PoSQLHelloWorld

Description:

Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/examples/PoSQLHelloWorld.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {ParamsBuilder, ProofOfSqlTable} from "../PoSQL.sol";
import {IQueryCallback} from "../IQueryCallback.sol";
import {IQueryRouter} from "../query-router/interfaces/IQueryRouter.sol";

/// @title PoSQLHelloWorld
/// @notice Example "Hello World"-style contract of a Proof of SQL query.
/// @dev This contract uses QueryRouter to pay for and execute the query.
/// the query is a simple SQL query that returns the number of ethereum contracts created by msg.sender.
/// note: make sure that this contract holds SXT enough to cover the query payment. Also this is a simple
/// example and does not include zero address checks and other security checks.

/// @dev to deploy this contract, use the DeployPoSQLHelloWorld script:
/// forge script script/deployPoSQLHelloWorld.s.sol:DeployPoSQLHelloWorld --broadcast --rpc-url=$ETH_RPC_URL --private-key=$PRIVATE_KEY --verify -vvvvv
contract PoSQLHelloWorld is IQueryCallback {
    using SafeERC20 for IERC20;

    /// @notice QueryRouter contract address
    address public immutable QUERY_ROUTER;
    /// @notice Proof of SQL version hash
    bytes32 public immutable VERSION;
    /// @notice SXT token address
    address public immutable SXT;
    /// @notice The ammount of SXT to pay for the query
    uint256 public immutable PAYMENT_AMOUNT;

    uint256 public constant MAX_GAS_PRICE = 1e6;
    uint64 public constant GAS_LIMIT = 1e6;

    /// @dev hex-serialized SQL query plan:
    /// SELECT * FROM TUTORIAL_74334C989D37A3416B850E1DD622BF5410D18674.HELLO_WORLD WHERE LONGITUDE=60
    bytes public constant QUERY_PLAN =
        hex"0000000000000001000000000000003d5455544f5249414c5f373433333443393839443337413334313642383530453144443632324246353431304431383637342e48454c4c4f5f574f524c4400000000000000050000000000000000000000000000000249440000000b000000000000000000000000000000044e414d4500000007000000000000000000000000000000084c4154495455444500000005000000000000000000000000000000094c4f4e4749545544450000000500000000000000000000000000000004415245410000000500000000000000050000000000000002494400000000000000044e414d4500000000000000084c4154495455444500000000000000094c4f4e474954554445000000000000000441524541000000000000000000000000000000020000000000000000000000030000000100000005000000000000003c0000000000000005000000000000000000000000000000000000000000000001000000000000000000000002000000000000000000000003000000000000000000000004";

    constructor(address queryRouter, bytes32 version, address sxt, uint248 amount) {
        QUERY_ROUTER = queryRouter;
        VERSION = version;
        SXT = sxt;
        PAYMENT_AMOUNT = amount;
    }

    /// @notice Pay for and execute a "Hello World"-style query.
    function query() external {
        // 0. pull SXT from the caller (must have approved this contract beforehand)
        IERC20(SXT).safeTransferFrom(msg.sender, address(this), PAYMENT_AMOUNT);

        // 1. approve payment to be spent by QueryRouter, that will cover PoSQLVerifier's fees and fulfillment callback gas.
        // Note: make sure that the caller address holds at least `PAYMENT_AMOUNT` of SXT.
        IERC20(SXT).forceApprove(QUERY_ROUTER, PAYMENT_AMOUNT); // use forceApprove to handle nonzero allowances

        // 2. Assemble the SQL parameters using the `ParamsBuilder` library
        bytes[] memory queryParameters = new bytes[](0);
        bytes memory serializedParams = ParamsBuilder.serializeParamArray(queryParameters);

        // 3. Assemble the request needed to run the query
        IQueryRouter.Query memory queryToRequest = IQueryRouter.Query({
            version: VERSION, innerQuery: QUERY_PLAN, parameters: serializedParams, metadata: hex""
        });

        // 4. Assemble the information needed to call the callback
        IQueryRouter.Callback memory callback = IQueryRouter.Callback({
            maxGasPrice: MAX_GAS_PRICE,
            gasLimit: GAS_LIMIT,
            callbackContract: address(this),
            selector: IQueryCallback.queryCallback.selector,
            callbackData: ""
        });

        // 5. Execute the query.
        IQueryRouter(QUERY_ROUTER) // aderyn-ignore unchecked-return
            .requestQuery(queryToRequest, callback, PAYMENT_AMOUNT, uint64(block.timestamp + 1 hours));
    }

    /// @notice Example event emitting the query result.
    event QueryFulfilled(int64 longitude);

    /// @inheritdoc IQueryCallback
    /// @notice Handle the query result.
    /// @dev This will be called once the query has been executed and verified on-chain.
    function queryCallback(bytes32, bytes calldata queryResult, bytes calldata) external {
        // Use the `ProofOfSqlTable` to deserialize and read data from the result
        (, ProofOfSqlTable.Table memory tableResult) = ProofOfSqlTable.__deserializeFromBytes(queryResult);
        int64 longitude = ProofOfSqlTable.readBigIntColumn(tableResult, 3)[0];
        // Emit the count.
        emit QueryFulfilled(longitude);
    }
}
"
    },
    "dependencies/@openzeppelin-contracts-5.2.0/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "dependencies/@openzeppelin-contracts-5.2.0/token/ERC20/utils/SafeERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}
"
    },
    "src/PoSQL.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/// forge-lint: disable-start(unused-import)
/* solhint-disable no-unused-import */
import {ParamsBuilder} from "sxt-proof-of-sql/src/client/ParamsBuilder.post.sol"; // aderyn-ignore unused-import
import {ProofOfSqlTable} from "sxt-proof-of-sql/src/client/PoSQLTable.post.sol"; // aderyn-ignore unused-import
import {PoSQLVerifier} from "./PoSQLVerifier.sol"; // aderyn-ignore unused-import
/* solhint-enable no-unused-import */
/// forge-lint: disable-end(unused-import)
"
    },
    "src/IQueryCallback.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

// This interface is NOT a required step in the process of writing a Proof of SQL query within your smart contract.
// The only aspect of this interface that is required for your contract is that there be some function with the same
// signature as `queryCallback`. This interface is here for anyone that wants to enforce that the function is on their contract.
interface IQueryCallback {
    /**
     * @notice Callback function for handling successful query results.
     * @dev This function is invoked by the IQueryRouter contract upon successful fulfillment of a query.
     * @param queryHash The unique identifier for the query.
     * @param queryResult The result of the query.
     * @param callbackData Additional data that was originally passed with the query.
     */
    function queryCallback(bytes32 queryHash, bytes calldata queryResult, bytes calldata callbackData) external;
}
"
    },
    "src/query-router/interfaces/IQueryRouter.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/// @title IQueryRouter
/// @author Placeholder
/// @notice Interface for querying external data sources with cryptographic proofs
interface IQueryRouter {
    /// @notice Query details
    /// @param version Query version identifier
    /// @param innerQuery Encoded, version-dependent query payload
    /// @param parameters Encoded parameters for the query
    /// @param metadata Encoded metadata for the query
    struct Query {
        bytes32 version;
        bytes innerQuery;
        bytes parameters;
        bytes metadata;
    }

    /// @notice Callback execution details
    /// @param maxGasPrice Max native gas price allowed for the callback
    /// @param gasLimit Gas limit forwarded to the callback contract
    /// @param callbackContract Address of the contract to call back
    /// @param selector Function selector to call on the callback contract
    /// @param callbackData Opaque callback-specific data passed to the callback
    struct Callback {
        uint256 maxGasPrice;
        uint64 gasLimit;
        address callbackContract;
        bytes4 selector;
        bytes callbackData;
    }

    /// @notice Emitted when a query is requested
    /// @param queryId Unique identifier for the query
    /// @param queryNonce Nonce used when the query was created
    /// @param requester Address that requested the query
    /// @param query Query details
    /// @param callback Callback details
    /// @param paymentAmount Amount of tokens held pending fulfillment
    /// @param timeout Timestamp after which cancellation is allowed
    event QueryRequested(
        bytes32 indexed queryId,
        uint64 indexed queryNonce,
        address indexed requester,
        Query query,
        Callback callback,
        uint256 paymentAmount,
        uint64 timeout
    );

    /// @notice Emitted when a query has been fulfilled (logical fulfillment/result)
    /// @param queryId Unique identifier for the query
    /// @param fulfiller Address that fulfilled the query
    /// @param result The query result data
    event QueryFulfilled(bytes32 indexed queryId, address indexed fulfiller, bytes result);

    /// @notice Emitted when a payout for a fulfilled query occurred (payments/refunds)
    /// @param queryId Unique identifier for the query
    /// @param fulfiller Address that fulfilled the query
    /// @param refundRecipient Address that received a refund (if any)
    /// @param fulfillerAmount Amount paid to the fulfiller for this fulfillment
    /// @param refundAmount Amount refunded to the refundRecipient (if any)
    event PayoutOccurred(
        bytes32 indexed queryId,
        address indexed fulfiller,
        address indexed refundRecipient,
        uint256 fulfillerAmount,
        uint256 refundAmount
    ); // solhint-disable-line gas-indexed-events

    /// @notice Emitted when a query is cancelled
    /// @param queryId Unique identifier for the query
    /// @param refundRecipient Address that received the refund
    /// @param refundAmount Amount refunded
    event QueryCancelled(bytes32 indexed queryId, address indexed refundRecipient, uint256 indexed refundAmount);

    /// @notice Emitted when open fulfillment is toggled
    /// @param enabled Whether open fulfillment is now enabled
    event OpenFulfillmentToggled(bool indexed enabled);

    /// @notice Emitted when the base cost used by the router is updated
    /// @param newBaseCost The new base cost value
    event BaseCostUpdated(uint256 indexed newBaseCost);

    /// @notice Emitted when a version is set
    /// @param version The string version
    /// @param versionHash The keccak256 hash of the version
    /// @param verifier The verifier contract address associated with the version
    event VersionSet(string version, bytes32 indexed versionHash, address indexed verifier);

    /// @notice Thrown when a query is not found or unauthorized cancellation is attempted
    error QueryNotFound(); // aderyn-ignore unused-error

    /// @notice Thrown when a query cancellation is attempted before the timeout
    error QueryTimeoutNotReached(); // aderyn-ignore unused-error

    /// @notice Thrown when the query version is not supported by the router
    error UnsupportedQueryVersion(); // aderyn-ignore unused-error

    /// @notice Register a verifier contract address to a version string
    /// @param version The string version to hash
    /// @param verifier The contract address to associate with the version
    function registerVerifierToVersion(string calldata version, address verifier) external;

    /// @notice Set the base cost for queries
    /// @param newBaseCost The new base cost
    function setBaseCost(uint256 newBaseCost) external;

    /// @notice Cancel a pending query and refund the payment
    /// @param queryId Unique identifier for the query to cancel
    function cancelQuery(bytes32 queryId) external;

    /// @notice Request a query to be executed.
    /// @param query Query struct containing query string, parameters, and version.
    /// @param callback Callback struct containing callback details.
    /// @param paymentAmount Amount of tokens to hold pending fulfillment.
    /// @param timeout Timestamp after which cancellation is allowed
    /// @return queryId Unique ID for this query.
    function requestQuery(Query calldata query, Callback calldata callback, uint256 paymentAmount, uint64 timeout)
        external
        returns (bytes32 queryId);

    /// @notice Fulfill a query by providing its data and proof.
    /// @param query Query struct for the original request.
    /// @param callback Callback struct for the original request.
    /// @param queryNonce Nonce used when the query was created.
    /// @param proof Encoded proof containing the query result and cryptographic proof.
    function fulfillQuery(Query calldata query, Callback calldata callback, uint64 queryNonce, bytes calldata proof)
        external;

    /// @notice Toggle open fulfillment on or off
    /// @param enabled True to allow anyone to fulfill, false to restrict to FULFILLER_ROLE
    function setOpenFulfillment(bool enabled) external;

    /// @notice Verify a query result without executing its callback.
    /// @param query Query struct for the original request.
    /// @param proof Encoded proof containing the query result and cryptographic proof.
    /// @return result The query result data extracted from the proof.
    function verifyQuery(Query calldata query, bytes calldata proof) external view returns (bytes memory result);
}
"
    },
    "dependencies/@openzeppelin-contracts-5.2.0/interfaces/IERC1363.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
"
    },
    "dependencies/sxt-proof-of-sql-0.123.10/src/client/ParamsBuilder.post.sol": {
      "content": "// SPDX-License-Identifier: UNLICENSED
// This is licensed under the Cryptographic Open Software License 1.0
pragma solidity ^0.8.28;

import "../base/Constants.sol";
import "../base/Errors.sol";

/// @title ParamsBuilder
/// @dev Library for constructing an array of sql params
library ParamsBuilder {
    /// @dev Returns a serialized array of parameters
    /// @param arrayOfSerializedParamElements An array of serialized parameters
    /// @return serializedParams The serialized array of parameters
    function serializeParamArray(bytes[] memory arrayOfSerializedParamElements)
        internal
        pure
        returns (bytes memory serializedParams)
    {
        uint256 uncastLength = arrayOfSerializedParamElements.length;
        if (uncastLength > MAX_UINT64) {
            revert Errors.TooManyParameters();
        } else {
            uint64 length = uint64(uncastLength);
            serializedParams = abi.encodePacked(length);
            for (uint64 i = 0; i < length; ++i) {
                serializedParams = abi.encodePacked(serializedParams, arrayOfSerializedParamElements[i]);
            }
        }
    }

    /// @dev Returns an array of parameters
    /// @param serializedParams The serialized parameters
    /// @return params The parameters as scalars
    function deserializeParamArray(bytes calldata serializedParams) internal pure returns (uint256[] memory params) {
        uint64 length;
        assembly {
            length := shr(UINT64_PADDING_BITS, calldataload(serializedParams.offset))
        }
        params = new uint256[](length);

        assembly {
            function exclude_coverage_start_read_data_type() {} // solhint-disable-line no-empty-blocks
            function read_data_type(ptr) -> ptr_out, data_type {
                data_type := shr(UINT32_PADDING_BITS, calldataload(ptr))
                ptr_out := add(ptr, UINT32_SIZE)
                switch data_type
                case 0 { case_const(0, DATA_TYPE_BOOLEAN_VARIANT) }
                case 2 { case_const(2, DATA_TYPE_TINYINT_VARIANT) }
                case 3 { case_const(3, DATA_TYPE_SMALLINT_VARIANT) }
                case 4 { case_const(4, DATA_TYPE_INT_VARIANT) }
                case 5 { case_const(5, DATA_TYPE_BIGINT_VARIANT) }
                case 7 { case_const(7, DATA_TYPE_VARCHAR_VARIANT) }
                case 8 {
                    case_const(8, DATA_TYPE_DECIMAL75_VARIANT)
                    ptr_out := add(ptr_out, UINT8_SIZE) // Skip precision
                    ptr_out := add(ptr_out, INT8_SIZE) // Skip scale
                }
                case 9 {
                    case_const(9, DATA_TYPE_TIMESTAMP_VARIANT)
                    ptr_out := add(ptr_out, UINT32_SIZE) // Skip timeunit
                    ptr_out := add(ptr_out, INT32_SIZE) // Skip timezone
                }
                case 10 { case_const(10, DATA_TYPE_SCALAR_VARIANT) }
                case 11 { case_const(11, DATA_TYPE_VARBINARY_VARIANT) }
                default { err(ERR_UNSUPPORTED_DATA_TYPE_VARIANT) }
            }
            function exclude_coverage_stop_read_data_type() {} // solhint-disable-line no-empty-blocks
            function exclude_coverage_start_case_const() {} // solhint-disable-line no-empty-blocks
            function case_const(lhs, rhs) {
                if sub(lhs, rhs) { err(ERR_INCORRECT_CASE_CONST) }
            }
            function exclude_coverage_stop_case_const() {} // solhint-disable-line no-empty-blocks
            function exclude_coverage_start_err() {} // solhint-disable-line no-empty-blocks
            function err(code) {
                mstore(0, code)
                revert(28, 4)
            }
            function exclude_coverage_stop_err() {} // solhint-disable-line no-empty-blocks
            function exclude_coverage_start_read_entry() {} // solhint-disable-line no-empty-blocks
            // slither-disable-start cyclomatic-complexity
            function read_entry(result_ptr, data_type_variant) -> result_ptr_out, entry {
                result_ptr_out := result_ptr
                switch data_type_variant
                case 0 {
                    case_const(0, DATA_TYPE_BOOLEAN_VARIANT)
                    entry := shr(BOOLEAN_PADDING_BITS, calldataload(result_ptr))
                    if shr(1, entry) { err(ERR_INVALID_BOOLEAN) }
                    result_ptr_out := add(result_ptr, BOOLEAN_SIZE)
                    entry := mod(entry, MODULUS)
                }
                case 2 {
                    case_const(2, DATA_TYPE_TINYINT_VARIANT)
                    entry :=
                        add(MODULUS, signextend(INT8_SIZE_MINUS_ONE, shr(INT8_PADDING_BITS, calldataload(result_ptr))))
                    result_ptr_out := add(result_ptr, INT8_SIZE)
                    entry := mod(entry, MODULUS)
                }
                case 3 {
                    case_const(3, DATA_TYPE_SMALLINT_VARIANT)
                    entry :=
                        add(MODULUS, signextend(INT16_SIZE_MINUS_ONE, shr(INT16_PADDING_BITS, calldataload(result_ptr))))
                    result_ptr_out := add(result_ptr, INT16_SIZE)
                    entry := mod(entry, MODULUS)
                }
                case 4 {
                    case_const(4, DATA_TYPE_INT_VARIANT)
                    entry :=
                        add(MODULUS, signextend(INT32_SIZE_MINUS_ONE, shr(INT32_PADDING_BITS, calldataload(result_ptr))))
                    result_ptr_out := add(result_ptr, INT32_SIZE)
                    entry := mod(entry, MODULUS)
                }
                case 5 {
                    case_const(5, DATA_TYPE_BIGINT_VARIANT)
                    entry :=
                        add(MODULUS, signextend(INT64_SIZE_MINUS_ONE, shr(INT64_PADDING_BITS, calldataload(result_ptr))))
                    result_ptr_out := add(result_ptr, INT64_SIZE)
                    entry := mod(entry, MODULUS)
                }
                case 7 {
                    case_const(7, DATA_TYPE_VARCHAR_VARIANT)
                    result_ptr_out, entry := read_binary(result_ptr)
                }
                case 8 {
                    case_const(8, DATA_TYPE_DECIMAL75_VARIANT)
                    entry := calldataload(result_ptr)
                    result_ptr_out := add(result_ptr, WORD_SIZE)
                    entry := mod(entry, MODULUS)
                }
                case 9 {
                    case_const(9, DATA_TYPE_TIMESTAMP_VARIANT)
                    entry :=
                        add(MODULUS, signextend(INT64_SIZE_MINUS_ONE, shr(INT64_PADDING_BITS, calldataload(result_ptr))))
                    result_ptr_out := add(result_ptr, INT64_SIZE)
                    entry := mod(entry, MODULUS)
                }
                case 10 {
                    case_const(10, DATA_TYPE_SCALAR_VARIANT)
                    entry := calldataload(result_ptr)
                    result_ptr_out := add(result_ptr, WORD_SIZE)
                    entry := mod(entry, MODULUS)
                }
                case 11 {
                    case_const(11, DATA_TYPE_VARBINARY_VARIANT)
                    result_ptr_out, entry := read_binary(result_ptr)
                }
                default { err(ERR_UNSUPPORTED_DATA_TYPE_VARIANT) }
            }
            // slither-disable-end cyclomatic-complexity
            function exclude_coverage_stop_read_entry() {} // solhint-disable-line no-empty-blocks
            function exclude_coverage_start_read_binary() {} // solhint-disable-line no-empty-blocks
            function read_binary(result_ptr) -> result_ptr_out, entry {
                let free_ptr := mload(FREE_PTR)
                let len := shr(UINT64_PADDING_BITS, calldataload(result_ptr))
                result_ptr := add(result_ptr, UINT64_SIZE)

                // temps with their empty‐slice defaults
                entry := 0

                // only run this when len != 0
                if len {
                    calldatacopy(free_ptr, result_ptr, len)
                    let hash_val := keccak256(free_ptr, len)

                    // endian-swap steps
                    hash_val :=
                        or(
                            shr(128, and(hash_val, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000000000000000000000000000)),
                            shl(128, and(hash_val, 0x00000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                        )
                    hash_val :=
                        or(
                            shr(64, and(hash_val, 0xFFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF0000000000000000)),
                            shl(64, and(hash_val, 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF))
                        )
                    hash_val :=
                        or(
                            shr(32, and(hash_val, 0xFFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000)),
                            shl(32, and(hash_val, 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF))
                        )
                    hash_val :=
                        or(
                            shr(16, and(hash_val, 0xFFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000)),
                            shl(16, and(hash_val, 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF))
                        )
                    hash_val :=
                        or(
                            shr(8, and(hash_val, 0xFF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00)),
                            shl(8, and(hash_val, 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF))
                        )

                    entry := and(hash_val, MODULUS_MASK)
                }

                // single assign to named returns
                result_ptr_out := add(result_ptr, len)
            }
            function exclude_coverage_stop_read_binary() {} // solhint-disable-line no-empty-blocks

            let paramsOffset := add(serializedParams.offset, UINT64_SIZE)
            let paramsArray := add(params, WORD_SIZE)
            for {} length { length := sub(length, 1) } {
                let data_type
                paramsOffset, data_type := read_data_type(paramsOffset)
                let entry
                paramsOffset, entry := read_entry(paramsOffset, data_type)
                mstore(paramsArray, entry)
                paramsArray := add(paramsArray, WORD_SIZE)
            }
        }
    }

    /// @dev Serializes a bool parameter
    /// @param param The parameter
    /// @return serializedParam The serialized parameter
    function boolParam(bool param) internal pure returns (bytes memory serializedParam) {
        serializedParam = abi.encodePacked(DATA_TYPE_BOOLEAN_VARIANT, param);
    }

    /// @dev Serializes a tinyint parameter
    /// @param param The parameter
    /// @return serializedParam The serialized parameter
    function tinyIntParam(int8 param) internal pure returns (bytes memory serializedParam) {
        serializedParam = abi.encodePacked(DATA_TYPE_TINYINT_VARIANT, param);
    }

    /// @dev Serializes a smallint parameter
    /// @param param The parameter
    /// @return serializedParam The serialized parameter
    function smallIntParam(int16 param) internal pure returns (bytes memory serializedParam) {
        serializedParam = abi.encodePacked(DATA_TYPE_SMALLINT_VARIANT, param);
    }

    /// @dev Serializes an int32 parameter
    /// @param param The parameter
    /// @return serializedParam The serialized parameter
    function intParam(int32 param) internal pure returns (bytes memory serializedParam) {
        serializedParam = abi.encodePacked(DATA_TYPE_INT_VARIANT, param);
    }

    /// @dev Serializes a bigint parameter
    /// @param param The parameter
    /// @return serializedParam The serialized parameter
    function bigIntParam(int64 param) internal pure returns (bytes memory serializedParam) {
        serializedParam = abi.encodePacked(DATA_TYPE_BIGINT_VARIANT, param);
    }

    /// @dev Serializes a string parameter
    /// @param param The parameter
    /// @return serializedParam The serialized parameter
    function varCharParam(string memory param) internal pure returns (bytes memory serializedParam) {
        uint64 length = uint64(bytes(param).length);
        serializedParam = abi.encodePacked(DATA_TYPE_VARCHAR_VARIANT, length, param);
    }

    /// @dev Serializes a decimal parameter
    /// @param param The parameter
    /// @param precision The precision of the decimal
    /// @param scale The scale of the decimal
    /// @return serializedParam The serialized parameter
    function decimal75Param(uint256 param, uint8 precision, int8 scale)
        internal
        pure
        returns (bytes memory serializedParam)
    {
        serializedParam = abi.encodePacked(DATA_TYPE_DECIMAL75_VARIANT, precision, scale, param);
    }

    /// @dev Serializes a timestamp parameter
    /// @param param The parameter
    /// @return serializedParam The serialized parameter
    function unixTimestampMillisParam(int64 param) internal pure returns (bytes memory serializedParam) {
        serializedParam =
            abi.encodePacked(DATA_TYPE_TIMESTAMP_VARIANT, TIMEUNIT_MILLISECOND_VARIANT, TIMEZONE_UTC, param);
    }

    /// @dev Serializes a scalar parameter
    /// @param param The parameter
    /// @return serializedParam The serialized parameter
    function scalarParam(uint256 param) internal pure returns (bytes memory serializedParam) {
        serializedParam = abi.encodePacked(DATA_TYPE_SCALAR_VARIANT, param);
    }

    /// @dev Serializes a varbinary parameter
    /// @param param The parameter
    /// @return serializedParam The serialized parameter
    function varBinaryParam(bytes memory param) internal pure returns (bytes memory serializedParam) {
        uint64 length = uint64(param.length);
        serializedParam = abi.encodePacked(DATA_TYPE_VARBINARY_VARIANT, length, param);
    }
}
"
    },
    "dependencies/sxt-proof-of-sql-0.123.10/src/client/PoSQLTable.post.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import "../base/Constants.sol";
import "../base/Errors.sol";

/// @title ProofOfSqlTableUtilities
/// @dev Library for handling reading from a proof of sql table
library ProofOfSqlTable {
    enum ColumnType {
        Boolean,
        // Not currently supported
        Uint8,
        TinyInt,
        SmallInt,
        Int,
        BigInt,
        // Not currently supported
        Int128,
        VarChar,
        Decimal75,
        TimeStampTZ,
        Scalar,
        VarBinary
    }

    struct Column {
        string name;
        ColumnType columnType;
        // precision will simply be 0 if it is meaningless for a data type
        uint8 precision;
        // scale will simply be 0 if it is meaningless for a data type
        int8 scale;
        bytes data;
    }

    struct Table {
        Column[] columns;
    }

    /// @notice Reads a result from a proof of sql query into the `Table` struct.
    /// @custom:as-yul-wrapper
    /// #### Wrapped Yul Function
    /// ##### Signature
    /// ```yul
    /// function deserialize_from_bytes(serialized_table) -> table, serialized_table_out
    /// ```
    /// ##### Parameters
    /// * `serialized_table` - The serialized table
    /// ##### Return Values
    /// * `table` - The deserialized table
    /// * `serialized_table_out` - The data that remains after consuming the serialized table
    /// @dev Reads a result from a proof of sql query into memory in a deserialized format.
    /// @param __serializedTable The serialized table
    /// @return __serializedTableOut The data that remains after consuming the serialized table
    /// @return __table The deserialized table
    function __deserializeFromBytes(bytes memory __serializedTable)
        internal
        pure
        returns (bytes memory __serializedTableOut, Table memory __table)
    {
        assembly {
            function exclude_coverage_start_err() {} // solhint-disable-line no-empty-blocks
            function err(code) {
                mstore(0, code)
                revert(28, 4)
            }
            function exclude_coverage_stop_err() {} // solhint-disable-line no-empty-blocks

            function read_column_type(column_data) -> column_type, precision, scale, column_data_out {
                // Retrieve column type as uint8
                column_type := shr(UINT32_PADDING_BITS, mload(column_data))
                column_data := add(column_data, UINT32_SIZE)

                // For decimals, scale and precision must be retrieved
                if eq(column_type, DATA_TYPE_DECIMAL75_VARIANT) {
                    precision := byte(0, mload(column_data))
                    column_data := add(column_data, UINT8_SIZE)
                    scale := byte(0, mload(column_data))
                    column_data := add(column_data, INT8_SIZE)
                }

                if eq(column_type, DATA_TYPE_TIMESTAMP_VARIANT) {
                    // We only support milliseconds for timestamps, for now
                    let time_unit := shr(UINT32_PADDING_BITS, mload(column_data))
                    column_data := add(column_data, UINT32_SIZE)
                    if sub(time_unit, 1) { err(ERR_UNSUPPORTED_DATA_TYPE_VARIANT) }
                    // time unit is serialized by enum variant, so we need to adjust to the correct logical value
                    precision := 3

                    // We only support utc for timestamps, for now
                    let time_standard := shr(INT32_PADDING_BITS, mload(column_data))
                    column_data := add(column_data, INT32_SIZE)
                    if time_standard { err(ERR_UNSUPPORTED_DATA_TYPE_VARIANT) }
                }
                column_data_out := column_data
            }
            function get_byte_array_copy_size(source_ptr, column_length) -> copy_size {
                // No need to retrieve the column length again
                source_ptr := add(source_ptr, UINT64_SIZE)
                for {} column_length { column_length := sub(column_length, 1) } {
                    // Per byte array, we will need to copy the number of bytes in the array plus the number of bytes needed to contain a uint64.
                    let byte_array_length := add(UINT64_SIZE, shr(UINT64_PADDING_BITS, mload(source_ptr)))
                    source_ptr := add(source_ptr, byte_array_length)
                    copy_size := add(copy_size, byte_array_length)
                }
            }
            function get_column_as_bytes(source_ptr, column_type) -> source_ptr_out, column_as_bytes {
                // Allocate space for the byte array
                column_as_bytes := mload(FREE_PTR)

                // Get length
                let column_length := shr(UINT64_PADDING_BITS, mload(source_ptr))

                // Determine how much space the column of data will take
                let copy_size
                switch column_type
                // DATA_TYPE_BOOLEAN_VARIANT
                case 0 { copy_size := mul(column_length, BOOLEAN_SIZE) }
                // DATA_TYPE_TINYINT_VARIANT
                case 2 { copy_size := mul(column_length, INT8_SIZE) }
                // DATA_TYPE_SMALLINT_VARIANT
                case 3 { copy_size := mul(column_length, INT16_SIZE) }
                // DATA_TYPE_INT_VARIANT
                case 4 { copy_size := mul(column_length, INT32_SIZE) }
                // DATA_TYPE_BIGINT_VARIANT
                case 5 { copy_size := mul(column_length, INT64_SIZE) }
                // DATA_TYPE_VARCHAR_VARIANT
                case 7 { copy_size := get_byte_array_copy_size(source_ptr, column_length) }
                // DATA_TYPE_DECIMAL75_VARIANT
                case 8 { copy_size := mul(column_length, WORD_SIZE) }
                // DATA_TYPE_TIMESTAMP_VARIANT
                case 9 { copy_size := mul(column_length, INT64_SIZE) }
                // DATA_TYPE_SCALAR_VARIANT
                case 10 { copy_size := mul(column_length, WORD_SIZE) }
                // DATA_TYPE_VARBINARY_VARIANT
                case 11 { copy_size := get_byte_array_copy_size(source_ptr, column_length) }
                default { err(ERR_UNSUPPORTED_DATA_TYPE_VARIANT) }

                // We need to include the length of the column of data in our serialized column
                copy_size := add(copy_size, UINT64_SIZE)

                // Save the length of the byte array
                mstore(column_as_bytes, copy_size)
                let target_ptr := add(column_as_bytes, WORD_SIZE)

                // Copy the serialized column data into the byte array
                for { let i := copy_size } i { i := sub(i, 1) } {
                    mstore8(target_ptr, byte(0, mload(source_ptr)))
                    source_ptr := add(source_ptr, 1)
                    target_ptr := add(target_ptr, 1)
                }
                mstore(FREE_PTR, target_ptr)
                source_ptr_out := source_ptr
            }
            function get_byte_array(source_ptr) -> source_ptr_out, byte_array {
                // Allocate space for the byte array
                byte_array := mload(FREE_PTR)

                // Find and store length of byte array
                let len := shr(UINT64_PADDING_BITS, mload(source_ptr))
                source_ptr := add(source_ptr, UINT64_SIZE)
                mstore(byte_array, len)
                let target_ptr := add(byte_array, WORD_SIZE)

                // Copy bytes to byte array
                for { let i := len } i { i := sub(i, 1) } {
                    mstore8(target_ptr, byte(0, mload(source_ptr)))
                    source_ptr := add(source_ptr, 1)
                    target_ptr := add(target_ptr, 1)
                }
                mstore(FREE_PTR, target_ptr)
                source_ptr_out := source_ptr
            }
            function deserialize_column_from_bytes(serialized_column) -> column, serialized_column_out {
                // Allocate memory for the column pointer
                column := mload(FREE_PTR)

                // Allocate space for the five fields
                mstore(FREE_PTR, add(column, WORDX5_SIZE))

                // Get and store the name
                let name
                serialized_column, name := get_byte_array(serialized_column)
                mstore(column, name)
                let target_ptr := add(column, WORD_SIZE)

                // Check that column name is valid
                // This is because an `Ident` from sqlparser 0.45.0
                // has the field `quote_style` which must be 0 for unquoted identifiers.
                if byte(0, mload(serialized_column)) { err(ERR_INVALID_RESULT_COLUMN_NAME) }
                serialized_column := add(serialized_column, 1)

                // Get and store type, precision, and scale
                let column_type, precision, scale
                column_type, precision, scale, serialized_column := read_column_type(serialized_column)
                mstore(target_ptr, column_type)
                target_ptr := add(target_ptr, WORD_SIZE)
                mstore(target_ptr, precision)
                target_ptr := add(target_ptr, WORD_SIZE)
                mstore(target_ptr, scale)
                target_ptr := add(target_ptr, WORD_SIZE)

                // Get data and store in its serialized format
                let column_as_bytes
                serialized_column_out, column_as_bytes := get_column_as_bytes(serialized_column, column_type)
                mstore(target_ptr, column_as_bytes)
            }
            function deserialize_from_bytes(serialized_table) -> table, serialized_table_out {
                // Allocate memory for the table pointer
                table := mload(FREE_PTR)

                // Store column array pointer
                let columns_field_ptr := add(table, WORD_SIZE)
                mstore(table, columns_field_ptr)

                // get and store number of columns
                let num_columns := shr(UINT64_PADDING_BITS, mload(serialized_table))
                serialized_table := add(serialized_table, UINT64_SIZE)
                mstore(columns_field_ptr, num_columns)
                columns_field_ptr := add(columns_field_ptr, WORD_SIZE)

                // allocate space for each element
                mstore(FREE_PTR, add(columns_field_ptr, mul(num_columns, WORD_SIZE)))

                // populate and store each column pointer
                for {} num_columns { num_columns := sub(num_columns, 1) } {
                    let column
                    column, serialized_table := deserialize_column_from_bytes(serialized_table)
                    mstore(columns_field_ptr, column)
                    columns_field_ptr := add(columns_field_ptr, WORD_SIZE)
                }
                serialized_table_out := serialized_table
            }
            __table, __serializedTableOut := deserialize_from_bytes(add(__serializedTable, WORD_SIZE))
        }
    }

    /// @notice Deserializes a serialized column into memory.
    /// @custom:as-yul-wrapper
    /// #### Wrapped Yul Function
    /// ##### Signature
    /// ```yul
    /// function return_pointer_to_typed_column_for_byte_array_element(column_as_bytes) -> column_ptr
    /// ```
    /// ##### Parameters
    /// * `column_as_bytes` - The pointer to the column, serialized as bytes
    /// ##### Return Values
    /// * `column_ptr` - The pointer to the deserialized column
    /// @dev Deserializes a serialized column into memory. The return value is meant to be used immediately, using yul,
    /// to assign the deserialized column to a correctly typed variable.
    /// @param __column The serialized column
    /// @return __columnPtr The pointer to the deserialized column
    function returnPointerToTypedColumnForByteArrayElements(Column memory __column)
        internal
        pure
        returns (uint256 __columnPtr)
    {
        bytes memory __columnAsBytes = __column.data;
        assembly {
            function exclude_coverage_start_err() {} // solhint-disable-line no-empty-blocks
            function err(code) {
                mstore(0, code)
                revert(28, 4)
            }
            function exclude_coverage_stop_err() {} // solhint-disable-line no-empty-blocks

            function return_pointer_to_typed_column_for_byte_array_element(column_as_bytes) -> column_ptr {
                column_as_bytes := add(column_as_bytes, WORD_SIZE)
                column_ptr := mload(FREE_PTR)

                // Find and store length of column
                let column_length := shr(UINT64_PADDING_BITS, mload(column_as_bytes))
                column_as_bytes := add(column_as_bytes, UINT64_SIZE)
                mstore(column_ptr, column_length)
                let target_ptr := add(column_ptr, WORD_SIZE)

                // Allocate space for the pointer of each byte array element
                let free_ptr := add(target_ptr, mul(column_length, WORD_SIZE))

                // We process one byte array at a time
                for {} column_length { column_length := sub(column_length, 1) } {
                    // Store the next pointer in the column array
                    mstore(target_ptr, free_ptr)
                    target_ptr := add(target_ptr, WORD_SIZE)

                    // Find and store the length of the byte array
                    let len := shr(UINT64_PADDING_BITS, mload(column_as_bytes))
                    column_as_bytes := add(column_as_bytes, UINT64_SIZE)
                    mstore(free_ptr, len)
                    free_ptr := add(free_ptr, WORD_SIZE)

                    // Copy over each byte into the new byte array
                    for {} gt(len, WORD_SIZE) { len := sub(len, WORD_SIZE) } {
                        mstore(free_ptr, mload(column_as_bytes))
                        column_as_bytes := add(column_as_bytes, WORD_SIZE)
                        free_ptr := add(free_ptr, WORD_SIZE)
                    }
                    let remaining_bytes := mul(8, sub(WORD_SIZE, len))
                    mstore(free_ptr, shl(remaining_bytes, shr(remaining_bytes, mload(column_as_bytes))))
                    column_as_bytes := add(column_as_bytes, len)
                    free_ptr := add(free_ptr, len)
                }

                mstore(FREE_PTR, free_ptr)
            }
            __columnPtr := return_pointer_to_typed_column_for_byte_array_element(__columnAsBytes)
        }
    }

    /// @notice Deserializes a serialized column into memory.
    /// @custom:as-yul-wrapper
    /// #### Wrapped Yul Function
    /// ##### Signature
    /// ```yul
    /// function return_pointer_to_typed_column_for_fixed_sized_element(column_as_bytes, element_size) -> column_ptr
    /// ```
    /// ##### Parameters
    /// * `column_as_bytes` - The pointer to the column, serialized as bytes
    /// * `element_size` - The size of the fixed size elements
    /// ##### Return Values
    /// * `column_ptr` - The pointer to the deserialized column
    /// @dev Deserializes a serialized column into memory. The return value is meant to be used immediately, using yul,
    /// to assign the deserialized column to a correctly typed variable.
    /// @param __column The serialized column of data
    /// @param __elementSize The size of the fixed size elements
    /// @return __columnPtr The pointer to the deserialized column
    function returnPointerToTypedColumnForFixedSizeElement(Column memory __column, uint256 __elementSize)
        internal
        pure
        returns (uint256 __columnPtr)
    {
        bytes memory __columnAsBytes = __column.data;
        assembly {
            function exclude_coverage_start_err() {} // solhint-disable-line no-empty-blocks
            function err(code) {
                mstore(0, code)
                revert(28, 4)
            }
            function exclude_coverage_stop_err() {} // solhint-disable-line no-empty-blocks

            function return_pointer_to_typed_column_for_fixed_sized_element(column_as_bytes, element_size) -> column_ptr
            {
                column_as_bytes := add(column_as_bytes, WORD_SIZE)
                column_ptr := mload(FREE_PTR)

                // Find and store length of column
                let column_length := shr(UINT64_PADDING_BITS, mload(column_as_bytes))
                column_as_bytes := add(column_as_bytes, UINT64_SIZE)
                mstore(column_ptr, column_length)
                let target_ptr := add(column_ptr, WORD_SIZE)

                // Calculate the number of bits to shift the 32 byte value loaded from memory in order to retrieve the next array element
                let element_padding_bits := mul(8, sub(WORD_SIZE, element_size))

                // Copy each element into the new column
                for {} column_length { column_length := sub(column_length, 1) } {
                    mstore(target_ptr, shr(element_padding_bits, mload(column_as_bytes)))
                    column_as_bytes := add(column_as_bytes, element_size)
                    target_ptr := add(target_ptr, WORD_SIZE)
                }

                mstore(FREE_PTR, target_ptr)
            }
            __columnPtr := return_pointer_to_typed_column_for_fixed_sized_element(__columnAsBytes, __elementSize)
        }
    }

    /// @dev Deserializes a column into a boolean column.
    /// @param __table The table
    /// @param __index The index of the column to be deserialized
    /// @return __booleanColumn The deserialized boolean column
    function readBooleanColumn(Table memory __table, uint256 __index)
        internal
        pure
        returns (bool[] memory __booleanColumn)
    {
        Column memory __column = __table.columns[__index];
        assert(__column.columnType == ColumnType.Boolean);
        uint256 __columnPtr = returnPointerToTypedColumnForFixedSizeElement(__column, BOOLEAN_SIZE);
        assembly {
            // We assign the return value here because the pointer is not properly typed within the solidity
            __booleanColumn := __columnPtr
        }
    }

    /// @dev Deserializes a column into a tinyint column.
    /// @param __table The table
    /// @param __index The index of the column to be deserialized
    /// @return __tinyIntColumn The deserialized tinyint column
    function readTinyIntColumn(Table memory __table, uint256 __index)
        internal
        pure
        returns (int8[] memory __tinyIntColumn)
    {
        Column memory __column = __table.columns[__index];
        assert(__column.columnType == ColumnType.TinyInt);
        uint256 __columnPtr = returnPointerToTypedColumnForFixedSizeElement(__column, INT8_SIZE);
        assembly {
            __tinyIntColumn := __columnPtr
        }
    }

    /// @dev Deserializes a column into a smallint column.
    /// @param __table The table
    /// @param __index The index of the column to be deserialized
    /// @return __smallIntColumn The deserialized smallint column
    function readSmallIntColumn(Table memory __table, uint256 __index)
        internal
        pure
        returns (int16[] memory __smallIntColumn)
    {
        Column memory __column = __table.columns[__index];
        assert(__column.columnType == ColumnType.SmallInt);
        uint256 __columnPtr = returnPointerToTypedColumnForFixedSize

Tags:
ERC20, ERC165, Proxy, Swap, Upgradeable, Factory, Oracle|addr:0x6b3d8d93bd72484ffa8dcb97207b881db176adb6|verified:true|block:23742340|tx:0xa711536ed272b4a6ca45e6b4037f45b19bb59ebcd39798dc07df8f928bf4323c|first_check:1762457908

Submitted on: 2025-11-06 20:38:29

Comments

Log in to comment.

No comments yet.