Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/Zeen.sol": {
"content": "// SPDX-License-Identifier: MIT
// Compatible with OpenZeppelin Contracts ^5.4.0
pragma solidity ^0.8.27;
import {ERC1363Upgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC1363Upgradeable.sol";
import {ERC20Upgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
import {ERC20BurnableUpgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20BurnableUpgradeable.sol";
import {ERC20FlashMintUpgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20FlashMintUpgradeable.sol";
import {ERC20PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PausableUpgradeable.sol";
import {ERC20PermitUpgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PermitUpgradeable.sol";
import {ERC20VotesUpgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20VotesUpgradeable.sol";
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {NoncesUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/NoncesUpgradeable.sol";
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
/// @custom:security-contact sec@zeendass.com
contract Zeen is Initializable, ERC20Upgradeable, ERC20BurnableUpgradeable, ERC20PausableUpgradeable, OwnableUpgradeable, ERC1363Upgradeable, ERC20PermitUpgradeable, ERC20VotesUpgradeable, ERC20FlashMintUpgradeable {
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function initialize(address initialOwner) public initializer {
__ERC20_init("Zeen", "Zeen");
__ERC20Burnable_init();
__ERC20Pausable_init();
__Ownable_init(initialOwner);
__ERC1363_init();
__ERC20Permit_init("Zeen");
__ERC20Votes_init();
__ERC20FlashMint_init();
}
function pause() public onlyOwner {
_pause();
}
function unpause() public onlyOwner {
_unpause();
}
function mint(address to, uint256 amount) public onlyOwner {
_mint(to, amount);
}
// The following functions are overrides required by Solidity.
function _update(address from, address to, uint256 value)
internal
override(ERC20Upgradeable, ERC20PausableUpgradeable, ERC20VotesUpgradeable)
{
super._update(from, to, value);
}
function nonces(address owner)
public
view
override(ERC20PermitUpgradeable, NoncesUpgradeable)
returns (uint256)
{
return super.nonces(owner);
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC1363Upgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/ERC1363.sol)
pragma solidity ^0.8.20;
import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {ERC165Upgradeable} from "../../../utils/introspection/ERC165Upgradeable.sol";
import {IERC1363} from "@openzeppelin/contracts/interfaces/IERC1363.sol";
import {ERC1363Utils} from "@openzeppelin/contracts/token/ERC20/utils/ERC1363Utils.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @title ERC1363
* @dev Extension of {ERC20} tokens that adds support for code execution after transfers and approvals
* on recipient contracts. Calls after transfers are enabled through the {ERC1363-transferAndCall} and
* {ERC1363-transferFromAndCall} methods while calls after approvals can be made with {ERC1363-approveAndCall}
*
* _Available since v5.1._
*/
abstract contract ERC1363Upgradeable is Initializable, ERC20Upgradeable, ERC165Upgradeable, IERC1363 {
/**
* @dev Indicates a failure within the {transfer} part of a transferAndCall operation.
* @param receiver Address to which tokens are being transferred.
* @param value Amount of tokens to be transferred.
*/
error ERC1363TransferFailed(address receiver, uint256 value);
/**
* @dev Indicates a failure within the {transferFrom} part of a transferFromAndCall operation.
* @param sender Address from which to send tokens.
* @param receiver Address to which tokens are being transferred.
* @param value Amount of tokens to be transferred.
*/
error ERC1363TransferFromFailed(address sender, address receiver, uint256 value);
/**
* @dev Indicates a failure within the {approve} part of a approveAndCall operation.
* @param spender Address which will spend the funds.
* @param value Amount of tokens to be spent.
*/
error ERC1363ApproveFailed(address spender, uint256 value);
function __ERC1363_init() internal onlyInitializing {
}
function __ERC1363_init_unchained() internal onlyInitializing {
}
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165) returns (bool) {
return interfaceId == type(IERC1363).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`. Returns a flag that indicates
* if the call succeeded.
*
* Requirements:
*
* - The target has code (i.e. is a contract).
* - The target `to` must implement the {IERC1363Receiver} interface.
* - The target must return the {IERC1363Receiver-onTransferReceived} selector to accept the transfer.
* - The internal {transfer} must succeed (returned `true`).
*/
function transferAndCall(address to, uint256 value) public returns (bool) {
return transferAndCall(to, value, "");
}
/**
* @dev Variant of {transferAndCall} that accepts an additional `data` parameter with
* no specified format.
*/
function transferAndCall(address to, uint256 value, bytes memory data) public virtual returns (bool) {
if (!transfer(to, value)) {
revert ERC1363TransferFailed(to, value);
}
ERC1363Utils.checkOnERC1363TransferReceived(_msgSender(), _msgSender(), to, value, data);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`. Returns a flag that indicates
* if the call succeeded.
*
* Requirements:
*
* - The target has code (i.e. is a contract).
* - The target `to` must implement the {IERC1363Receiver} interface.
* - The target must return the {IERC1363Receiver-onTransferReceived} selector to accept the transfer.
* - The internal {transferFrom} must succeed (returned `true`).
*/
function transferFromAndCall(address from, address to, uint256 value) public returns (bool) {
return transferFromAndCall(from, to, value, "");
}
/**
* @dev Variant of {transferFromAndCall} that accepts an additional `data` parameter with
* no specified format.
*/
function transferFromAndCall(
address from,
address to,
uint256 value,
bytes memory data
) public virtual returns (bool) {
if (!transferFrom(from, to, value)) {
revert ERC1363TransferFromFailed(from, to, value);
}
ERC1363Utils.checkOnERC1363TransferReceived(_msgSender(), from, to, value, data);
return true;
}
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* Returns a flag that indicates if the call succeeded.
*
* Requirements:
*
* - The target has code (i.e. is a contract).
* - The target `spender` must implement the {IERC1363Spender} interface.
* - The target must return the {IERC1363Spender-onApprovalReceived} selector to accept the approval.
* - The internal {approve} must succeed (returned `true`).
*/
function approveAndCall(address spender, uint256 value) public returns (bool) {
return approveAndCall(spender, value, "");
}
/**
* @dev Variant of {approveAndCall} that accepts an additional `data` parameter with
* no specified format.
*/
function approveAndCall(address spender, uint256 value, bytes memory data) public virtual returns (bool) {
if (!approve(spender, value)) {
revert ERC1363ApproveFailed(spender, value);
}
ERC1363Utils.checkOnERC1363ApprovalReceived(_msgSender(), spender, value, data);
return true;
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/ERC20Upgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors {
/// @custom:storage-location erc7201:openzeppelin.storage.ERC20
struct ERC20Storage {
mapping(address account => uint256) _balances;
mapping(address account => mapping(address spender => uint256)) _allowances;
uint256 _totalSupply;
string _name;
string _symbol;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;
function _getERC20Storage() private pure returns (ERC20Storage storage $) {
assembly {
$.slot := ERC20StorageLocation
}
}
/**
* @dev Sets the values for {name} and {symbol}.
*
* Both values are immutable: they can only be set once during construction.
*/
function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
__ERC20_init_unchained(name_, symbol_);
}
function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
ERC20Storage storage $ = _getERC20Storage();
$._name = name_;
$._symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
ERC20Storage storage $ = _getERC20Storage();
return $._name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
ERC20Storage storage $ = _getERC20Storage();
return $._symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/// @inheritdoc IERC20
function totalSupply() public view virtual returns (uint256) {
ERC20Storage storage $ = _getERC20Storage();
return $._totalSupply;
}
/// @inheritdoc IERC20
function balanceOf(address account) public view virtual returns (uint256) {
ERC20Storage storage $ = _getERC20Storage();
return $._balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/// @inheritdoc IERC20
function allowance(address owner, address spender) public view virtual returns (uint256) {
ERC20Storage storage $ = _getERC20Storage();
return $._allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
ERC20Storage storage $ = _getERC20Storage();
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
$._totalSupply += value;
} else {
uint256 fromBalance = $._balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
$._balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
$._totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
$._balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
ERC20Storage storage $ = _getERC20Storage();
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
$._allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner`'s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC20BurnableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)
pragma solidity ^0.8.20;
import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
import {ContextUpgradeable} from "../../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20BurnableUpgradeable is Initializable, ContextUpgradeable, ERC20Upgradeable {
function __ERC20Burnable_init() internal onlyInitializing {
}
function __ERC20Burnable_init_unchained() internal onlyInitializing {
}
/**
* @dev Destroys a `value` amount of tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 value) public virtual {
_burn(_msgSender(), value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, deducting from
* the caller's allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `value`.
*/
function burnFrom(address account, uint256 value) public virtual {
_spendAllowance(account, _msgSender(), value);
_burn(account, value);
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC20FlashMintUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20FlashMint.sol)
pragma solidity ^0.8.20;
import {IERC3156FlashBorrower} from "@openzeppelin/contracts/interfaces/IERC3156FlashBorrower.sol";
import {IERC3156FlashLender} from "@openzeppelin/contracts/interfaces/IERC3156FlashLender.sol";
import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the ERC-3156 Flash loans extension, as defined in
* https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
*
* Adds the {flashLoan} method, which provides flash loan support at the token
* level. By default there is no fee, but this can be changed by overriding {flashFee}.
*
* NOTE: When this extension is used along with the {ERC20Capped} or {ERC20Votes} extensions,
* {maxFlashLoan} will not correctly reflect the maximum that can be flash minted. We recommend
* overriding {maxFlashLoan} so that it correctly reflects the supply cap.
*/
abstract contract ERC20FlashMintUpgradeable is Initializable, ERC20Upgradeable, IERC3156FlashLender {
bytes32 private constant RETURN_VALUE = keccak256("ERC3156FlashBorrower.onFlashLoan");
/**
* @dev The loan token is not valid.
*/
error ERC3156UnsupportedToken(address token);
/**
* @dev The requested loan exceeds the max loan value for `token`.
*/
error ERC3156ExceededMaxLoan(uint256 maxLoan);
/**
* @dev The receiver of a flashloan is not a valid {IERC3156FlashBorrower-onFlashLoan} implementer.
*/
error ERC3156InvalidReceiver(address receiver);
function __ERC20FlashMint_init() internal onlyInitializing {
}
function __ERC20FlashMint_init_unchained() internal onlyInitializing {
}
/**
* @dev Returns the maximum amount of tokens available for loan.
* @param token The address of the token that is requested.
* @return The amount of token that can be loaned.
*
* NOTE: This function does not consider any form of supply cap, so in case
* it's used in a token with a cap like {ERC20Capped}, make sure to override this
* function to integrate the cap instead of `type(uint256).max`.
*/
function maxFlashLoan(address token) public view virtual returns (uint256) {
return token == address(this) ? type(uint256).max - totalSupply() : 0;
}
/**
* @dev Returns the fee applied when doing flash loans. This function calls
* the {_flashFee} function which returns the fee applied when doing flash
* loans.
* @param token The token to be flash loaned.
* @param value The amount of tokens to be loaned.
* @return The fees applied to the corresponding flash loan.
*/
function flashFee(address token, uint256 value) public view virtual returns (uint256) {
if (token != address(this)) {
revert ERC3156UnsupportedToken(token);
}
return _flashFee(token, value);
}
/**
* @dev Returns the fee applied when doing flash loans. By default this
* implementation has 0 fees. This function can be overloaded to make
* the flash loan mechanism deflationary.
* @param token The token to be flash loaned.
* @param value The amount of tokens to be loaned.
* @return The fees applied to the corresponding flash loan.
*/
function _flashFee(address token, uint256 value) internal view virtual returns (uint256) {
// silence warning about unused variable without the addition of bytecode.
token;
value;
return 0;
}
/**
* @dev Returns the receiver address of the flash fee. By default this
* implementation returns the address(0) which means the fee amount will be burnt.
* This function can be overloaded to change the fee receiver.
* @return The address for which the flash fee will be sent to.
*/
function _flashFeeReceiver() internal view virtual returns (address) {
return address(0);
}
/**
* @dev Performs a flash loan. New tokens are minted and sent to the
* `receiver`, who is required to implement the {IERC3156FlashBorrower}
* interface. By the end of the flash loan, the receiver is expected to own
* value + fee tokens and have them approved back to the token contract itself so
* they can be burned.
* @param receiver The receiver of the flash loan. Should implement the
* {IERC3156FlashBorrower-onFlashLoan} interface.
* @param token The token to be flash loaned. Only `address(this)` is
* supported.
* @param value The amount of tokens to be loaned.
* @param data An arbitrary datafield that is passed to the receiver.
* @return `true` if the flash loan was successful.
*/
// This function can reenter, but it doesn't pose a risk because it always preserves the property that the amount
// minted at the beginning is always recovered and burned at the end, or else the entire function will revert.
// slither-disable-next-line reentrancy-no-eth
function flashLoan(
IERC3156FlashBorrower receiver,
address token,
uint256 value,
bytes calldata data
) public virtual returns (bool) {
uint256 maxLoan = maxFlashLoan(token);
if (value > maxLoan) {
revert ERC3156ExceededMaxLoan(maxLoan);
}
uint256 fee = flashFee(token, value);
_mint(address(receiver), value);
if (receiver.onFlashLoan(_msgSender(), token, value, fee, data) != RETURN_VALUE) {
revert ERC3156InvalidReceiver(address(receiver));
}
address flashFeeReceiver = _flashFeeReceiver();
_spendAllowance(address(receiver), address(this), value + fee);
if (fee == 0 || flashFeeReceiver == address(0)) {
_burn(address(receiver), value + fee);
} else {
_burn(address(receiver), value);
_transfer(address(receiver), flashFeeReceiver, fee);
}
return true;
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC20PausableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Pausable.sol)
pragma solidity ^0.8.20;
import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
import {PausableUpgradeable} from "../../../utils/PausableUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev ERC-20 token with pausable token transfers, minting and burning.
*
* Useful for scenarios such as preventing trades until the end of an evaluation
* period, or having an emergency switch for freezing all token transfers in the
* event of a large bug.
*
* IMPORTANT: This contract does not include public pause and unpause functions. In
* addition to inheriting this contract, you must define both functions, invoking the
* {Pausable-_pause} and {Pausable-_unpause} internal functions, with appropriate
* access control, e.g. using {AccessControl} or {Ownable}. Not doing so will
* make the contract pause mechanism of the contract unreachable, and thus unusable.
*/
abstract contract ERC20PausableUpgradeable is Initializable, ERC20Upgradeable, PausableUpgradeable {
function __ERC20Pausable_init() internal onlyInitializing {
}
function __ERC20Pausable_init_unchained() internal onlyInitializing {
}
/**
* @dev See {ERC20-_update}.
*
* Requirements:
*
* - the contract must not be paused.
*/
function _update(address from, address to, uint256 value) internal virtual override whenNotPaused {
super._update(from, to, value);
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC20PermitUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.20;
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {EIP712Upgradeable} from "../../../utils/cryptography/EIP712Upgradeable.sol";
import {NoncesUpgradeable} from "../../../utils/NoncesUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20Permit, EIP712Upgradeable, NoncesUpgradeable {
bytes32 private constant PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Permit deadline has expired.
*/
error ERC2612ExpiredSignature(uint256 deadline);
/**
* @dev Mismatched signature.
*/
error ERC2612InvalidSigner(address signer, address owner);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC-20 token name.
*/
function __ERC20Permit_init(string memory name) internal onlyInitializing {
__EIP712_init_unchained(name, "1");
}
function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {}
/// @inheritdoc IERC20Permit
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
if (block.timestamp > deadline) {
revert ERC2612ExpiredSignature(deadline);
}
bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
if (signer != owner) {
revert ERC2612InvalidSigner(signer, owner);
}
_approve(owner, spender, value);
}
/// @inheritdoc IERC20Permit
function nonces(address owner) public view virtual override(IERC20Permit, NoncesUpgradeable) returns (uint256) {
return super.nonces(owner);
}
/// @inheritdoc IERC20Permit
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
return _domainSeparatorV4();
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC20VotesUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Votes.sol)
pragma solidity ^0.8.20;
import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
import {VotesUpgradeable} from "../../../governance/utils/VotesUpgradeable.sol";
import {Checkpoints} from "@openzeppelin/contracts/utils/structs/Checkpoints.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev Extension of ERC-20 to support Compound-like voting and delegation. This version is more generic than Compound's,
* and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1.
*
* NOTE: This contract does not provide interface compatibility with Compound's COMP token.
*
* This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
* by calling the {Votes-delegate} function directly, or by providing a signature to be used with {Votes-delegateBySig}. Voting
* power can be queried through the public accessors {Votes-getVotes} and {Votes-getPastVotes}.
*
* By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
* requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
*/
abstract contract ERC20VotesUpgradeable is Initializable, ERC20Upgradeable, VotesUpgradeable {
/**
* @dev Total supply cap has been exceeded, introducing a risk of votes overflowing.
*/
error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap);
function __ERC20Votes_init() internal onlyInitializing {
}
function __ERC20Votes_init_unchained() internal onlyInitializing {
}
/**
* @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1).
*
* This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256,
* so that checkpoints can be stored in the Trace208 structure used by {Votes}. Increasing this value will not
* remove the underlying limitation, and will cause {_update} to fail because of a math overflow in
* {Votes-_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if
* additional logic requires it. When resolving override conflicts on this function, the minimum should be
* returned.
*/
function _maxSupply() internal view virtual returns (uint256) {
return type(uint208).max;
}
/**
* @dev Move voting power when tokens are transferred.
*
* Emits a {IVotes-DelegateVotesChanged} event.
*/
function _update(address from, address to, uint256 value) internal virtual override {
super._update(from, to, value);
if (from == address(0)) {
uint256 supply = totalSupply();
uint256 cap = _maxSupply();
if (supply > cap) {
revert ERC20ExceededSafeSupply(supply, cap);
}
}
_transferVotingUnits(from, to, value);
}
/**
* @dev Returns the voting units of an `account`.
*
* WARNING: Overriding this function may compromise the internal vote accounting.
* `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change.
*/
function _getVotingUnits(address account) internal view virtual override returns (uint256) {
return balanceOf(account);
}
/**
* @dev Get number of checkpoints for `account`.
*/
function numCheckpoints(address account) public view virtual returns (uint32) {
return _numCheckpoints(account);
}
/**
* @dev Get the `pos`-th checkpoint for `account`.
*/
function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) {
return _checkpoints(account, pos);
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/Initializable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reinitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
*
* NOTE: Consider following the ERC-7201 formula to derive storage locations.
*/
function _initializableStorageSlot() internal pure virtual returns (bytes32) {
return INITIALIZABLE_STORAGE;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
bytes32 slot = _initializableStorageSlot();
assembly {
$.slot := slot
}
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/utils/NoncesUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract NoncesUpgradeable is Initializable {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
/// @custom:storage-location erc7201:openzeppelin.storage.Nonces
struct NoncesStorage {
mapping(address account => uint256) _nonces;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Nonces")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant NoncesStorageLocation = 0x5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00;
function _getNoncesStorage() private pure returns (NoncesStorage storage $) {
assembly {
$.slot := NoncesStorageLocation
}
}
function __Nonces_init() internal onlyInitializing {
}
function __Nonces_init_unchained() internal onlyInitializing {
}
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
NoncesStorage storage $ = _getNoncesStorage();
return $._nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
NoncesStorage storage $ = _getNoncesStorage();
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return $._nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/access/OwnableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable
struct OwnableStorage {
address _owner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
assembly {
$.slot := OwnableStorageLocation
}
}
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
function __Ownable_init(address initialOwner) internal onlyInitializing {
__Ownable_init_unchained(initialOwner);
}
function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
OwnableStorage storage $ = _getOwnableStorage();
return $._owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
OwnableStorage storage $ = _getOwnableStorage();
address oldOwner = $._owner;
$._owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/utils/introspection/IERC165.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/utils/introspection/ERC165Upgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165Upgradeable is Initializable, IERC165 {
function __ERC165_init() internal onlyInitializing {
}
function __ERC165_init_unchained() internal onlyInitializing {
}
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/interfaces/IERC1363.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)
pragma solidity >=0.6.2;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
"
},
"lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/token/ERC20/utils/ERC1363Utils.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/utils/ERC1363Utils.sol)
pragma solidity ^0.8.20;
import {IERC1363Receiver} from "../../../interfaces/IERC1363Receiver.sol";
import {IERC1363Spender} from "../../../interfaces/IERC1363Spender.sol";
/**
* @dev Library that provides common ERC-1363 utility functions.
*
* See https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*/
library ERC1363Utils {
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1363InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the token `spender`. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1363InvalidSpender(address spender);
/**
* @dev Performs a call to {IERC1363Receiver-onTransferReceived} on a target address.
*
* Requirements:
*
* - The target has code (i.e. is a contract).
* - The target `to` must implement the {IERC1363Receiver} interface.
* - The target must return the {IERC1363Receiver-onTransferReceived} selector to accept the transfer.
*/
function checkOnERC1363TransferReceived(
address operator,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
revert ERC1363InvalidReceiver(to);
}
try IERC1363Receiver(to).onTransferReceived(operator, from, value, data) returns (bytes4 retval) {
if (retval != IERC1363Receiver.onTransferReceived.selector) {
revert ERC1363InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
revert ERC1363InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(reason, 0x20), mload(reason))
}
}
}
}
/**
* @dev Performs a call to {IERC1363Spender-onApprovalReceived} on a target address.
*
* Requirements:
*
* - The target has code (i.e. is a contract).
* - The target `spender` must implement the {IERC1363Spender} interface.
* - The target must return the {IERC1363Spender-onApprovalReceived} selector to accept the approval.
*/
function checkOnERC1363ApprovalReceived(
address operator,
address spender,
uint256 value,
bytes memory data
) internal {\
Submitted on: 2025-09-24 14:32:12
Comments
Log in to comment.
No comments yet.