Description:
Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"@openzeppelin/contracts/access/AccessControl.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
"
},
"@openzeppelin/contracts/access/IAccessControl.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
"
},
"@openzeppelin/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
"
},
"@openzeppelin/contracts/utils/introspection/ERC165.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
"
},
"@openzeppelin/contracts/utils/introspection/IERC165.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
},
"@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
"
},
"@openzeppelin/contracts/utils/math/SignedMath.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
"
},
"@openzeppelin/contracts/utils/Strings.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
"
},
"contracts/adapters/AlgebraV2Adapter.sol": {
"content": "// ╟╗ ╔╬
// ╞╬╬ ╬╠╬
// ╔╣╬╬╬ ╠╠╠╠╦
// ╬╬╬╬╬╩ ╘╠╠╠╠╬
// ║╬╬╬╬╬ ╘╠╠╠╠╬
// ╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬ ╒╬╬╬╬╬╬╬╜ ╠╠╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╠
// ╙╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╕ ╬╬╬╬╬╬╬╜ ╣╠╠╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╬╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╩
// ╙╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬ ╔╬╬╬╬╬╬╬ ╔╠╠╠╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬╬╬╬╬╠╠╠╠╝╙
// ╘╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬ ╒╠╠╠╬╠╬╩╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╣╬╬╬╬╬╬╬╙
// ╣╬╬╬╬╬╬╬╬╬╬╠╣ ╣╬╠╠╠╬╩ ╚╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
// ╣╬╬╬╬╬╬╬╬╬╣ ╣╬╠╠╠╬╬ ╣╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
// ╟╬╬╬╬╬╬╬╩ ╬╬╠╠╠╠╬╬╬╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╠╬╬╬╬╬╬╬
// ╬╬╬╬╬╬╬ ╒╬╬╠╠╬╠╠╬╬╬╬╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬
// ╬╬╬╬╬╬╬ ╬╬╬╠╠╠╠╝╝╝╝╝╝╝╠╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╚╬╬╬╬╬╬╬╬
// ╬╬╬╬╬╬╬ ╣╬╬╬╬╠╠╩ ╘╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╙╬╬╬╬╬╬╬╬
//
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity 0.8.30;
import {IERC20} from "contracts/interface/IERC20.sol";
import {SafeERC20} from "contracts/lib/SafeERC20.sol";
import {YakAdapter} from "contracts/YakAdapter.sol";
import {IAlgebraV2Adapter} from "contracts/interface/IAlgebraV2Adapter.sol";
import {IAlgebraV2Factory} from "contracts/interface/IAlgebraV2Factory.sol";
import {IAlgebraV2Pool} from "contracts/interface/IAlgebraV2Pool.sol";
contract AlgebraV2Adapter is YakAdapter, IAlgebraV2Adapter {
using SafeERC20 for IERC20;
uint160 internal constant MAX_SQRT_RATIO =
1_461_446_703_485_210_103_287_273_052_203_988_822_378_723_970_342;
uint160 internal constant MIN_SQRT_RATIO = 4_295_128_739;
address public immutable FACTORY;
address public immutable ROUTER;
address public quoter;
address public tempPoolAddress;
uint256 public quoterGasLimit;
/// @inheritdoc IAlgebraV2Adapter
mapping(bytes32 => address[]) public deployers;
constructor(
string memory _name,
uint256 _quoterGasLimit,
address _router,
address _quoter,
address _factory
) YakAdapter(_name) {
if (_factory == address(0) || _router == address(0)) revert AddressZero();
FACTORY = _factory;
ROUTER = _router;
setQuoterGasLimit(_quoterGasLimit);
setQuoter(_quoter);
}
function algebraSwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata)
external
{
if (msg.sender != tempPoolAddress) revert NotPoolAddress();
if (amount0Delta > 0) {
IERC20(IAlgebraV2Pool(msg.sender).token0()).transfer(msg.sender, uint256(amount0Delta));
} else {
IERC20(IAlgebraV2Pool(msg.sender).token1()).transfer(msg.sender, uint256(amount1Delta));
}
}
function setQuoter(address newQuoter) public onlyMaintainer {
if (newQuoter == address(0)) revert AddressZero();
quoter = newQuoter;
emit QuoterSet(newQuoter);
}
function setQuoterGasLimit(uint256 newGasLimit) public onlyMaintainer {
if (newGasLimit == 0) revert InvalidGasLimit();
quoterGasLimit = newGasLimit;
emit QuoterGasLimitSet(newGasLimit);
}
/// @inheritdoc IAlgebraV2Adapter
function addCustomDeployer(address deployer, address tokenA, address tokenB)
external
onlyMaintainer
{
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
bytes32 key = keccak256(abi.encodePacked(token0, token1));
deployers[key].push(deployer);
}
/// @inheritdoc IAlgebraV2Adapter
function removeCustomDeployer(address tokenA, address tokenB, uint256 index)
external
onlyMaintainer
{
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
bytes32 key = keccak256(abi.encodePacked(token0, token1));
deployers[key][index] = deployers[key][deployers[key].length - 1];
deployers[key].pop();
}
function getQuoteForPool(
address pool,
uint256 amount,
address tokenIn,
address tokenOut,
bool exactIn
) external view returns (uint256) {
QParams memory params;
params.amount = exactIn ? int256(amount) : -int256(amount);
params.tokenIn = tokenIn;
params.tokenOut = tokenOut;
params.exactIn = exactIn;
return getQuoteForPool(pool, params);
}
/// @inheritdoc IAlgebraV2Adapter
function getDeployers(bytes32 key) external view override returns (address[] memory) {
return deployers[key];
}
function _query(uint256 _amount, address _tokenIn, address _tokenOut, bool _exactIn)
internal
view
override
returns (uint256, address)
{
QParams memory params = getQParams(_amount, _tokenIn, _tokenOut, _exactIn);
(uint256 quote,) = getQuoteForBestPool(params);
address recipient = address(this);
return (quote, recipient);
}
function queryWithDeployer(uint256 _amount, address _tokenIn, address _tokenOut, bool _exactIn)
external
view
returns (uint256, address, address)
{
QParams memory params = getQParams(_amount, _tokenIn, _tokenOut, _exactIn);
(uint256 quote, address deployer) = getQuoteForBestPool(params);
address recipient = address(this);
return (quote, recipient, deployer);
}
function _swap(
uint256 _amountIn,
uint256 _amountOut,
address _tokenIn,
address _tokenOut,
address _to
) internal override {
QParams memory params = getQParams(_amountIn, _tokenIn, _tokenOut, true);
uint256 amountOutBefore = IERC20(_tokenOut).balanceOf(address(this));
// Use address(0) as deployer for default pool
uint256 amountOutAfter = _underlyingSwap(params, new bytes(0), address(0));
uint256 amountOut = amountOutAfter - amountOutBefore;
if (amountOut < _amountOut) revert InsufficientAmount();
tempPoolAddress = address(0);
uint256 remainingBalance = IERC20(_tokenIn).balanceOf(address(this));
if (remainingBalance > 0) IERC20(_tokenIn).safeTransfer(ROUTER, remainingBalance);
_returnTo(_tokenOut, amountOut, _to);
}
/**
* @notice External swap function that accepts a deployer address for custom pools
* @param _amountIn Amount of input tokens
* @param _amountOut Minimum amount of output tokens expected
* @param _tokenIn Address of input token
* @param _tokenOut Address of output token
* @param _to Address to receive output tokens
* @param _deployer Address of the deployer for custom pool (address(0) for factory pool)
*/
function swap(
uint256 _amountIn,
uint256 _amountOut,
address _tokenIn,
address _tokenOut,
address _to,
address _deployer
) external {
QParams memory params = getQParams(_amountIn, _tokenIn, _tokenOut, true);
uint256 amountOutBefore = IERC20(_tokenOut).balanceOf(address(this));
uint256 amountOutAfter = _underlyingSwap(params, new bytes(0), _deployer);
uint256 amountOut = amountOutAfter - amountOutBefore;
if (amountOut < _amountOut) revert InsufficientAmount();
tempPoolAddress = address(0);
_returnTo(_tokenOut, amountOut, _to);
emit YakAdapterSwap(_tokenIn, _tokenOut, _amountIn, amountOut);
}
function getQParams(uint256 amount, address tokenIn, address tokenOut, bool exactIn)
internal
pure
returns (QParams memory)
{
return QParams({
amount: exactIn ? int256(amount) : -int256(amount),
tokenIn: tokenIn,
tokenOut: tokenOut,
exactIn: exactIn
});
}
function _underlyingSwap(QParams memory params, bytes memory callbackData, address deployer)
internal
virtual
returns (uint256)
{
// Use deployer if provided, otherwise use the factory pool
if (deployer == address(0)) tempPoolAddress = getBestPool(params.tokenIn, params.tokenOut);
else tempPoolAddress = getCustomPool(deployer, params.tokenIn, params.tokenOut);
(bool zeroForOne, uint160 priceLimit) =
getZeroOneAndSqrtPriceLimitX96(params.tokenIn, params.tokenOut);
(int256 amount0, int256 amount1) = IAlgebraV2Pool(tempPoolAddress).swap(
address(this), zeroForOne, int256(params.amount), priceLimit, callbackData
);
return zeroForOne ? uint256(-amount1) : uint256(-amount0);
}
function _underlyingSwap(QParams memory params, bytes memory callbackData)
internal
virtual
returns (uint256)
{
return _underlyingSwap(params, callbackData, address(0));
}
function getQuoteForBestPool(QParams memory params) internal view returns (uint256, address) {
uint256 quote;
address bestDeployer = address(0); // Default for factory pool
address bestPool = getBestPool(params.tokenIn, params.tokenOut);
if (bestPool != address(0)) quote = getQuoteForPool(bestPool, params);
(address token0, address token1) = params.tokenIn < params.tokenOut
? (params.tokenIn, params.tokenOut)
: (params.tokenOut, params.tokenIn);
bytes32 key = keccak256(abi.encodePacked(token0, token1));
uint256 deployersLength = deployers[key].length;
for (uint256 i; i < deployersLength; ++i) {
address customPool = getCustomPool(deployers[key][i], params.tokenIn, params.tokenOut);
if (customPool != address(0)) {
uint256 tempQuote = getQuoteForPool(customPool, params);
bool isBetter = params.exactIn
? tempQuote > quote
: (tempQuote != 0 && (quote == 0 || tempQuote < quote));
if (isBetter) {
quote = tempQuote;
bestDeployer = deployers[key][i];
}
}
}
return (quote, bestDeployer);
}
/// @dev Returns the default pool address for a given token0 and token1 combination
/// @param token0 Address of token0
/// @param token1 Address of token1
function getBestPool(address token0, address token1) internal view returns (address) {
return IAlgebraV2Factory(FACTORY).poolByPair(token0, token1);
}
/// @dev Returns a custom pool's address for a given deployer, token0 and token1 combination
/// @param deployer Address of the deployer of the pool
/// @param token0 Address of token0
/// @param token1 Address of token1
function getCustomPool(address deployer, address token0, address token1)
internal
view
returns (address)
{
return IAlgebraV2Factory(FACTORY).customPoolByPair(deployer, token0, token1);
}
function getQuoteForPool(address pool, QParams memory params) internal view returns (uint256) {
(bool zeroForOne, uint160 priceLimit) =
getZeroOneAndSqrtPriceLimitX96(params.tokenIn, params.tokenOut);
(int256 amount0, int256 amount1) = getQuoteSafe(pool, zeroForOne, params.amount, priceLimit);
return params.exactIn
? (zeroForOne ? uint256(-amount1) : uint256(-amount0))
: (zeroForOne ? uint256(amount0) : uint256(amount1));
}
function getQuoteSafe(address pool, bool zeroForOne, int256 amount, uint160 priceLimit)
internal
view
returns (int256, int256)
{
bytes memory calldata_ = abi.encodeWithSignature(
"quote(address,bool,int256,uint160)", pool, zeroForOne, amount, priceLimit
);
(bool success, bytes memory data) = staticCallQuoterRaw(calldata_);
int256 amount0;
int256 amount1;
if (success) (amount0, amount1) = abi.decode(data, (int256, int256));
return (amount0, amount1);
}
function staticCallQuoterRaw(bytes memory calldata_)
internal
view
returns (bool, bytes memory)
{
(bool success, bytes memory data) = quoter.staticcall{gas: quoterGasLimit}(calldata_);
return (success, data);
}
function getZeroOneAndSqrtPriceLimitX96(address tokenIn, address tokenOut)
internal
pure
returns (bool, uint160)
{
bool zeroForOne = tokenIn < tokenOut;
uint160 sqrtPriceLimitX96 = zeroForOne ? MIN_SQRT_RATIO + 1 : MAX_SQRT_RATIO - 1;
return (zeroForOne, sqrtPriceLimitX96);
}
}
"
},
"contracts/interface/IAdapter.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title IAdapter
* @author Yak Exchange
* @notice Interface for DEX adapter contracts that integrate various AMMs
* @dev Each adapter implements swap functionality for a specific DEX protocol
*/
interface IAdapter {
/**
* @notice Returns the name of the adapter
* @return name The adapter's descriptive name (e.g., "UniswapV2Adapter")
*/
function name() external view returns (string memory);
/**
* @notice Executes a token swap through the adapter's underlying DEX
* @param _amountIn Amount of input tokens to swap
* @param _amountOut Minimum amount of output tokens expected
* @param _fromToken Address of the input token
* @param _toToken Address of the output token
* @param _to Address that will receive the output tokens
* @dev Adapter must ensure _to receives at least _amountOut tokens
*/
function swap(uint256 _amountIn, uint256 _amountOut, address _fromToken, address _toToken, address _to) external;
/**
* @notice Queries the adapter for expected swap output/input amount
* @param _amount Input amount (if exactIn) or output amount (if !exactIn)
* @param _tokenIn Address of the input token
* @param _tokenOut Address of the output token
* @param _exactIn True for exact input quote, false for exact output quote
* @return amountOut The output amount (if exactIn) or required input amount (if !exactIn)
* @return recipient The address that should receive tokens for this adapter
* @dev Should return (0, address(0)) if swap is not available
*/
function query(uint256 _amount, address _tokenIn, address _tokenOut, bool _exactIn)
external
view
returns (uint256 amountOut, address recipient);
}
"
},
"contracts/interface/IAlgebraV2Adapter.sol": {
"content": "// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;
interface IAlgebraV2Adapter {
/// @dev Output amount is lower than expected amount out
error InsufficientAmount();
/// @dev Thrown when the caller is not the pool address
error NotPoolAddress();
/// @dev Event emitted when the quoter is set
event QuoterSet(address quoter);
/// @dev Event emitted when an invalid quoter gas limit is set
error InvalidGasLimit();
/// @dev Event emitted when the quoter gas limit is updated
event QuoterGasLimitSet(uint256 newGasLimit);
/// @dev Parameters struct for a quote
struct QParams {
address tokenIn;
address tokenOut;
int256 amount;
bool exactIn;
}
/// @notice Returns an address for a given key and index combination
/// @param key The keccak256 key generated by encoding tokenA and tokenB
/// @param index The index of the array to retrieve the address from
function deployers(bytes32 key, uint256 index) external view returns (address);
/// @notice Returns list of whitelisted deployers for a given tokenA/tokenB combination
/// @param key Keccack256 hash of tokenA and tokenB encoded addresses
function getDeployers(bytes32 key) external view returns (address[] memory);
/// @notice Whitelists a custom deployer for a given tokenA and tokenB combination
/// @param deployer Address of deployer of pool
/// @param tokenA The address of tokenA
/// @param tokenB The address of tokenB
function addCustomDeployer(address deployer, address tokenA, address tokenB) external;
/// @notice Removes a whitelisted custom deployer for a given tokenA and tokenB combination
/// @param tokenA The address of tokenA
/// @param tokenB The address of tokenB
/// @param index Index in the list of whitelisted deployers for the given pool
function removeCustomDeployer(address tokenA, address tokenB, uint256 index) external;
/// @notice Swaps tokens using a specific deployer's pool
/// @param amountIn Amount of input tokens
/// @param amountOut Minimum amount of output tokens expected
/// @param tokenIn Address of input token
/// @param tokenOut Address of output token
/// @param to Address to receive output tokens
/// @param deployer Address of the deployer for custom pool (address(0) for factory pool)
function swap(
uint256 amountIn,
uint256 amountOut,
address tokenIn,
address tokenOut,
address to,
address deployer
) external;
/// @notice Queries the adapter for swap quote and returns the deployer info
/// @param amount Input amount (if exactIn) or output amount (if !exactIn)
/// @param tokenIn Address of the input token
/// @param tokenOut Address of the output token
/// @param exactIn True for exact input quote, false for exact output quote
/// @return quoteAmount The output amount (if exactIn) or required input amount (if !exactIn)
/// @return recipient The address that should receive tokens for this adapter
/// @return deployer The deployer address for custom pool (address(0) for factory pool)
function queryWithDeployer(uint256 amount, address tokenIn, address tokenOut, bool exactIn)
external
view
returns (uint256 quoteAmount, address recipient, address deployer);
}
"
},
"contracts/interface/IAlgebraV2Factory.sol": {
"content": "// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;
interface IAlgebraV2Factory {
function poolByPair(address token0, address token1) external view returns (address);
function customPoolByPair(address deployer, address token0, address token1) external view returns (address);
}
"
},
"contracts/interface/IAlgebraV2Pool.sol": {
"content": "// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;
interface IAlgebraV2Pool {
function swap(
address recipient,
bool zeroToOne,
int256 amountRequired,
uint160 limitSqrtPrice,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
function token0() external view returns (address);
function token1() external view returns (address);
}
"
},
"contracts/interface/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IERC20 {
event Approval(address, address, uint256);
event Transfer(address, address, uint256);
function name() external view returns (string memory);
function decimals() external view returns (uint8);
function transferFrom(
address,
address,
uint256
) external returns (bool);
function allowance(address, address) external view returns (uint256);
function approve(address, uint256) external returns (bool);
function transfer(address, uint256) external returns (bool);
function balanceOf(address) external view returns (uint256);
function nonces(address) external view returns (uint256); // Only tokens that support permit
function permit(
address,
address,
uint256,
uint256,
uint8,
bytes32,
bytes32
) external; // Only tokens that support permit
function swap(address, uint256) external; // Only Avalanche bridge tokens
function swapSupply(address) external view returns (uint256); // Only Avalanche bridge tokens
function totalSupply() external view returns (uint256);
}
"
},
"contracts/lib/Maintainable.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {AccessControl, Context} from "@openzeppelin/contracts/access/AccessControl.sol";
/**
* @dev Contract module which extends the basic access control mechanism of Ownable
* to include many maintainers, whom only the owner (DEFAULT_ADMIN_ROLE) may add and
* remove.
*
* By default, the owner account will be the one that deploys the contract. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available this modifier:
* `onlyMaintainer`, which can be applied to your functions to restrict their use to
* the accounts with the role of maintainer.
*/
abstract contract Maintainable is Context, AccessControl {
error OnlyMaintainer();
bytes32 public constant MAINTAINER_ROLE = keccak256("MAINTAINER_ROLE");
constructor() {
address msgSender = _msgSender();
// members of the DEFAULT_ADMIN_ROLE alone may revoke and grant role membership
_setupRole(DEFAULT_ADMIN_ROLE, msgSender);
_setupRole(MAINTAINER_ROLE, msgSender);
}
function addMaintainer(address addedMaintainer) public virtual {
grantRole(MAINTAINER_ROLE, addedMaintainer);
}
function removeMaintainer(address removedMaintainer) public virtual {
revokeRole(MAINTAINER_ROLE, removedMaintainer);
}
function renounceRole(bytes32 role) public virtual {
address msgSender = _msgSender();
renounceRole(role, msgSender);
}
function transferOwnership(address newOwner) public virtual {
address msgSender = _msgSender();
grantRole(DEFAULT_ADMIN_ROLE, newOwner);
renounceRole(DEFAULT_ADMIN_ROLE, msgSender);
}
modifier onlyMaintainer() {
address msgSender = _msgSender();
if (!hasRole(MAINTAINER_ROLE, msgSender)) revert OnlyMaintainer();
_;
}
}
"
},
"contracts/lib/SafeERC20.sol": {
"content": "// This is a simplified version of OpenZepplin's SafeERC20 library
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma experimental ABIEncoderV2;
import {IERC20} from "contracts/interface/IERC20.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(
token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
);
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract),
* relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be
* false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking
// mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
"
},
"contracts/YakAdapter.sol": {
"content": "// ╟╗ ╔╬
// ╞╬╬ ╬╠╬
// ╔╣╬╬╬ ╠╠╠╠╦
// ╬╬╬╬╬╩ ╘╠╠╠╠╬
// ║╬╬╬╬╬ ╘╠╠╠╠╬
// ╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬ ╒╬╬╬╬╬╬╬╜ ╠╠╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╠
// ╙╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╕ ╬╬╬╬╬╬╬╜ ╣╠╠╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╬╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╩
// ╙╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬ ╔╬╬╬╬╬╬╬ ╔╠╠╠╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬╬╬╬╬╠╠╠╠╝╙
// ╘╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬ ╒╠╠╠╬╠╬╩╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╣╬╬╬╬╬╬╬╙
// ╣╬╬╬╬╬╬╬╬╬╬╠╣ ╣╬╠╠╠╬╩ ╚╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
// ╣╬╬╬╬╬╬╬╬╬╣ ╣╬╠╠╠╬╬ ╣╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
// ╟╬╬╬╬╬╬╬╩ ╬╬╠╠╠╠╬╬╬╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╠╬╬╬╬╬╬╬
// ╬╬╬╬╬╬╬ ╒╬╬╠╠╬╠╠╬╬╬╬╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬
// ╬╬╬╬╬╬╬ ╬╬╬╠╠╠╠╝╝╝╝╝╝╝╠╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╚╬╬╬╬╬╬╬╬
// ╬╬╬╬╬╬╬ ╣╬╬╬╬╠╠╩ ╘╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╙╬╬╬╬╬╬╬╬
//
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;
import {IAdapter} from "contracts/interface/IAdapter.sol";
import {IERC20} from "contracts/interface/IERC20.sol";
import {SafeERC20} from "contracts/lib/SafeERC20.sol";
import {Maintainable} from "contracts/lib/Maintainable.sol";
/**
* @title YakAdapter
* @notice Abstract base contract for DEX adapters
* @dev Implements common functionality for all adapters including token recovery and safety checks
*/
abstract contract YakAdapter is IAdapter, Maintainable {
using SafeERC20 for IERC20;
/**
* @notice Thrown when a zero address is provided
*/
error AddressZero();
/**
* @notice Thrown when ETH transfer fails
*/
error ETHTransferFailed();
/**
* @notice Thrown when adapter name is empty
*/
error InvalidAdapterName();
/**
* @notice Thrown when query parameters are invalid
*/
error InvalidQuery();
/**
* @notice Thrown when trying to recover zero amount
*/
error NothingToRecover();
/**
* @notice Thrown when swap output is less than required
* @param amountOut Actual output amount
* @param requiredAmount Required minimum output
*/
error InsufficientAmountOut(uint256 amountOut, uint256 requiredAmount);
/**
* @notice Emitted when a swap is executed through the adapter
* @param _tokenFrom Input token address
* @param _tokenTo Output token address
* @param _amountIn Input amount
* @param _amountOut Output amount
*/
event YakAdapterSwap(
address indexed _tokenFrom, address indexed _tokenTo, uint256 _amountIn, uint256 _amountOut
);
/**
* @notice Emitted when tokens are recovered from the adapter
* @param _asset Token address (address(0) for ETH)
* @param amount Amount recovered
*/
event Recovered(address indexed _asset, uint256 amount);
/// @notice Name of the adapter
string public name;
/**
* @notice Initializes the adapter with a name
* @param _name Name of the adapter
* @dev Name cannot be empty
*/
constructor(string memory _name) {
if (bytes(_name).length == 0) revert InvalidAdapterName();
name = _name;
}
/**
* @notice Revokes token approval for a spender
* @param _token Token address
* @param _spender Spender address
* @dev Only callable by maintainer
*/
function revokeAllowance(address _token, address _spender) external onlyMaintainer {
IERC20(_token).safeApprove(_spender, 0);
}
/**
* @notice Recovers ERC20 tokens sent to this contract
* @param _tokenAddress Token to recover
* @param _tokenAmount Amount to recover
* @dev Only callable by maintainer
*/
function recoverERC20(address _tokenAddress, uint256 _tokenAmount) external onlyMaintainer {
if (_tokenAmount == 0) revert NothingToRecover();
IERC20(_tokenAddress).safeTransfer(msg.sender, _tokenAmount);
emit Recovered(_tokenAddress, _tokenAmount);
}
/**
* @notice Recovers ETH sent to this contract
* @param
Submitted on: 2025-11-06 15:28:26
Comments
Log in to comment.
No comments yet.