CypherYakRouter

Description:

Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "@openzeppelin/contracts/access/AccessControl.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}
"
    },
    "@openzeppelin/contracts/access/IAccessControl.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}
"
    },
    "@openzeppelin/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
"
    },
    "@openzeppelin/contracts/utils/introspection/ERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
"
    },
    "@openzeppelin/contracts/utils/introspection/IERC165.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
    },
    "@openzeppelin/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/math/SignedMath.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
"
    },
    "@openzeppelin/contracts/utils/Strings.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
"
    },
    "contracts/CypherYakRouter.sol": {
      "content": "//       ╟╗                                                                      ╔╬
//       ╞╬╬                                                                    ╬╠╬
//      ╔╣╬╬╬                                                                  ╠╠╠╠╦
//     ╬╬╬╬╬╩                                                                  ╘╠╠╠╠╬
//    ║╬╬╬╬╬                                                                    ╘╠╠╠╠╬
//    ╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬      ╒╬╬╬╬╬╬╬╜   ╠╠╬╬╬╬╬╬╬         ╠╬╬╬╬╬╬╬    ╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╠
//    ╙╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╕    ╬╬╬╬╬╬╬╜   ╣╠╠╬╬╬╬╬╬╬╬        ╠╬╬╬╬╬╬╬   ╬╬╬╬╬╬╬╬╬╠╠╠╠╠╠╠╩
//     ╙╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬  ╔╬╬╬╬╬╬╬    ╔╠╠╠╬╬╬╬╬╬╬╬        ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬╬╬╬╬╠╠╠╠╝╙
//               ╘╣╬╬╬╬╬╬╬╬╬╬╬╬╬╬    ╒╠╠╠╬╠╬╩╬╬╬╬╬╬       ╠╬╬╬╬╬╬╬╣╬╬╬╬╬╬╬╙
//                 ╣╬╬╬╬╬╬╬╬╬╬╠╣     ╣╬╠╠╠╬╩ ╚╬╬╬╬╬╬      ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
//                  ╣╬╬╬╬╬╬╬╬╬╣     ╣╬╠╠╠╬╬   ╣╬╬╬╬╬╬     ╠╬╬╬╬╬╬╬╬╬╬╬╬╬╬
//                   ╟╬╬╬╬╬╬╬╩      ╬╬╠╠╠╠╬╬╬╬╬╬╬╬╬╬╬     ╠╬╬╬╬╬╬╬╠╬╬╬╬╬╬╬
//                    ╬╬╬╬╬╬╬     ╒╬╬╠╠╬╠╠╬╬╬╬╬╬╬╬╬╬╬╬    ╠╬╬╬╬╬╬╬ ╣╬╬╬╬╬╬╬
//                    ╬╬╬╬╬╬╬     ╬╬╬╠╠╠╠╝╝╝╝╝╝╝╠╬╬╬╬╬╬   ╠╬╬╬╬╬╬╬  ╚╬╬╬╬╬╬╬╬
//                    ╬╬╬╬╬╬╬    ╣╬╬╬╬╠╠╩       ╘╬╬╬╬╬╬╬  ╠╬╬╬╬╬╬╬   ╙╬╬╬╬╬╬╬╬
//

// SPDX-License-Identifier: GPL-3.0-only
pragma solidity 0.8.30;
pragma experimental ABIEncoderV2;

import {IYakRouter, Offer, Query, FormattedOffer, Trade} from "contracts/interface/IYakRouter.sol";
import {IAdapter} from "contracts/interface/IAdapter.sol";
import {IAlgebraV2Adapter} from "contracts/interface/IAlgebraV2Adapter.sol";
import {IERC20} from "contracts/interface/IERC20.sol";
import {IWETH} from "contracts/interface/IWETH.sol";
import {SafeERC20} from "contracts/lib/SafeERC20.sol";
import {OfferUtils} from "contracts/lib/YakViewUtils.sol";
import {Recoverable} from "contracts/lib/Recoverable.sol";
import {SafeERC20} from "contracts/lib/SafeERC20.sol";

/**
 * @title CypherYakRouter
 * @notice Main router contract for finding optimal swap paths and executing trades
 * @dev Inherits from Maintainable for access control and Recoverable for token recovery
 */
contract CypherYakRouter is Recoverable, IYakRouter {
    using SafeERC20 for IERC20;
    using OfferUtils for Offer;

    /// @notice Fee denominator for basis point calculations (10000 = 100%)
    uint256 public constant FEE_DENOMINATOR = 1e4;
    /// @notice Storage slot length in bytes
    uint256 public constant SLOT_LENGTH = 32;
    /// @notice Address representing native currency (ETH)
    address public constant NATIVE = address(0);
    /// @notice Name of this router implementation
    string public constant NAME = "CypherYakRouter";
    /// @notice Wrapped native token address (WETH)
    address public immutable WNATIVE;
    /// @notice Minimum fee in basis points
    uint256 public MIN_FEE = 0;
    /// @notice Address that receives protocol fees
    address public FEE_CLAIMER;
    /// @notice Array of trusted intermediate tokens for multi-hop swaps
    address[] public TRUSTED_TOKENS;
    /// @notice Array of DEX adapter contracts
    address[] public ADAPTERS;

    /**
     * @notice Ensures transaction is executed before deadline
     * @param _deadline Unix timestamp deadline
     */
    modifier withDeadline(uint256 _deadline) {
        if (_deadline < block.timestamp) revert DeadlinePassed(_deadline, block.timestamp);
        _;
    }

    /**
     * @notice Initializes the router with adapters and configuration
     * @param _adapters Initial array of adapter addresses
     * @param _trustedTokens Initial array of trusted token addresses
     * @param _feeClaimer Address to receive fees
     * @param _wrapped_native Address of wrapped native token (WETH)
     */
    constructor(
        address[] memory _adapters,
        address[] memory _trustedTokens,
        address _feeClaimer,
        address _wrapped_native
    ) {
        if (_feeClaimer == address(0) || _wrapped_native == address(0)) revert AddressZero();
        setTrustedTokens(_trustedTokens);
        setFeeClaimer(_feeClaimer);
        setAdapters(_adapters);
        WNATIVE = _wrapped_native;
    }

    // -- SETTERS --

    /// @inheritdoc IYakRouter
    function setTrustedTokens(address[] memory _trustedTokens) public override onlyMaintainer {
        TRUSTED_TOKENS = _trustedTokens;
        emit UpdatedTrustedTokens(_trustedTokens);
    }

    /// @inheritdoc IYakRouter
    function setAdapters(address[] memory _adapters) public override onlyMaintainer {
        ADAPTERS = _adapters;
        emit UpdatedAdapters(_adapters);
    }

    /// @inheritdoc IYakRouter
    function setMinFee(uint256 _fee) external override onlyMaintainer {
        if (_fee > FEE_DENOMINATOR / 10) revert FeeAboveMaximum(_fee, FEE_DENOMINATOR / 10);
        uint256 oldMinFee = MIN_FEE;
        MIN_FEE = _fee;
        emit UpdatedMinFee(oldMinFee, _fee);
    }

    /// @inheritdoc IYakRouter
    function setFeeClaimer(address _claimer) public override onlyMaintainer {
        if (_claimer == address(0)) revert AddressZero();
        address oldClaimer = FEE_CLAIMER;
        FEE_CLAIMER = _claimer;
        emit UpdatedFeeClaimer(oldClaimer, FEE_CLAIMER);
    }

    //  -- GENERAL --

    /// @inheritdoc IYakRouter
    function trustedTokensCount() external view override returns (uint256) {
        return TRUSTED_TOKENS.length;
    }

    /// @inheritdoc IYakRouter
    function adaptersCount() external view override returns (uint256) {
        return ADAPTERS.length;
    }

    /**
     * @notice Fallback function to receive ETH
     */
    receive() external payable {}

    // -- HELPERS --

    /**
     * @notice Applies fee deduction to input amount
     * @param _amountIn Input amount before fees
     * @param _fee Fee in basis points
     * @return Amount after fee deduction
     */
    function _applyFee(uint256 _amountIn, uint256 _fee) internal view returns (uint256) {
        if (_fee < MIN_FEE) revert InsufficientFee(_fee, MIN_FEE);
        return (_amountIn * (FEE_DENOMINATOR - _fee)) / FEE_DENOMINATOR;
    }

    /**
     * @notice Wraps native currency to WETH
     * @param _amount Amount of native currency to wrap
     */
    function _wrap(uint256 _amount) internal {
        IWETH(WNATIVE).deposit{value: _amount}();
    }

    /**
     * @notice Unwraps WETH to native currency
     * @param _amount Amount of WETH to unwrap
     */
    function _unwrap(uint256 _amount) internal {
        IWETH(WNATIVE).withdraw(_amount);
    }

    /**
     * @notice Returns tokens to specified address
     * @param _token Token address (use address(0) for ETH)
     * @param _amount Amount to transfer
     * @param _to Recipient address
     * @dev Handles both ERC20 tokens and native ETH transfers
     */
    function _returnTokensTo(address _token, uint256 _amount, address _to) internal {
        if (address(this) != _to) {
            if (_token == NATIVE) {
                (bool success,) = payable(_to).call{value: _amount}("");
                if (!success) revert ETHTransferFailed();
            } else {
                IERC20(_token).safeTransfer(_to, _amount);
            }
        }
    }

    /**
     * @notice Transfers tokens from source to destination
     * @param token Token address to transfer
     * @param _from Source address
     * @param _to Destination address
     * @param _amount Amount to transfer
     * @dev Uses transferFrom if source is not this contract
     */
    function _transferFrom(address token, address _from, address _to, uint256 _amount) internal {
        if (_from != address(this)) IERC20(token).safeTransferFrom(_from, _to, _amount);
        else IERC20(token).safeTransfer(_to, _amount);
    }

    // -- QUERIES --

    /// @inheritdoc IYakRouter
    function queryAdapter(
        uint256 _amount,
        address _tokenIn,
        address _tokenOut,
        uint8 _index,
        bool _exactIn
    ) external view override returns (uint256, address) {
        IAdapter _adapter = IAdapter(ADAPTERS[_index]);
        try IAdapter(_adapter).query(_amount, _tokenIn, _tokenOut, _exactIn) returns (
            uint256 quoteAmount, address _recipient
        ) {
            return (quoteAmount, _recipient);
        } catch {
            return (0, address(0));
        }
    }

    /// @inheritdoc IYakRouter
    function queryNoSplit(
        uint256 _amount,
        address _tokenIn,
        address _tokenOut,
        uint8[] calldata _options,
        bool _exactIn
    ) public view override returns (Query memory) {
        Query memory bestQuery;
        for (uint8 i; i < _options.length; ++i) {
            address _adapter = ADAPTERS[_options[i]];
            try IAdapter(_adapter).query(_amount, _tokenIn, _tokenOut, _exactIn) returns (
                uint256 quoteAmount, address _recipient
            ) {
                if (
                    i == 0 || _exactIn
                        ? quoteAmount > bestQuery.amount
                        : (
                            quoteAmount != 0
                                && (bestQuery.amount == 0 || quoteAmount < bestQuery.amount)
                        )
                ) bestQuery = Query(_adapter, _recipient, _tokenIn, _tokenOut, quoteAmount);
            } catch {
                continue;
            }
        }
        return bestQuery;
    }

    /// @inheritdoc IYakRouter
    function queryNoSplit(uint256 _amount, address _tokenIn, address _tokenOut, bool _exactIn)
        public
        view
        override
        returns (Query memory)
    {
        (Query memory bestQuery,) =
            _queryNoSplitWithDeployer(_amount, _tokenIn, _tokenOut, _exactIn);
        return bestQuery;
    }

    /**
     * @notice Internal function to query adapters and return deployer info
     * @param _amount Amount to swap
     * @param _tokenIn Input token address
     * @param _tokenOut Output token address
     * @param _exactIn True for exact input, false for exact output
     * @return bestQuery Best query result
     * @return bestDeployer Deployer address for AlgebraV2 custom pools
     */
    function _queryNoSplitWithDeployer(
        uint256 _amount,
        address _tokenIn,
        address _tokenOut,
        bool _exactIn
    ) internal view returns (Query memory bestQuery, address bestDeployer) {
        uint256 length = ADAPTERS.length;
        for (uint8 i; i < length; ++i) {
            address _adapter = ADAPTERS[i];

            // Try to get quote with deployer info from AlgebraV2Adapter
            try IAlgebraV2Adapter(_adapter).queryWithDeployer(
                _amount, _tokenIn, _tokenOut, _exactIn
            ) returns (uint256 quoteAmount, address _recipient, address deployer) {
                if (
                    i == 0 || _exactIn
                        ? quoteAmount > bestQuery.amount
                        : (
                            quoteAmount != 0
                                && (bestQuery.amount == 0 || quoteAmount < bestQuery.amount)
                        )
                ) {
                    bestQuery = Query(_adapter, _recipient, _tokenIn, _tokenOut, quoteAmount);
                    bestDeployer = deployer;
                }
                continue;
            } catch {}

            // Fallback to regular query for other adapters
            try IAdapter(_adapter).query(_amount, _tokenIn, _tokenOut, _exactIn) returns (
                uint256 quoteAmount, address _recipient
            ) {
                if (
                    i == 0 || _exactIn
                        ? quoteAmount > bestQuery.amount
                        : (
                            quoteAmount != 0
                                && (bestQuery.amount == 0 || quoteAmount < bestQuery.amount)
                        )
                ) {
                    bestQuery = Query(_adapter, _recipient, _tokenIn, _tokenOut, quoteAmount);
                    bestDeployer = address(0);
                }
            } catch {
                continue;
            }
        }
        return (bestQuery, bestDeployer);
    }

    /// @inheritdoc IYakRouter
    function findBestPath(
        uint256 _amount,
        address _tokenIn,
        address _tokenOut,
        address[] memory _trustedTokens,
        uint256 _maxSteps,
        bool _exactIn
    ) external view override returns (FormattedOffer memory) {
        if (_maxSteps == 0 || _maxSteps >= 5) revert InvalidMaxSteps(_maxSteps);
        Offer memory queries = OfferUtils.newOffer(_amount, _exactIn ? _tokenIn : _tokenOut);

        uint256 ttLength = TRUSTED_TOKENS.length;
        // Concatenate default and additional trusted tokens
        address[] memory _allTrustedTokens = new address[](ttLength + _trustedTokens.length);
        for (uint256 i; i < ttLength; ++i) {
            _allTrustedTokens[i] = TRUSTED_TOKENS[i];
        }
        for (uint256 i; i < _trustedTokens.length; ++i) {
            _allTrustedTokens[ttLength + i] = _trustedTokens[i];
        }

        // Initialize empty array to track used pools
        bytes32[] memory usedPools = new bytes32[](0);
        queries = _findBestPath(
            _amount, _tokenIn, _tokenOut, _allTrustedTokens, _maxSteps, queries, _exactIn, usedPools
        );
        // If no paths are found return empty struct
        if (queries.adapters.length == 0) {
            queries.amounts = "";
            queries.path = "";
        }
        return queries.format();
    }

    /**
     * @notice Internal recursive function to find optimal swap path
     * @param _amount Amount to swap
     * @param _tokenIn Input token address
     * @param _tokenOut Output token address
     * @param _trustedTokens Array of intermediate tokens to consider
     * @param _maxSteps Maximum hops allowed
     * @param _queries Current path being built
     * @param _exactIn True for exact input, false for exact output
     * @param _usedPools Array of pool hashes already used in the path
     * @return Optimal swap path offer
     * @dev Recursively explores paths through trusted tokens, avoiding duplicate pools
     */
    function _findBestPath(
        uint256 _amount,
        address _tokenIn,
        address _tokenOut,
        address[] memory _trustedTokens,
        uint256 _maxSteps,
        Offer memory _queries,
        bool _exactIn,
        bytes32[] memory _usedPools
    ) internal view returns (Offer memory) {
        Offer memory bestOption = _queries.clone();
        uint256 bestAmount;

        // First check if there is a path directly from tokenIn to tokenOut
        (Query memory queryDirect, address deployer) =
            _queryNoSplitWithDeployer(_amount, _tokenIn, _tokenOut, _exactIn);

        if (queryDirect.amount > 0) {
            // Check if this pool has already been used
            bytes32 poolHash = _getPoolHash(queryDirect.adapter, _tokenIn, _tokenOut, deployer);
            if (!_isPoolUsed(poolHash, _usedPools)) {
                if (_exactIn) {
                    bestOption.addToTail(
                        queryDirect.amount,
                        queryDirect.adapter,
                        queryDirect.recipient,
                        queryDirect.tokenOut,
                        deployer
                    );
                } else {
                    // For exactOut: when adding to head, we add the input token since path goes
                    // tokenIn
                    // -> tokenOut
                    bestOption.addToHead(
                        queryDirect.amount,
                        queryDirect.adapter,
                        queryDirect.recipient,
                        queryDirect.tokenIn,
                        deployer
                    );
                }
                bestAmount = queryDirect.amount;
            }
        }

        // Only check the rest if they would go beyond step limit (Need at least 2 more steps)
        if (_maxSteps > 1 && _queries.adapters.length / SLOT_LENGTH <= _maxSteps - 2) {
            // Check for paths that pass through trusted tokens
            for (uint256 i; i < _trustedTokens.length; ++i) {
                if (_exactIn ? (_tokenIn == _trustedTokens[i]) : (_tokenOut == _trustedTokens[i])) {
                    continue;
                }

                Query memory bestSwap;
                uint256 swapAmount;

                address swapDeployer;
                if (_exactIn) {
                    // For exactIn: find swap from tokenIn to trusted token
                    (bestSwap, swapDeployer) =
                        _queryNoSplitWithDeployer(_amount, _tokenIn, _trustedTokens[i], _exactIn);
                    swapAmount = bestSwap.amount;
                } else {
                    // For exactOut: find swap from trusted token to tokenOut
                    (bestSwap, swapDeployer) =
                        _queryNoSplitWithDeployer(_amount, _trustedTokens[i], _tokenOut, _exactIn);
                    swapAmount = bestSwap.amount;
                }

                if (swapAmount == 0) continue;

                // Check if this pool has already been used
                bytes32 poolHash;
                if (_exactIn) {
                    poolHash =
                        _getPoolHash(bestSwap.adapter, _tokenIn, _trustedTokens[i], swapDeployer);
                } else {
                    poolHash =
                        _getPoolHash(bestSwap.adapter, _trustedTokens[i], _tokenOut, swapDeployer);
                }

                if (_isPoolUsed(poolHash, _usedPools)) continue;

                // Explore options that connect the current path
                Offer memory newOffer = _queries.clone();

                // Add this pool to the used pools for the recursive call
                bytes32[] memory newUsedPools = _addUsedPool(poolHash, _usedPools);

                if (_exactIn) {
                    // For exactIn: add first hop to tail, then recurse forward
                    newOffer.addToTail(
                        swapAmount,
                        bestSwap.adapter,
                        bestSwap.recipient,
                        bestSwap.tokenOut,
                        swapDeployer
                    );
                    newOffer = _findBestPath(
                        swapAmount,
                        _trustedTokens[i],
                        _tokenOut,
                        _trustedTokens,
                        _maxSteps,
                        newOffer,
                        _exactIn,
                        newUsedPools
                    );
                } else {
                    // For exactOut: add last hop to head, then recurse backward
                    // When building exactOut path, we need to add the tokenIn from the perspective
                    // of the swap direction (trustedToken -> tokenOut means trustedToken is
                    // tokenIn)
                    newOffer.addToHead(
                        swapAmount,
                        bestSwap.adapter,
                        bestSwap.recipient,
                        bestSwap.tokenIn,
                        swapDeployer
                    );
                    newOffer = _findBestPath(
                        swapAmount,
                        _tokenIn,
                        _trustedTokens[i],
                        _trustedTokens,
                        _maxSteps,
                        newOffer,
                        _exactIn,
                        newUsedPools
                    );
                }

                bool validPath = _exactIn
                    ? (_tokenOut == newOffer.getTokenOut())
                    : (_tokenIn == newOffer.getTokenIn());

                if (validPath) {
                    uint256 pathAmount = _exactIn
                        ? newOffer.getAmountOut() // Final output amount
                        : newOffer.getAmountIn(); // First input amount

                    bool isBetter = (bestAmount == 0)
                        || (_exactIn ? pathAmount > bestAmount : pathAmount < bestAmount);

                    if (isBetter) {
                        bestAmount = pathAmount;
                        bestOption = newOffer;
                    }
                }
            }
        }
        return bestOption;
    }

    /**
     * @notice Generates a unique hash for a pool based on adapter, tokens, and deployer
     * @param _adapter Address of the adapter
     * @param _tokenA First token in the pair
     * @param _tokenB Second token in the pair
     * @param _deployer Deployer address (address(0) for default pools)
     * @return Hash identifying the pool uniquely
     */
    function _getPoolHash(address _adapter, address _tokenA, address _tokenB, address _deployer)
        internal
        pure
        returns (bytes32)
    {
        // Sort tokens to ensure consistent hashing regardless of order
        (address token0, address token1) =
            _tokenA < _tokenB ? (_tokenA, _tokenB) : (_tokenB, _tokenA);
        return keccak256(abi.encodePacked(_adapter, token0, token1, _deployer));
    }

    /**
     * @notice Checks if a pool hash exists in the used pools array
     * @param _poolHash Hash of the pool to check
     * @param _usedPools Array of already used pool hashes
     * @return True if the pool has been used, false otherwise
     */
    function _isPoolUsed(bytes32 _poolHash, bytes32[] memory _usedPools)
        internal
        pure
        returns (bool)
    {
        for (uint256 i = 0; i < _usedPools.length; i++) {
            if (_usedPools[i] == _poolHash) return true;
        }
        return false;
    }

    /**
     * @notice Adds a pool hash to the used pools array
     * @param _poolHash Hash of the pool to add
     * @param _usedPools Current array of used pools
     * @return New array with the pool hash added
     */
    function _addUsedPool(bytes32 _poolHash, bytes32[] memory _usedPools)
        internal
        pure
        returns (bytes32[] memory)
    {
        bytes32[] memory newUsedPools = new bytes32[](_usedPools.length + 1);
        for (uint256 i = 0; i < _usedPools.length; i++) {
            newUsedPools[i] = _usedPools[i];
        }
        newUsedPools[_usedPools.length] = _poolHash;
        return newUsedPools;
    }

    // -- SWAPPERS --

    /**
     * @notice Internal function that executes the swap
     * @param _trade Trade parameters
     * @param _from Address tokens are swapped from
     * @param _fee Fee amount in basis points
     * @param _to Address to receive output tokens
     * @return amountOut Final output amount
     * @dev Handles fee collection and multi-hop execution
     */
    function _swapNoSplit(Trade calldata _trade, address _from, uint256 _fee, address _to)
        internal
        returns (uint256)
    {
        if (
            (_trade.path.length - 1 != _trade.adapters.length)
                || (_trade.recipients.length != _trade.adapters.length)
                || (_trade.deployers.length > 0 && _trade.deployers.length != _trade.adapters.length)
        ) revert TradeLengthDoesNotMatch();

        uint256 amountIn = _trade.amountIn;
        if (_fee > 0 || MIN_FEE > 0) {
            // Transfer fees to the claimer account and decrease initial amount
            amountIn = _applyFee(_trade.amountIn, _fee);
            _transferFrom(_trade.path[0], _from, FEE_CLAIMER, _trade.amountIn - amountIn);
        }
        uint256 recipientBalanceBefore = IERC20(_trade.path[0]).balanceOf(_trade.recipients[0]);
        _transferFrom(_trade.path[0], _from, _trade.recipients[0], amountIn);
        amountIn = IERC20(_trade.path[0]).balanceOf(_trade.recipients[0]) - recipientBalanceBefore;

        address tokenOut = _trade.path[_trade.path.length - 1];

        uint256 length = _trade.adapters.length;
        for (uint256 i; i < length; ++i) {
            // All adapters should transfer output token to the following target
            // All targets are the adapters, expect for the last swap where tokens are sent out
            address targetAddress = i < length - 1 ? _trade.recipients[i + 1] : _to;

            recipientBalanceBefore = IERC20(_trade.path[i + 1]).balanceOf(targetAddress);

            // Check if we have a deployer for this step (for AlgebraV2Adapter custom pools)
            if (_trade.deployers.length > 0 && _trade.deployers[i] != address(0)) {
                // Try to call the overloaded swap function with deployer parameter
                // (AlgebraV2Adapter)
                try IAlgebraV2Adapter(_trade.adapters[i]).swap(
                    amountIn,
                    0,
                    _trade.path[i],
                    _trade.path[i + 1],
                    targetAddress,
                    _trade.deployers[i]
                ) {} catch {
                    // If the adapter doesn't support the deployer parameter, fall back to regular
                    // swap
                    IAdapter(_trade.adapters[i]).swap(
                        amountIn, 0, _trade.path[i], _trade.path[i + 1], targetAddress
                    );
                }
            } else {
                // Regular swap without deployer
                IAdapter(_trade.adapters[i]).swap(
                    amountIn, 0, _trade.path[i], _trade.path[i + 1], targetAddress
                );
            }
            amountIn = IERC20(_trade.path[i + 1]).balanceOf(targetAddress) - recipientBalanceBefore;
        }
        uint256 amountOut = amountIn;
        if (amountOut < _trade.amountOut) {
            revert InsufficientOutputAmount(amountOut, _trade.amountOut);
        }
        emit YakSwap(_trade.path[0], tokenOut, _trade.amountIn, amountOut);
        return amountOut;
    }

    /// @inheritdoc IYakRouter
    function swapNoSplit(Trade calldata _trade, uint256 _fee, uint256 _deadline, address _to)
        public
        override
        withDeadline(_deadline)
    {
        _swapNoSplit(_trade, msg.sender, _fee, _to);
    }

    /// @inheritdoc IYakRouter
    function swapNoSplitFromETH(Trade calldata _trade, uint256 _fee, uint256 _deadline, address _to)
        external
        payable
        override
        withDeadline(_deadline)
    {
        if (msg.value != _trade.amountIn) revert IncorrectETHAmount(msg.value, _trade.amountIn);
        if (_trade.path[0] != WNATIVE) revert PathDoesNotBeginWithWETH(_trade.path[0]);
        _wrap(_trade.amountIn);
        _swapNoSplit(_trade, address(this), _fee, _to);
    }

    /// @inheritdoc IYakRouter
    function swapNoSplitToETH(Trade calldata _trade, uint256 _fee, uint256 _deadline, address _to)
        public
        override
        withDeadline(_deadline)
    {
        if (_trade.path[_trade.path.length - 1] != WNATIVE) {
            revert PathDoesNotEndWithWETH(_trade.path[_trade.path.length - 1]);
        }
        uint256 returnAmount = _swapNoSplit(_trade, msg.sender, _fee, address(this));
        _unwrap(returnAmount);
        _returnTokensTo(NATIVE, returnAmount, _to);
    }

    /// @inheritdoc IYakRouter
    function swapNoSplitWithPermit(
        Trade calldata _trade,
        uint256 _fee,
        uint256 _deadline,
        address _to,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external override {
        try IERC20(_trade.path[0]).permit(
            msg.sender, address(this), _trade.amountIn, _deadline, _v, _r, _s
        ) {
            swapNoSplit(_trade, _fee, _deadline, _to);
        } catch {
            swapNoSplit(_trade, _fee, _deadline, _to);
        }
    }

    /// @inheritdoc IYakRouter
    function swapNoSplitToETHWithPermit(
        Trade calldata _trade,
        uint256 _fee,
        uint256 _deadline,
        address _to,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external override {
        try IERC20(_trade.path[0]).permit(
            msg.sender, address(this), _trade.amountIn, _deadline, _v, _r, _s
        ) {
            swapNoSplitToETH(_trade, _fee, _deadline, _to);
        } catch {
            swapNoSplitToETH(_trade, _fee, _deadline, _to);
        }
    }
}
"
    },
    "contracts/interface/IAdapter.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * @title IAdapter
 * @author Yak Exchange
 * @notice Interface for DEX adapter contracts that integrate various AMMs
 * @dev Each adapter implements swap functionality for a specific DEX protocol
 */
interface IAdapter {
    /**
     * @notice Returns the name of the adapter
     * @return name The adapter's descriptive name (e.g., "UniswapV2Adapter")
     */
    function name() external view returns (string memory);

    /**
     * @notice Executes a token swap through the adapter's underlying DEX
     * @param _amountIn Amount of input tokens to swap
     * @param _amountOut Minimum amount of output tokens expected
     * @param _fromToken Address of the input token
     * @param _toToken Address of the output token
     * @param _to Address that will receive the output tokens
     * @dev Adapter must ensure _to receives at least _amountOut tokens
     */
    function swap(uint256 _amountIn, uint256 _amountOut, address _fromToken, address _toToken, address _to) external;

    /**
     * @notice Queries the adapter for expected swap output/input amount
     * @param _amount Input amount (if exactIn) or output amount (if !exactIn)
     * @param _tokenIn Address of the input token
     * @param _tokenOut Address of the output token
     * @param _exactIn True for exact input quote, false for exact output quote
     * @return amountOut The output amount (if exactIn) or required input amount (if !exactIn)
     * @return recipient The address that should receive tokens for this adapter
     * @dev Should return (0, address(0)) if swap is not available
     */
    function query(uint256 _amount, address _tokenIn, address _tokenOut, bool _exactIn) 
        external 
        view 
        returns (uint256 amountOut, address recipient);
}
"
    },
    "contracts/interface/IAlgebraV2Adapter.sol": {
      "content": "// SPDX-License-Identifier: GPL-3.0-only

pragma solidity ^0.8.0;

interface IAlgebraV2Adapter {
    /// @dev Output amount is lower than expected amount out
    error InsufficientAmount();

    /// @dev Thrown when the caller is not the pool address
    error NotPoolAddress();

    /// @dev Event emitted when the quoter is set
    event QuoterSet(address quoter);

    /// @dev Event emitted when an invalid quoter gas limit is set
    error InvalidGasLimit();

    /// @dev Event emitted when the quoter gas limit is updated
    event QuoterGasLimitSet(uint256 newGasLimit);

    /// @dev Parameters struct for a quote
    struct QParams {
        address tokenIn;
        address tokenOut;
        int256 amount;
        bool exactIn;
    }

    /// @notice Returns an address for a given key and index combination
    /// @param key The keccak256 key generated by encoding tokenA and tokenB
    /// @param index The index of the array to retrieve the address from
    function deployers(bytes32 key, uint256 index) external view returns (address);
\

Tags:
ERC20, ERC165, Proxy, Swap, Upgradeable, Factory|addr:0x37ca43556bb981ca6827b4a92369a28eb61995e3|verified:true|block:23740663|tx:0xc291482a7494cced16e4c1dd304e9e713218fdbb73316fd5f22ebd45be5e96a0|first_check:1762439322

Submitted on: 2025-11-06 15:28:42

Comments

Log in to comment.

No comments yet.