAddress();

    /// @dev Event emitted when the quoter is set
    event QuoterSet(address quoter);

    /// @dev Event emitted when an invalid quoter gas limit is set
    error InvalidGasLimit();

    /// @dev Event emitted when the quoter gas limit is updated
    event QuoterGasLimitSet(uint256 newGasLimit);

    /// @dev Parameters struct for a quote
    struct QParams {
        address tokenIn;
        address tokenOut;
        int256 amount;
        bool exactIn;
    }

    /// @notice Returns an address for a given key and index combination
    /// @param key The keccak256 key generated by encoding tokenA and tokenB
    /// @param index The index of the array to retrieve the address from
    function deployers(bytes32 key, uint256 index) external view returns (address);

    /// @notice Returns list of whitelisted deployers for a given tokenA/tokenB combination
    /// @param key Keccack256 hash of tokenA and tokenB encoded addresses
    function getDeployers(bytes32 key) external view returns (address[] memory);

    /// @notice Whitelists a custom deployer for a given tokenA and tokenB combination
    /// @param deployer Address of deployer of pool
    /// @param tokenA The address of tokenA
    /// @param tokenB The address of tokenB
    function addCustomDeployer(address deployer, address tokenA, address tokenB) external;

    /// @notice Removes a whitelisted custom deployer for a given tokenA and tokenB combination
    /// @param tokenA The address of tokenA
    /// @param tokenB The address of tokenB
    /// @param index Index in the list of whitelisted deployers for the given pool
    function removeCustomDeployer(address tokenA, address tokenB, uint256 index) external;

    /// @notice Swaps tokens using a specific deployer's pool
    /// @param amountIn Amount of input tokens
    /// @param amountOut Minimum amount of output tokens expected
    /// @param tokenIn Address of input token
    /// @param tokenOut Address of output token
    /// @param to Address to receive output tokens
    /// @param deployer Address of the deployer for custom pool (address(0) for factory pool)
    function swap(
        uint256 amountIn,
        uint256 amountOut,
        address tokenIn,
        address tokenOut,
        address to,
        address deployer
    ) external;

    /// @notice Queries the adapter for swap quote and returns the deployer info
    /// @param amount Input amount (if exactIn) or output amount (if !exactIn)
    /// @param tokenIn Address of the input token
    /// @param tokenOut Address of the output token
    /// @param exactIn True for exact input quote, false for exact output quote
    /// @return quoteAmount The output amount (if exactIn) or required input amount (if !exactIn)
    /// @return recipient The address that should receive tokens for this adapter
    /// @return deployer The deployer address for custom pool (address(0) for factory pool)
    function queryWithDeployer(uint256 amount, address tokenIn, address tokenOut, bool exactIn)
        external
        view
        returns (uint256 quoteAmount, address recipient, address deployer);
}
"
    },
    "contracts/interface/IAlgebraV2Factory.sol": {
      "content": "// SPDX-License-Identifier: GPL-3.0-only

pragma solidity ^0.8.0;

interface IAlgebraV2Factory {
    function poolByPair(address token0, address token1) external view returns (address);

    function customPoolByPair(address deployer, address token0, address token1) external view returns (address);
}
"
    },
    "contracts/interface/IAlgebraV2Pool.sol": {
      "content": "// SPDX-License-Identifier: GPL-3.0-only

pragma solidity ^0.8.0;

interface IAlgebraV2Pool {
    function swap(
        address recipient,
        bool zeroToOne,
        int256 amountRequired,
        uint160 limitSqrtPrice,
        bytes calldata data
    ) external returns (int256 amount0, int256 amount1);

    function token0() external view returns (address);

    function token1() external view returns (address);
}
"
    },
    "contracts/interface/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IERC20 {
    event Approval(address, address, uint256);
    event Transfer(address, address, uint256);

    function name() external view returns (string memory);

    function decimals() external view returns (uint8);

    function transferFrom(
        address,
        address,
        uint256
    ) external returns (bool);

    function allowance(address, address) external view returns (uint256);

    function approve(address, uint256) external returns (bool);

    function transfer(address, uint256) external returns (bool);

    function balanceOf(address) external view returns (uint256);

    function nonces(address) external view returns (uint256); // Only tokens that support permit

    function permit(
        address,
        address,
        uint256,
        uint256,
        uint8,
        bytes32,
        bytes32
    ) external; // Only tokens that support permit

    function swap(address, uint256) external; // Only Avalanche bridge tokens

    function swapSupply(address) external view returns (uint256); // Only Avalanche bridge tokens

    function totalSupply() external view returns (uint256);
}
"
    },
    "contracts/lib/Maintainable.sol": {
      "content": "// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import {AccessControl, Context} from "@openzeppelin/contracts/access/AccessControl.sol";

/**
 * @dev Contract module which extends the basic access control mechanism of Ownable
 * to include many maintainers, whom only the owner (DEFAULT_ADMIN_ROLE) may add and
 * remove.
 *
 * By default, the owner account will be the one that deploys the contract. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available this modifier:
 * `onlyMaintainer`, which can be applied to your functions to restrict their use to
 * the accounts with the role of maintainer.
 */
abstract contract Maintainable is Context, AccessControl {
    error OnlyMaintainer();

    bytes32 public constant MAINTAINER_ROLE = keccak256("MAINTAINER_ROLE");

    constructor() {
        address msgSender = _msgSender();
        // members of the DEFAULT_ADMIN_ROLE alone may revoke and grant role membership
        _setupRole(DEFAULT_ADMIN_ROLE, msgSender);
        _setupRole(MAINTAINER_ROLE, msgSender);
    }

    function addMaintainer(address addedMaintainer) public virtual {
        grantRole(MAINTAINER_ROLE, addedMaintainer);
    }

    function removeMaintainer(address removedMaintainer) public virtual {
        revokeRole(MAINTAINER_ROLE, removedMaintainer);
    }

    function renounceRole(bytes32 role) public virtual {
        address msgSender = _msgSender();
        renounceRole(role, msgSender);
    }

    function transferOwnership(address newOwner) public virtual {
        address msgSender = _msgSender();
        grantRole(DEFAULT_ADMIN_ROLE, newOwner);
        renounceRole(DEFAULT_ADMIN_ROLE, msgSender);
    }

    modifier onlyMaintainer() {
        address msgSender = _msgSender();
        if (!hasRole(MAINTAINER_ROLE, msgSender)) revert OnlyMaintainer();
        _;
    }
}
"
    },
    "contracts/lib/SafeERC20.sol": {
      "content": "// This is a simplified version of OpenZepplin's SafeERC20 library
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma experimental ABIEncoderV2;

import {IERC20} from "contracts/interface/IERC20.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(
            token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
        );
    }

    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        // solhint-disable-next-line max-line-length
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract),
     * relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be
     * false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking
        // mechanism, since
        // we're implementing it ourselves.

        // A Solidity high level call has three parts:
        //  1. The target address is checked to verify it contains contract code
        //  2. The call itself is made, and success asserted
        //  3. The return value is decoded, which in turn checks the size of the returned data.
        // solhint-disable-next-line max-line-length

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = address(token).call(data);
        require(success, "SafeERC20: low-level call failed");

        if (returndata.length > 0) {
            // Return data is optional
            // solhint-disable-next-line max-line-length
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}
"
    },
    "contracts/YakAdapter.sol": {
      "content": "//       ╟╗                                                                      ╔╬
//       ╞╬╬                                                                    ╬╠╬
//      ╔╣╬╬╬                                                                  ╠╠╠╠╦
//     ╬╬╬╬╬╩                                                                  ╘╠╠╠╠╬
//    ║╬╬╬╬╬                                                                    ╘╠╠╠╠╬
//    ╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬      ╒╬╬╬╬╬╬╬╜   ╠╠╬╬╬╬╬╬╬         ╠╬╬╬╬╬╬╬    ╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╠
//    ╙╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╕    ╬╬╬╬╬╬╬╜   ╣╠╠╬╬╬╬╬╬╬╬        ╠╬╬╬╬╬╬╬   ╬╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╩
//     ╙╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬  ╔╬╬╬╬╬╬╬    ╔╠╠╠╬╬╬╬╬╬╬╬        ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬╬╬╬╬╠╠╠╠╝╙
//               ╘╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬    ╒╠╠╠╬╠╬╩╬╬╬╬╬╬       ╠╬╬╬╬╬╬╬╣╬╬╬╬╬╬╬╙
//                 ╣╬╬╬╬╬╬╬╬╬╬╠╣     ╣╬╠╠╠╬╩ ╚╬╬╬╬╬╬      ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
//                  ╣╬╬╬╬╬╬╬╬╬╣     ╣╬╠╠╠╬╬   ╣╬╬╬╬╬╬     ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
//                   ╟╬╬╬╬╬╬╬╩      ╬╬╠╠╠╠╬╬╬╬╬╬╬╬╬╬╬     ╠╬╬╬╬╬╬╬╠╬╬╬╬╬╬╬
//                    ╬╬╬╬╬╬╬     ╒╬╬╠╠╬╠╠╬╬╬╬╬╬╬╬╬╬╬╬    ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬
//                    ╬╬╬╬╬╬╬     ╬╬╬╠╠╠╠╝╝╝╝╝╝╝╠╬╬╬╬╬╬   ╠╬╬╬╬╬╬╬  ╚╬╬╬╬╬╬╬╬
//                    ╬╬╬╬╬╬╬    ╣╬╬╬╬╠╠╩       ╘╬╬╬╬╬╬╬  ╠╬╬╬╬╬╬╬   ╙╬╬╬╬╬╬╬╬
//

// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;

import {IAdapter} from "contracts/interface/IAdapter.sol";
import {IERC20} from "contracts/interface/IERC20.sol";
import {SafeERC20} from "contracts/lib/SafeERC20.sol";
import {Maintainable} from "contracts/lib/Maintainable.sol";

/**
 * @title YakAdapter
 * @notice Abstract base contract for DEX adapters
 * @dev Implements common functionality for all adapters including token recovery and safety checks
 */
abstract contract YakAdapter is IAdapter, Maintainable {
    using SafeERC20 for IERC20;

    /**
     * @notice Thrown when a zero address is provided
     */
    error AddressZero();

    /**
     * @notice Thrown when ETH transfer fails
     */
    error ETHTransferFailed();

    /**
     * @notice Thrown when adapter name is empty
     */
    error InvalidAdapterName();

    /**
     * @notice Thrown when query parameters are invalid
     */
    error InvalidQuery();

    /**
     * @notice Thrown when trying to recover zero amount
     */
    error NothingToRecover();

    /**
     * @notice Thrown when swap output is less than required
     * @param amountOut Actual output amount
     * @param requiredAmount Required minimum output
     */
    error InsufficientAmountOut(uint256 amountOut, uint256 requiredAmount);

    /**
     * @notice Emitted when a swap is executed through the adapter
     * @param _tokenFrom Input token address
     * @param _tokenTo Output token address
     * @param _amountIn Input amount
     * @param _amountOut Output amount
     */
    event YakAdapterSwap(
        address indexed _tokenFrom, address indexed _tokenTo, uint256 _amountIn, uint256 _amountOut
    );

    /**
     * @notice Emitted when tokens are recovered from the adapter
     * @param _asset Token address (address(0) for ETH)
     * @param amount Amount recovered
     */
    event Recovered(address indexed _asset, uint256 amount);

    /// @notice Name of the adapter
    string public name;

    /**
     * @notice Initializes the adapter with a name
     * @param _name Name of the adapter
     * @dev Name cannot be empty
     */
    constructor(string memory _name) {
        if (bytes(_name).length == 0) revert InvalidAdapterName();
        name = _name;
    }

    /**
     * @notice Revokes token approval for a spender
     * @param _token Token address
     * @param _spender Spender address
     * @dev Only callable by maintainer
     */
    function revokeAllowance(address _token, address _spender) external onlyMaintainer {
        IERC20(_token).safeApprove(_spender, 0);
    }

    /**
     * @notice Recovers ERC20 tokens sent to this contract
     * @param _tokenAddress Token to recover
     * @param _tokenAmount Amount to recover
     * @dev Only callable by maintainer
     */
    function recoverERC20(address _tokenAddress, uint256 _tokenAmount) external onlyMaintainer {
        if (_tokenAmount == 0) revert NothingToRecover();
        IERC20(_tokenAddress).safeTransfer(msg.sender, _tokenAmount);
        emit Recovered(_tokenAddress, _tokenAmount);
    }

    /**
     * @notice Recovers ETH sent to this contract
     * @param 

Tags:
ERC20, ERC165, Proxy, Swap, Upgradeable, Factory|addr:0x2ce78ac2acb582fa6eb8b5455824afc37fdaccfa|verified:true|block:23740650|tx:0x50c77d6518c451084d19abf1476891bec105649682b6791cee1f1be7656ad710|first_check:1762439305

Submitted on: 2025-11-06 15:28:26

Comments

Log in to comment.

No comments yet.