Description:
Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"@openzeppelin/contracts/access/AccessControl.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
"
},
"@openzeppelin/contracts/access/IAccessControl.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
"
},
"@openzeppelin/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
"
},
"@openzeppelin/contracts/utils/introspection/ERC165.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
"
},
"@openzeppelin/contracts/utils/introspection/IERC165.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
},
"@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
"
},
"@openzeppelin/contracts/utils/math/SignedMath.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
"
},
"@openzeppelin/contracts/utils/Strings.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
"
},
"contracts/CypherYakRouter.sol": {
"content": "// ╟╗ ╔╬
// ╞╬╬ ╬╠╬
// ╔╣╬╬╬ ╠╠╠╠╦
// ╬╬╬╬╬╩ ╘╠╠╠╠╬
// ║╬╬╬╬╬ ╘╠╠╠╠╬
// ╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬ ╒╬╬╬╬╬╬╬╜ ╠╠╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╠
// ╙╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╕ ╬╬╬╬╬╬╬╜ ╣╠╠╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╬╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╩
// ╙╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬ ╔╬╬╬╬╬╬╬ ╔╠╠╠╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬╬╬╬╬╠╠╠╠╝╙
// ╘╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬ ╒╠╠╠╬╠╬╩╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╣╬╬╬╬╬╬╬╙
// ╣╬╬╬╬╬╬╬╬╬╬╠╣ ╣╬╠╠╠╬╩ ╚╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
// ╣╬╬╬╬╬╬╬╬╬╣ ╣╬╠╠╠╬╬ ╣╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
// ╟╬╬╬╬╬╬╬╩ ╬╬╠╠╠╠╬╬╬╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬╠╬╬╬╬╬╬╬
// ╬╬╬╬╬╬╬ ╒╬╬╠╠╬╠╠╬╬╬╬╬╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬
// ╬╬╬╬╬╬╬ ╬╬╬╠╠╠╠╝╝╝╝╝╝╝╠╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╚╬╬╬╬╬╬╬╬
// ╬╬╬╬╬╬╬ ╣╬╬╬╬╠╠╩ ╘╬╬╬╬╬╬╬ ╠╬╬╬╬╬╬╬ ╙╬╬╬╬╬╬╬╬
//
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity 0.8.30;
pragma experimental ABIEncoderV2;
import {IYakRouter, Offer, Query, FormattedOffer, Trade} from "contracts/interface/IYakRouter.sol";
import {IAdapter} from "contracts/interface/IAdapter.sol";
import {IAlgebraV2Adapter} from "contracts/interface/IAlgebraV2Adapter.sol";
import {IERC20} from "contracts/interface/IERC20.sol";
import {IWETH} from "contracts/interface/IWETH.sol";
import {SafeERC20} from "contracts/lib/SafeERC20.sol";
import {OfferUtils} from "contracts/lib/YakViewUtils.sol";
import {Recoverable} from "contracts/lib/Recoverable.sol";
import {SafeERC20} from "contracts/lib/SafeERC20.sol";
/**
* @title CypherYakRouter
* @notice Main router contract for finding optimal swap paths and executing trades
* @dev Inherits from Maintainable for access control and Recoverable for token recovery
*/
contract CypherYakRouter is Recoverable, IYakRouter {
using SafeERC20 for IERC20;
using OfferUtils for Offer;
/// @notice Fee denominator for basis point calculations (10000 = 100%)
uint256 public constant FEE_DENOMINATOR = 1e4;
/// @notice Storage slot length in bytes
uint256 public constant SLOT_LENGTH = 32;
/// @notice Address representing native currency (ETH)
address public constant NATIVE = address(0);
/// @notice Name of this router implementation
string public constant NAME = "CypherYakRouter";
/// @notice Wrapped native token address (WETH)
address public immutable WNATIVE;
/// @notice Minimum fee in basis points
uint256 public MIN_FEE = 0;
/// @notice Address that receives protocol fees
address public FEE_CLAIMER;
/// @notice Array of trusted intermediate tokens for multi-hop swaps
address[] public TRUSTED_TOKENS;
/// @notice Array of DEX adapter contracts
address[] public ADAPTERS;
/**
* @notice Ensures transaction is executed before deadline
* @param _deadline Unix timestamp deadline
*/
modifier withDeadline(uint256 _deadline) {
if (_deadline < block.timestamp) revert DeadlinePassed(_deadline, block.timestamp);
_;
}
/**
* @notice Initializes the router with adapters and configuration
* @param _adapters Initial array of adapter addresses
* @param _trustedTokens Initial array of trusted token addresses
* @param _feeClaimer Address to receive fees
* @param _wrapped_native Address of wrapped native token (WETH)
*/
constructor(
address[] memory _adapters,
address[] memory _trustedTokens,
address _feeClaimer,
address _wrapped_native
) {
if (_feeClaimer == address(0) || _wrapped_native == address(0)) revert AddressZero();
setTrustedTokens(_trustedTokens);
setFeeClaimer(_feeClaimer);
setAdapters(_adapters);
WNATIVE = _wrapped_native;
}
// -- SETTERS --
/// @inheritdoc IYakRouter
function setTrustedTokens(address[] memory _trustedTokens) public override onlyMaintainer {
TRUSTED_TOKENS = _trustedTokens;
emit UpdatedTrustedTokens(_trustedTokens);
}
/// @inheritdoc IYakRouter
function setAdapters(address[] memory _adapters) public override onlyMaintainer {
ADAPTERS = _adapters;
emit UpdatedAdapters(_adapters);
}
/// @inheritdoc IYakRouter
function setMinFee(uint256 _fee) external override onlyMaintainer {
if (_fee > FEE_DENOMINATOR / 10) revert FeeAboveMaximum(_fee, FEE_DENOMINATOR / 10);
uint256 oldMinFee = MIN_FEE;
MIN_FEE = _fee;
emit UpdatedMinFee(oldMinFee, _fee);
}
/// @inheritdoc IYakRouter
function setFeeClaimer(address _claimer) public override onlyMaintainer {
if (_claimer == address(0)) revert AddressZero();
address oldClaimer = FEE_CLAIMER;
FEE_CLAIMER = _claimer;
emit UpdatedFeeClaimer(oldClaimer, FEE_CLAIMER);
}
// -- GENERAL --
/// @inheritdoc IYakRouter
function trustedTokensCount() external view override returns (uint256) {
return TRUSTED_TOKENS.length;
}
/// @inheritdoc IYakRouter
function adaptersCount() external view override returns (uint256) {
return ADAPTERS.length;
}
/**
* @notice Fallback function to receive ETH
*/
receive() external payable {}
// -- HELPERS --
/**
* @notice Applies fee deduction to input amount
* @param _amountIn Input amount before fees
* @param _fee Fee in basis points
* @return Amount after fee deduction
*/
function _applyFee(uint256 _amountIn, uint256 _fee) internal view returns (uint256) {
if (_fee < MIN_FEE) revert InsufficientFee(_fee, MIN_FEE);
return (_amountIn * (FEE_DENOMINATOR - _fee)) / FEE_DENOMINATOR;
}
/**
* @notice Wraps native currency to WETH
* @param _amount Amount of native currency to wrap
*/
function _wrap(uint256 _amount) internal {
IWETH(WNATIVE).deposit{value: _amount}();
}
/**
* @notice Unwraps WETH to native currency
* @param _amount Amount of WETH to unwrap
*/
function _unwrap(uint256 _amount) internal {
IWETH(WNATIVE).withdraw(_amount);
}
/**
* @notice Returns tokens to specified address
* @param _token Token address (use address(0) for ETH)
* @param _amount Amount to transfer
* @param _to Recipient address
* @dev Handles both ERC20 tokens and native ETH transfers
*/
function _returnTokensTo(address _token, uint256 _amount, address _to) internal {
if (address(this) != _to) {
if (_token == NATIVE) {
(bool success,) = payable(_to).call{value: _amount}("");
if (!success) revert ETHTransferFailed();
} else {
IERC20(_token).safeTransfer(_to, _amount);
}
}
}
/**
* @notice Transfers tokens from source to destination
* @param token Token address to transfer
* @param _from Source address
* @param _to Destination address
* @param _amount Amount to transfer
* @dev Uses transferFrom if source is not this contract
*/
function _transferFrom(address token, address _from, address _to, uint256 _amount) internal {
if (_from != address(this)) IERC20(token).safeTransferFrom(_from, _to, _amount);
else IERC20(token).safeTransfer(_to, _amount);
}
// -- QUERIES --
/// @inheritdoc IYakRouter
function queryAdapter(
uint256 _amount,
address _tokenIn,
address _tokenOut,
uint8 _index,
bool _exactIn
) external view override returns (uint256, address) {
IAdapter _adapter = IAdapter(ADAPTERS[_index]);
try IAdapter(_adapter).query(_amount, _tokenIn, _tokenOut, _exactIn) returns (
uint256 quoteAmount, address _recipient
) {
return (quoteAmount, _recipient);
} catch {
return (0, address(0));
}
}
/// @inheritdoc IYakRouter
function queryNoSplit(
uint256 _amount,
address _tokenIn,
address _tokenOut,
uint8[] calldata _options,
bool _exactIn
) public view override returns (Query memory) {
Query memory bestQuery;
for (uint8 i; i < _options.length; ++i) {
address _adapter = ADAPTERS[_options[i]];
try IAdapter(_adapter).query(_amount, _tokenIn, _tokenOut, _exactIn) returns (
uint256 quoteAmount, address _recipient
) {
if (
i == 0 || _exactIn
? quoteAmount > bestQuery.amount
: (
quoteAmount != 0
&& (bestQuery.amount == 0 || quoteAmount < bestQuery.amount)
)
) bestQuery = Query(_adapter, _recipient, _tokenIn, _tokenOut, quoteAmount);
} catch {
continue;
}
}
return bestQuery;
}
/// @inheritdoc IYakRouter
function queryNoSplit(uint256 _amount, address _tokenIn, address _tokenOut, bool _exactIn)
public
view
override
returns (Query memory)
{
(Query memory bestQuery,) =
_queryNoSplitWithDeployer(_amount, _tokenIn, _tokenOut, _exactIn);
return bestQuery;
}
/**
* @notice Internal function to query adapters and return deployer info
* @param _amount Amount to swap
* @param _tokenIn Input token address
* @param _tokenOut Output token address
* @param _exactIn True for exact input, false for exact output
* @return bestQuery Best query result
* @return bestDeployer Deployer address for AlgebraV2 custom pools
*/
function _queryNoSplitWithDeployer(
uint256 _amount,
address _tokenIn,
address _tokenOut,
bool _exactIn
) internal view returns (Query memory bestQuery, address bestDeployer) {
uint256 length = ADAPTERS.length;
for (uint8 i; i < length; ++i) {
address _adapter = ADAPTERS[i];
// Try to get quote with deployer info from AlgebraV2Adapter
try IAlgebraV2Adapter(_adapter).queryWithDeployer(
_amount, _tokenIn, _tokenOut, _exactIn
) returns (uint256 quoteAmount, address _recipient, address deployer) {
if (
i == 0 || _exactIn
? quoteAmount > bestQuery.amount
: (
quoteAmount != 0
&& (bestQuery.amount == 0 || quoteAmount < bestQuery.amount)
)
) {
bestQuery = Query(_adapter, _recipient, _tokenIn, _tokenOut, quoteAmount);
bestDeployer = deployer;
}
continue;
} catch {}
// Fallback to regular query for other adapters
try IAdapter(_adapter).query(_amount, _tokenIn, _tokenOut, _exactIn) returns (
uint256 quoteAmount, address _recipient
) {
if (
i == 0 || _exactIn
? quoteAmount > bestQuery.amount
: (
quoteAmount != 0
&& (bestQuery.amount == 0 || quoteAmount < bestQuery.amount)
)
) {
bestQuery = Query(_adapter, _recipient, _tokenIn, _tokenOut, quoteAmount);
bestDeployer = address(0);
}
} catch {
continue;
}
}
return (bestQuery, bestDeployer);
}
/// @inheritdoc IYakRouter
function findBestPath(
uint256 _amount,
address _tokenIn,
address _tokenOut,
address[] memory _trustedTokens,
uint256 _maxSteps,
bool _exactIn
) external view override returns (FormattedOffer memory) {
if (_maxSteps == 0 || _maxSteps >= 5) revert InvalidMaxSteps(_maxSteps);
Offer memory queries = OfferUtils.newOffer(_amount, _exactIn ? _tokenIn : _tokenOut);
uint256 ttLength = TRUSTED_TOKENS.length;
// Concatenate default and additional trusted tokens
address[] memory _allTrustedTokens = new address[](ttLength + _trustedTokens.length);
for (uint256 i; i < ttLength; ++i) {
_allTrustedTokens[i] = TRUSTED_TOKENS[i];
}
for (uint256 i; i < _trustedTokens.length; ++i) {
_allTrustedTokens[ttLength + i] = _trustedTokens[i];
}
// Initialize empty array to track used pools
bytes32[] memory usedPools = new bytes32[](0);
queries = _findBestPath(
_amount, _tokenIn, _tokenOut, _allTrustedTokens, _maxSteps, queries, _exactIn, usedPools
);
// If no paths are found return empty struct
if (queries.adapters.length == 0) {
queries.amounts = "";
queries.path = "";
}
return queries.format();
}
/**
* @notice Internal recursive function to find optimal swap path
* @param _amount Amount to swap
* @param _tokenIn Input token address
* @param _tokenOut Output token address
* @param _trustedTokens Array of intermediate tokens to consider
* @param _maxSteps Maximum hops allowed
* @param _queries Current path being built
* @param _exactIn True for exact input, false for exact output
* @param _usedPools Array of pool hashes already used in the path
* @return Optimal swap path offer
* @dev Recursively explores paths through trusted tokens, avoiding duplicate pools
*/
function _findBestPath(
uint256 _amount,
address _tokenIn,
address _tokenOut,
address[] memory _trustedTokens,
uint256 _maxSteps,
Offer memory _queries,
bool _exactIn,
bytes32[] memory _usedPools
) internal view returns (Offer memory) {
Offer memory bestOption = _queries.clone();
uint256 bestAmount;
// First check if there is a path directly from tokenIn to tokenOut
(Query memory queryDirect, address deployer) =
_queryNoSplitWithDeployer(_amount, _tokenIn, _tokenOut, _exactIn);
if (queryDirect.amount > 0) {
// Check if this pool has already been used
bytes32 poolHash = _getPoolHash(queryDirect.adapter, _tokenIn, _tokenOut, deployer);
if (!_isPoolUsed(poolHash, _usedPools)) {
if (_exactIn) {
bestOption.addToTail(
queryDirect.amount,
queryDirect.adapter,
queryDirect.recipient,
queryDirect.tokenOut,
deployer
);
} else {
// For exactOut: when adding to head, we add the input token since path goes
// tokenIn
// -> tokenOut
bestOption.addToHead(
queryDirect.amount,
queryDirect.adapter,
queryDirect.recipient,
queryDirect.tokenIn,
deployer
);
}
bestAmount = queryDirect.amount;
}
}
// Only check the rest if they would go beyond step limit (Need at least 2 more steps)
if (_maxSteps > 1 && _queries.adapters.length / SLOT_LENGTH <= _maxSteps - 2) {
// Check for paths that pass through trusted tokens
for (uint256 i; i < _trustedTokens.length; ++i) {
if (_exactIn ? (_tokenIn == _trustedTokens[i]) : (_tokenOut == _trustedTokens[i])) {
continue;
}
Query memory bestSwap;
uint256 swapAmount;
address swapDeployer;
if (_exactIn) {
// For exactIn: find swap from tokenIn to trusted token
(bestSwap, swapDeployer) =
_queryNoSplitWithDeployer(_amount, _tokenIn, _trustedTokens[i], _exactIn);
swapAmount = bestSwap.amount;
} else {
// For exactOut: find swap from trusted token to tokenOut
(bestSwap, swapDeployer) =
_queryNoSplitWithDeployer(_amount, _trustedTokens[i], _tokenOut, _exactIn);
swapAmount = bestSwap.amount;
}
if (swapAmount == 0) continue;
// Check if this pool has already been used
bytes32 poolHash;
if (_exactIn) {
poolHash =
_getPoolHash(bestSwap.adapter, _tokenIn, _trustedTokens[i], swapDeployer);
} else {
poolHash =
_getPoolHash(bestSwap.adapter, _trustedTokens[i], _tokenOut, swapDeployer);
}
if (_isPoolUsed(poolHash, _usedPools)) continue;
// Explore options that connect the current path
Offer memory newOffer = _queries.clone();
// Add this pool to the used pools for the recursive call
bytes32[] memory newUsedPools = _addUsedPool(poolHash, _usedPools);
if (_exactIn) {
// For exactIn: add first hop to tail, then recurse forward
newOffer.addToTail(
swapAmount,
bestSwap.adapter,
bestSwap.recipient,
bestSwap.tokenOut,
swapDeployer
);
newOffer = _findBestPath(
swapAmount,
_trustedTokens[i],
_tokenOut,
_trustedTokens,
_maxSteps,
newOffer,
_exactIn,
newUsedPools
);
} else {
// For exactOut: add last hop to head, then recurse backward
// When building exactOut path, we need to add the tokenIn from the perspective
// of the swap direction (trustedToken -> tokenOut means trustedToken is
// tokenIn)
newOffer.addToHead(
swapAmount,
bestSwap.adapter,
bestSwap.recipient,
bestSwap.tokenIn,
swapDeployer
);
newOffer = _findBestPath(
swapAmount,
_tokenIn,
_trustedTokens[i],
_trustedTokens,
_maxSteps,
newOffer,
_exactIn,
newUsedPools
);
}
bool validPath = _exactIn
? (_tokenOut == newOffer.getTokenOut())
: (_tokenIn == newOffer.getTokenIn());
if (validPath) {
uint256 pathAmount = _exactIn
? newOffer.getAmountOut() // Final output amount
: newOffer.getAmountIn(); // First input amount
bool isBetter = (bestAmount == 0)
|| (_exactIn ? pathAmount > bestAmount : pathAmount < bestAmount);
if (isBetter) {
bestAmount = pathAmount;
bestOption = newOffer;
}
}
}
}
return bestOption;
}
/**
* @notice Generates a unique hash for a pool based on adapter, tokens, and deployer
* @param _adapter Address of the adapter
* @param _tokenA First token in the pair
* @param _tokenB Second token in the pair
* @param _deployer Deployer address (address(0) for default pools)
* @return Hash identifying the pool uniquely
*/
function _getPoolHash(address _adapter, address _tokenA, address _tokenB, address _deployer)
internal
pure
returns (bytes32)
{
// Sort tokens to ensure consistent hashing regardless of order
(address token0, address token1) =
_tokenA < _tokenB ? (_tokenA, _tokenB) : (_tokenB, _tokenA);
return keccak256(abi.encodePacked(_adapter, token0, token1, _deployer));
}
/**
* @notice Checks if a pool hash exists in the used pools array
* @param _poolHash Hash of the pool to check
* @param _usedPools Array of already used pool hashes
* @return True if the pool has been used, false otherwise
*/
function _isPoolUsed(bytes32 _poolHash, bytes32[] memory _usedPools)
internal
pure
returns (bool)
{
for (uint256 i = 0; i < _usedPools.length; i++) {
if (_usedPools[i] == _poolHash) return true;
}
return false;
}
/**
* @notice Adds a pool hash to the used pools array
* @param _poolHash Hash of the pool to add
* @param _usedPools Current array of used pools
* @return New array with the pool hash added
*/
function _addUsedPool(bytes32 _poolHash, bytes32[] memory _usedPools)
internal
pure
returns (bytes32[] memory)
{
bytes32[] memory newUsedPools = new bytes32[](_usedPools.length + 1);
for (uint256 i = 0; i < _usedPools.length; i++) {
newUsedPools[i] = _usedPools[i];
}
newUsedPools[_usedPools.length] = _poolHash;
return newUsedPools;
}
// -- SWAPPERS --
/**
* @notice Internal function that executes the swap
* @param _trade Trade parameters
* @param _from Address tokens are swapped from
* @param _fee Fee amount in basis points
* @param _to Address to receive output tokens
* @return amountOut Final output amount
* @dev Handles fee collection and multi-hop execution
*/
function _swapNoSplit(Trade calldata _trade, address _from, uint256 _fee, address _to)
internal
returns (uint256)
{
if (
(_trade.path.length - 1 != _trade.adapters.length)
|| (_trade.recipients.length != _trade.adapters.length)
|| (_trade.deployers.length > 0 && _trade.deployers.length != _trade.adapters.length)
) revert TradeLengthDoesNotMatch();
uint256 amountIn = _trade.amountIn;
if (_fee > 0 || MIN_FEE > 0) {
// Transfer fees to the claimer account and decrease initial amount
amountIn = _applyFee(_trade.amountIn, _fee);
_transferFrom(_trade.path[0], _from, FEE_CLAIMER, _trade.amountIn - amountIn);
}
uint256 recipientBalanceBefore = IERC20(_trade.path[0]).balanceOf(_trade.recipients[0]);
_transferFrom(_trade.path[0], _from, _trade.recipients[0], amountIn);
amountIn = IERC20(_trade.path[0]).balanceOf(_trade.recipients[0]) - recipientBalanceBefore;
address tokenOut = _trade.path[_trade.path.length - 1];
uint256 length = _trade.adapters.length;
for (uint256 i; i < length; ++i) {
// All adapters should transfer output token to the following target
// All targets are the adapters, expect for the last swap where tokens are sent out
address targetAddress = i < length - 1 ? _trade.recipients[i + 1] : _to;
recipientBalanceBefore = IERC20(_trade.path[i + 1]).balanceOf(targetAddress);
// Check if we have a deployer for this step (for AlgebraV2Adapter custom pools)
if (_trade.deployers.length > 0 && _trade.deployers[i] != address(0)) {
// Try to call the overloaded swap function with deployer parameter
// (AlgebraV2Adapter)
try IAlgebraV2Adapter(_trade.adapters[i]).swap(
amountIn,
0,
_trade.path[i],
_trade.path[i + 1],
targetAddress,
_trade.deployers[i]
) {} catch {
// If the adapter doesn't support the deployer parameter, fall back to regular
// swap
IAdapter(_trade.adapters[i]).swap(
amountIn, 0, _trade.path[i], _trade.path[i + 1], targetAddress
);
}
} else {
// Regular swap without deployer
IAdapter(_trade.adapters[i]).swap(
amountIn, 0, _trade.path[i], _trade.path[i + 1], targetAddress
);
}
amountIn = IERC20(_trade.path[i + 1]).balanceOf(targetAddress) - recipientBalanceBefore;
}
uint256 amountOut = amountIn;
if (amountOut < _trade.amountOut) {
revert InsufficientOutputAmount(amountOut, _trade.amountOut);
}
emit YakSwap(_trade.path[0], tokenOut, _trade.amountIn, amountOut);
return amountOut;
}
/// @inheritdoc IYakRouter
function swapNoSplit(Trade calldata _trade, uint256 _fee, uint256 _deadline, address _to)
public
override
withDeadline(_deadline)
{
_swapNoSplit(_trade, msg.sender, _fee, _to);
}
/// @inheritdoc IYakRouter
function swapNoSplitFromETH(Trade calldata _trade, uint256 _fee, uint256 _deadline, address _to)
external
payable
override
withDeadline(_deadline)
{
if (msg.value != _trade.amountIn) revert IncorrectETHAmount(msg.value, _trade.amountIn);
if (_trade.path[0] != WNATIVE) revert PathDoesNotBeginWithWETH(_trade.path[0]);
_wrap(_trade.amountIn);
_swapNoSplit(_trade, address(this), _fee, _to);
}
/// @inheritdoc IYakRouter
function swapNoSplitToETH(Trade calldata _trade, uint256 _fee, uint256 _deadline, address _to)
public
override
withDeadline(_deadline)
{
if (_trade.path[_trade.path.length - 1] != WNATIVE) {
revert PathDoesNotEndWithWETH(_trade.path[_trade.path.length - 1]);
}
uint256 returnAmount = _swapNoSplit(_trade, msg.sender, _fee, address(this));
_unwrap(returnAmount);
_returnTokensTo(NATIVE, returnAmount, _to);
}
/// @inheritdoc IYakRouter
function swapNoSplitWithPermit(
Trade calldata _trade,
uint256 _fee,
uint256 _deadline,
address _to,
uint8 _v,
bytes32 _r,
bytes32 _s
) external override {
try IERC20(_trade.path[0]).permit(
msg.sender, address(this), _trade.amountIn, _deadline, _v, _r, _s
) {
swapNoSplit(_trade, _fee, _deadline, _to);
} catch {
swapNoSplit(_trade, _fee, _deadline, _to);
}
}
/// @inheritdoc IYakRouter
function swapNoSplitToETHWithPermit(
Trade calldata _trade,
uint256 _fee,
uint256 _deadline,
address _to,
uint8 _v,
bytes32 _r,
bytes32 _s
) external override {
try IERC20(_trade.path[0]).permit(
msg.sender, address(this), _trade.amountIn, _deadline, _v, _r, _s
) {
swapNoSplitToETH(_trade, _fee, _deadline, _to);
} catch {
swapNoSplitToETH(_trade, _fee, _deadline, _to);
}
}
}
"
},
"contracts/interface/IAdapter.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title IAdapter
* @author Yak Exchange
* @notice Interface for DEX adapter contracts that integrate various AMMs
* @dev Each adapter implements swap functionality for a specific DEX protocol
*/
interface IAdapter {
/**
* @notice Returns the name of the adapter
* @return name The adapter's descriptive name (e.g., "UniswapV2Adapter")
*/
function name() external view returns (string memory);
/**
* @notice Executes a token swap through the adapter's underlying DEX
* @param _amountIn Amount of input tokens to swap
* @param _amountOut Minimum amount of output tokens expected
* @param _fromToken Address of the input token
* @param _toToken Address of the output token
* @param _to Address that will receive the output tokens
* @dev Adapter must ensure _to receives at least _amountOut tokens
*/
function swap(uint256 _amountIn, uint256 _amountOut, address _fromToken, address _toToken, address _to) external;
/**
* @notice Queries the adapter for expected swap output/input amount
* @param _amount Input amount (if exactIn) or output amount (if !exactIn)
* @param _tokenIn Address of the input token
* @param _tokenOut Address of the output token
* @param _exactIn True for exact input quote, false for exact output quote
* @return amountOut The output amount (if exactIn) or required input amount (if !exactIn)
* @return recipient The address that should receive tokens for this adapter
* @dev Should return (0, address(0)) if swap is not available
*/
function query(uint256 _amount, address _tokenIn, address _tokenOut, bool _exactIn)
external
view
returns (uint256 amountOut, address recipient);
}
"
},
"contracts/interface/IAlgebraV2Adapter.sol": {
"content": "// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;
interface IAlgebraV2Adapter {
/// @dev Output amount is lower than expected amount out
error InsufficientAmount();
/// @dev Thrown when the caller is not the pool address
error NotPoolAddress();
/// @dev Event emitted when the quoter is set
event QuoterSet(address quoter);
/// @dev Event emitted when an invalid quoter gas limit is set
error InvalidGasLimit();
/// @dev Event emitted when the quoter gas limit is updated
event QuoterGasLimitSet(uint256 newGasLimit);
/// @dev Parameters struct for a quote
struct QParams {
address tokenIn;
address tokenOut;
int256 amount;
bool exactIn;
}
/// @notice Returns an address for a given key and index combination
/// @param key The keccak256 key generated by encoding tokenA and tokenB
/// @param index The index of the array to retrieve the address from
function deployers(bytes32 key, uint256 index) external view returns (address);
\
Submitted on: 2025-11-06 15:28:42
Comments
Log in to comment.
No comments yet.