Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/contracts/avs/task/TaskMailbox.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.27;
import {ReentrancyGuardUpgradeable} from "@openzeppelin-upgrades/contracts/security/ReentrancyGuardUpgradeable.sol";
import {OwnableUpgradeable} from "@openzeppelin-upgrades/contracts/access/OwnableUpgradeable.sol";
import {Initializable} from "@openzeppelin-upgrades/contracts/proxy/utils/Initializable.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {IAVSTaskHook} from "../../interfaces/IAVSTaskHook.sol";
import {
IBN254CertificateVerifier, IBN254CertificateVerifierTypes
} from "../../interfaces/IBN254CertificateVerifier.sol";
import {
IECDSACertificateVerifier, IECDSACertificateVerifierTypes
} from "../../interfaces/IECDSACertificateVerifier.sol";
import {IBaseCertificateVerifier} from "../../interfaces/IBaseCertificateVerifier.sol";
import {IKeyRegistrarTypes} from "../../interfaces/IKeyRegistrar.sol";
import {ITaskMailbox} from "../../interfaces/ITaskMailbox.sol";
import {OperatorSet} from "../../libraries/OperatorSetLib.sol";
import {SemVerMixin} from "../../mixins/SemVerMixin.sol";
import {TaskMailboxStorage} from "./TaskMailboxStorage.sol";
/**
* @title TaskMailbox
* @author Layr Labs, Inc.
* @notice Contract for managing the lifecycle of tasks that are executed by operator sets of task-based AVSs.
*/
contract TaskMailbox is
Initializable,
OwnableUpgradeable,
ReentrancyGuardUpgradeable,
TaskMailboxStorage,
SemVerMixin
{
using SafeERC20 for IERC20;
using SafeCast for *;
/**
* @notice Constructor for TaskMailbox
* @param _bn254CertificateVerifier Address of the BN254 certificate verifier
* @param _ecdsaCertificateVerifier Address of the ECDSA certificate verifier
* @param _maxTaskSLA Maximum task SLA in seconds
* @param _version The semantic version of the contract
*/
constructor(
address _bn254CertificateVerifier,
address _ecdsaCertificateVerifier,
uint96 _maxTaskSLA,
string memory _version
) TaskMailboxStorage(_bn254CertificateVerifier, _ecdsaCertificateVerifier, _maxTaskSLA) SemVerMixin(_version) {
_disableInitializers();
}
/**
* @notice Initializer for TaskMailbox
* @param _owner The owner of the contract
* @param _feeSplit The initial fee split in basis points
* @param _feeSplitCollector The initial fee split collector address
*/
function initialize(address _owner, uint16 _feeSplit, address _feeSplitCollector) external initializer {
__Ownable_init();
__ReentrancyGuard_init();
_transferOwnership(_owner);
_setFeeSplit(_feeSplit);
_setFeeSplitCollector(_feeSplitCollector);
}
/**
*
* EXTERNAL FUNCTIONS
*
*/
/// @inheritdoc ITaskMailbox
function setExecutorOperatorSetTaskConfig(
OperatorSet memory operatorSet,
ExecutorOperatorSetTaskConfig memory config
) external {
// Validate config is populated with non-zero values
require(_isConfigPopulated(config), ExecutorOperatorSetTaskConfigNotSet());
// Validate task SLA is within maximum limit
require(config.taskSLA <= MAX_TASK_SLA, TaskSLAExceedsMaximum());
// Validate consensus enum within range
_validateConsensus(config.consensus);
// Validate operator set ownership
_validateOperatorSetOwner(operatorSet, config.curveType);
_executorOperatorSetTaskConfigs[operatorSet.key()] = config;
emit ExecutorOperatorSetTaskConfigSet(msg.sender, operatorSet.avs, operatorSet.id, config);
// If executor operator set is not registered, register it.
if (!isExecutorOperatorSetRegistered[operatorSet.key()]) {
_registerExecutorOperatorSet(operatorSet, true);
}
}
/// @inheritdoc ITaskMailbox
function registerExecutorOperatorSet(OperatorSet memory operatorSet, bool isRegistered) external {
ExecutorOperatorSetTaskConfig memory taskConfig = _executorOperatorSetTaskConfigs[operatorSet.key()];
// Validate that task config has been set before registration can be toggled.
require(_isConfigPopulated(taskConfig), ExecutorOperatorSetTaskConfigNotSet());
// Validate operator set ownership
_validateOperatorSetOwner(operatorSet, taskConfig.curveType);
_registerExecutorOperatorSet(operatorSet, isRegistered);
}
/// @inheritdoc ITaskMailbox
function createTask(
TaskParams memory taskParams
) external nonReentrant returns (bytes32) {
require(taskParams.payload.length > 0, PayloadIsEmpty());
require(
isExecutorOperatorSetRegistered[taskParams.executorOperatorSet.key()], ExecutorOperatorSetNotRegistered()
);
ExecutorOperatorSetTaskConfig memory taskConfig =
_executorOperatorSetTaskConfigs[taskParams.executorOperatorSet.key()];
require(_isConfigPopulated(taskConfig), ExecutorOperatorSetTaskConfigNotSet());
// Get the operator table reference timestamp and max staleness period
IBaseCertificateVerifier certificateVerifier =
IBaseCertificateVerifier(_getCertificateVerifier(taskConfig.curveType));
uint32 operatorTableReferenceTimestamp =
certificateVerifier.latestReferenceTimestamp(taskParams.executorOperatorSet);
{
// Scoping to prevent `Stack too deep` error during compilation
uint32 maxStaleness = certificateVerifier.maxOperatorTableStaleness(taskParams.executorOperatorSet);
require(
maxStaleness == 0
|| (block.timestamp + taskConfig.taskSLA <= operatorTableReferenceTimestamp + maxStaleness),
CertificateStale()
);
}
// Pre-task submission checks: AVS can validate the caller and task params.
taskConfig.taskHook.validatePreTaskCreation(msg.sender, taskParams);
// Calculate the AVS fee using the task hook
uint96 avsFee = taskConfig.taskHook.calculateTaskFee(taskParams);
bytes32 taskHash = keccak256(abi.encode(_globalTaskCount, address(this), block.chainid, taskParams));
_globalTaskCount = _globalTaskCount + 1;
_tasks[taskHash] = Task({
creator: msg.sender,
creationTime: block.timestamp.toUint96(),
avs: taskParams.executorOperatorSet.avs,
avsFee: avsFee,
refundCollector: taskParams.refundCollector,
executorOperatorSetId: taskParams.executorOperatorSet.id,
feeSplit: feeSplit,
status: TaskStatus.CREATED,
isFeeRefunded: false,
operatorTableReferenceTimestamp: operatorTableReferenceTimestamp,
executorOperatorSetTaskConfig: taskConfig,
payload: taskParams.payload,
executorCert: bytes(""),
result: bytes("")
});
// Transfer fee to the TaskMailbox if there's a fee to transfer
if (taskConfig.feeToken != IERC20(address(0)) && avsFee > 0) {
require(taskConfig.feeCollector != address(0), InvalidFeeReceiver());
require(taskParams.refundCollector != address(0), InvalidFeeReceiver());
taskConfig.feeToken.safeTransferFrom(msg.sender, address(this), avsFee);
}
// Post-task submission checks: AVS can write to storage in their hook for validating task lifecycle
taskConfig.taskHook.handlePostTaskCreation(taskHash);
emit TaskCreated(
msg.sender,
taskHash,
taskParams.executorOperatorSet.avs,
taskParams.executorOperatorSet.id,
operatorTableReferenceTimestamp,
taskParams.refundCollector,
avsFee,
block.timestamp + taskConfig.taskSLA,
taskParams.payload
);
return taskHash;
}
/// @inheritdoc ITaskMailbox
function submitResult(bytes32 taskHash, bytes memory executorCert, bytes memory result) external nonReentrant {
Task storage task = _tasks[taskHash];
TaskStatus status = _getTaskStatus(task);
require(status == TaskStatus.CREATED, InvalidTaskStatus(TaskStatus.CREATED, status));
require(block.timestamp > task.creationTime, TimestampAtCreation());
// Pre-task result submission checks: AVS can validate the caller, task result, params and certificate.
task.executorOperatorSetTaskConfig.taskHook.validatePreTaskResultSubmission(
msg.sender, taskHash, executorCert, result
);
// Verify certificate based on consensus configuration
OperatorSet memory executorOperatorSet = OperatorSet(task.avs, task.executorOperatorSetId);
_verifyExecutorCertificate(
task.executorOperatorSetTaskConfig.curveType,
task.executorOperatorSetTaskConfig.consensus,
executorOperatorSet,
task.operatorTableReferenceTimestamp,
getMessageHash(taskHash, result),
executorCert
);
task.status = TaskStatus.VERIFIED;
task.executorCert = executorCert;
task.result = result;
// Transfer fee to the fee collector if there's a fee to transfer
if (task.executorOperatorSetTaskConfig.feeToken != IERC20(address(0)) && task.avsFee > 0) {
// Calculate fee split amount
uint96 feeSplitAmount = ((uint256(task.avsFee) * task.feeSplit) / ONE_HUNDRED_IN_BIPS).toUint96();
// Transfer split to fee split collector if there's a split
if (feeSplitAmount > 0) {
task.executorOperatorSetTaskConfig.feeToken.safeTransfer(feeSplitCollector, feeSplitAmount);
}
// Transfer remaining fee to AVS fee collector
uint96 avsAmount = task.avsFee - feeSplitAmount;
if (avsAmount > 0) {
task.executorOperatorSetTaskConfig.feeToken.safeTransfer(
task.executorOperatorSetTaskConfig.feeCollector, avsAmount
);
}
}
// Post-task result submission checks: AVS can update hook storage for task lifecycle if needed.
task.executorOperatorSetTaskConfig.taskHook.handlePostTaskResultSubmission(msg.sender, taskHash);
emit TaskVerified(msg.sender, taskHash, task.avs, task.executorOperatorSetId, task.executorCert, task.result);
}
/// @inheritdoc ITaskMailbox
function refundFee(
bytes32 taskHash
) external nonReentrant {
Task storage task = _tasks[taskHash];
require(task.refundCollector == msg.sender, OnlyRefundCollector());
require(!task.isFeeRefunded, FeeAlreadyRefunded());
TaskStatus status = _getTaskStatus(task);
require(status == TaskStatus.EXPIRED, InvalidTaskStatus(TaskStatus.EXPIRED, status));
// Mark fee as refunded to prevent double refunds
task.isFeeRefunded = true;
// Transfer fee to refund collector if there's a fee to refund
if (task.executorOperatorSetTaskConfig.feeToken != IERC20(address(0)) && task.avsFee > 0) {
task.executorOperatorSetTaskConfig.feeToken.safeTransfer(task.refundCollector, task.avsFee);
}
emit FeeRefunded(task.refundCollector, taskHash, task.avsFee);
}
/// @inheritdoc ITaskMailbox
function setFeeSplit(
uint16 _feeSplit
) external onlyOwner {
_setFeeSplit(_feeSplit);
}
/// @inheritdoc ITaskMailbox
function setFeeSplitCollector(
address _feeSplitCollector
) external onlyOwner {
_setFeeSplitCollector(_feeSplitCollector);
}
/**
*
* INTERNAL FUNCTIONS
*
*/
/**
* @notice Sets the fee split percentage
* @param _feeSplit The fee split in basis points (0-10000)
*/
function _setFeeSplit(
uint16 _feeSplit
) internal {
require(_feeSplit <= ONE_HUNDRED_IN_BIPS, InvalidFeeSplit());
feeSplit = _feeSplit;
emit FeeSplitSet(_feeSplit);
}
/**
* @notice Sets the fee split collector address
* @param _feeSplitCollector The address to receive fee splits
*/
function _setFeeSplitCollector(
address _feeSplitCollector
) internal {
require(_feeSplitCollector != address(0), InvalidAddressZero());
feeSplitCollector = _feeSplitCollector;
emit FeeSplitCollectorSet(_feeSplitCollector);
}
/**
* @notice Gets the current status of a task
* @param task The task to get the status for
* @return The current status of the task, considering expiration
*/
function _getTaskStatus(
Task memory task
) internal view returns (TaskStatus) {
if (
task.status == TaskStatus.CREATED
&& block.timestamp > (task.creationTime + task.executorOperatorSetTaskConfig.taskSLA)
) {
return TaskStatus.EXPIRED;
}
return task.status;
}
/**
* @notice Registers an executor operator set with the TaskMailbox
* @param operatorSet The operator set to register
* @param isRegistered Whether the operator set is registered
*/
function _registerExecutorOperatorSet(OperatorSet memory operatorSet, bool isRegistered) internal {
isExecutorOperatorSetRegistered[operatorSet.key()] = isRegistered;
emit ExecutorOperatorSetRegistered(msg.sender, operatorSet.avs, operatorSet.id, isRegistered);
}
/**
* @notice Gets the certificate verifier for a given curve type
* @param curveType The curve type to get the certificate verifier for
* @return The address of the certificate verifier
* @dev This function will revert if the curve type is invalid
*/
function _getCertificateVerifier(
IKeyRegistrarTypes.CurveType curveType
) internal view returns (address) {
if (curveType == IKeyRegistrarTypes.CurveType.BN254) {
return BN254_CERTIFICATE_VERIFIER;
} else if (curveType == IKeyRegistrarTypes.CurveType.ECDSA) {
return ECDSA_CERTIFICATE_VERIFIER;
} else {
revert InvalidCurveType();
}
}
/**
* @notice Checks if a task config is populated
* @param taskConfig The task config to check
* @return True if all elements of the task config are populated, false otherwise
*/
function _isConfigPopulated(
ExecutorOperatorSetTaskConfig memory taskConfig
) internal pure returns (bool) {
return taskConfig.curveType != IKeyRegistrarTypes.CurveType.NONE
&& taskConfig.taskHook != IAVSTaskHook(address(0)) && taskConfig.taskSLA > 0;
}
/**
* @notice Validates that the caller is the owner of the operator set
* @param operatorSet The operator set to validate ownership for
* @param curveType The curve type used to determine the certificate verifier
* @dev This function will revert if the curve type is invalid or if msg.sender is not the owner of the operator set
*/
function _validateOperatorSetOwner(
OperatorSet memory operatorSet,
IKeyRegistrarTypes.CurveType curveType
) internal view {
address certificateVerifier = _getCertificateVerifier(curveType);
require(
IBaseCertificateVerifier(certificateVerifier).getOperatorSetOwner(operatorSet) == msg.sender,
InvalidOperatorSetOwner()
);
}
/**
* @notice Validates the consensus configuration
* @param consensus The consensus configuration to validate
*/
function _validateConsensus(
Consensus memory consensus
) internal pure {
if (consensus.consensusType == ConsensusType.NONE) {
// For NONE consensus type, value should be empty bytes
require(consensus.value.length == 0, InvalidConsensusValue());
} else if (consensus.consensusType == ConsensusType.STAKE_PROPORTION_THRESHOLD) {
// Decode and validate the stake proportion threshold
require(consensus.value.length == 32, InvalidConsensusValue());
uint16 stakeProportionThreshold = abi.decode(consensus.value, (uint16));
require(stakeProportionThreshold <= ONE_HUNDRED_IN_BIPS, InvalidConsensusValue());
} else {
revert InvalidConsensusType();
}
}
/**
* @notice Validates a BN254 certificate's basic requirements
* @param cert The BN254 certificate to validate
* @param operatorTableReferenceTimestamp The expected reference timestamp
* @param messageHash The expected message hash
*/
function _validateBN254Certificate(
IBN254CertificateVerifierTypes.BN254Certificate memory cert,
uint32 operatorTableReferenceTimestamp,
bytes32 messageHash
) internal pure {
require(cert.referenceTimestamp == operatorTableReferenceTimestamp, InvalidReferenceTimestamp());
require(cert.messageHash == messageHash, InvalidMessageHash());
require(!(cert.signature.X == 0 && cert.signature.Y == 0), EmptyCertificateSignature());
}
/**
* @notice Validates an ECDSA certificate's basic requirements
* @param cert The ECDSA certificate to validate
* @param operatorTableReferenceTimestamp The expected reference timestamp
* @param messageHash The expected message hash
*/
function _validateECDSACertificate(
IECDSACertificateVerifierTypes.ECDSACertificate memory cert,
uint32 operatorTableReferenceTimestamp,
bytes32 messageHash
) internal pure {
require(cert.referenceTimestamp == operatorTableReferenceTimestamp, InvalidReferenceTimestamp());
require(cert.messageHash == messageHash, InvalidMessageHash());
require(cert.sig.length > 0, EmptyCertificateSignature());
}
/**
* @notice Verifies an executor certificate based on the consensus configuration
* @param curveType The curve type used for signature verification
* @param consensus The consensus configuration
* @param executorOperatorSet The executor operator set
* @param operatorTableReferenceTimestamp The reference timestamp of the operator table
* @param messageHash The hash of the message that was signed by the operators
* @param executorCert The executor certificate to verify
*/
function _verifyExecutorCertificate(
IKeyRegistrarTypes.CurveType curveType,
Consensus memory consensus,
OperatorSet memory executorOperatorSet,
uint32 operatorTableReferenceTimestamp,
bytes32 messageHash,
bytes memory executorCert
) internal {
if (consensus.consensusType == ConsensusType.NONE) {
// For NONE consensus type, just verify the certificate.
// The consensus logic handling is left to the AVS in the `handlePostTaskResultSubmission` hook.
// Verify certificate based on curve type
if (curveType == IKeyRegistrarTypes.CurveType.BN254) {
// BN254 Certificate verification
IBN254CertificateVerifierTypes.BN254Certificate memory bn254Cert =
abi.decode(executorCert, (IBN254CertificateVerifierTypes.BN254Certificate));
// Validate the certificate
_validateBN254Certificate(bn254Cert, operatorTableReferenceTimestamp, messageHash);
IBN254CertificateVerifier(BN254_CERTIFICATE_VERIFIER).verifyCertificate(executorOperatorSet, bn254Cert);
} else if (curveType == IKeyRegistrarTypes.CurveType.ECDSA) {
// ECDSA Certificate verification
IECDSACertificateVerifierTypes.ECDSACertificate memory ecdsaCert =
abi.decode(executorCert, (IECDSACertificateVerifierTypes.ECDSACertificate));
// Validate the certificate
_validateECDSACertificate(ecdsaCert, operatorTableReferenceTimestamp, messageHash);
IECDSACertificateVerifier(ECDSA_CERTIFICATE_VERIFIER).verifyCertificate(executorOperatorSet, ecdsaCert);
} else {
revert InvalidCurveType();
}
} else if (consensus.consensusType == ConsensusType.STAKE_PROPORTION_THRESHOLD) {
// Decode stake proportion threshold
uint16 stakeProportionThreshold = abi.decode(consensus.value, (uint16));
// This assumes that that the `BN254TableCalculator` or `ECDSATableCalculator` have been set as the `OperatorTableCalculator` in the `CrossChainRegistry` on the source chain while creating a generation reservation.
// These table calculators calculate slashable stake for an operatorSet and value all strategies equally. Hence `totalStakeProportionThresholds` is an array of length 1.
uint16[] memory totalStakeProportionThresholds = new uint16[](1);
totalStakeProportionThresholds[0] = stakeProportionThreshold;
bool isThresholdMet;
// Verify certificate based on curve type
if (curveType == IKeyRegistrarTypes.CurveType.BN254) {
// BN254 Certificate verification
IBN254CertificateVerifierTypes.BN254Certificate memory bn254Cert =
abi.decode(executorCert, (IBN254CertificateVerifierTypes.BN254Certificate));
// Validate the certificate
_validateBN254Certificate(bn254Cert, operatorTableReferenceTimestamp, messageHash);
isThresholdMet = IBN254CertificateVerifier(BN254_CERTIFICATE_VERIFIER).verifyCertificateProportion(
executorOperatorSet, bn254Cert, totalStakeProportionThresholds
);
} else if (curveType == IKeyRegistrarTypes.CurveType.ECDSA) {
// ECDSA Certificate verification
IECDSACertificateVerifierTypes.ECDSACertificate memory ecdsaCert =
abi.decode(executorCert, (IECDSACertificateVerifierTypes.ECDSACertificate));
// Validate the certificate
_validateECDSACertificate(ecdsaCert, operatorTableReferenceTimestamp, messageHash);
(isThresholdMet,) = IECDSACertificateVerifier(ECDSA_CERTIFICATE_VERIFIER).verifyCertificateProportion(
executorOperatorSet, ecdsaCert, totalStakeProportionThresholds
);
} else {
revert InvalidCurveType();
}
// If the threshold is not met, revert
require(isThresholdMet, ThresholdNotMet());
} else {
revert InvalidConsensusType();
}
}
/**
*
* VIEW FUNCTIONS
*
*/
/// @inheritdoc ITaskMailbox
function getExecutorOperatorSetTaskConfig(
OperatorSet memory operatorSet
) external view returns (ExecutorOperatorSetTaskConfig memory) {
return _executorOperatorSetTaskConfigs[operatorSet.key()];
}
/// @inheritdoc ITaskMailbox
function getTaskInfo(
bytes32 taskHash
) external view returns (Task memory) {
Task memory task = _tasks[taskHash];
return Task(
task.creator,
task.creationTime,
task.avs,
task.avsFee,
task.refundCollector,
task.executorOperatorSetId,
task.feeSplit,
_getTaskStatus(task),
task.isFeeRefunded,
task.operatorTableReferenceTimestamp,
task.executorOperatorSetTaskConfig,
task.payload,
task.executorCert,
task.result
);
}
/// @inheritdoc ITaskMailbox
function getTaskStatus(
bytes32 taskHash
) external view returns (TaskStatus) {
Task memory task = _tasks[taskHash];
return _getTaskStatus(task);
}
/// @inheritdoc ITaskMailbox
function getTaskResult(
bytes32 taskHash
) external view returns (bytes memory) {
Task memory task = _tasks[taskHash];
TaskStatus status = _getTaskStatus(task);
require(status == TaskStatus.VERIFIED, InvalidTaskStatus(TaskStatus.VERIFIED, status));
return task.result;
}
/// @inheritdoc ITaskMailbox
function getBN254CertificateBytes(
IBN254CertificateVerifierTypes.BN254Certificate memory cert
) external pure returns (bytes memory) {
return abi.encode(cert);
}
/// @inheritdoc ITaskMailbox
function getECDSACertificateBytes(
IECDSACertificateVerifierTypes.ECDSACertificate memory cert
) external pure returns (bytes memory) {
return abi.encode(cert);
}
/// @inheritdoc ITaskMailbox
function getMessageHash(bytes32 taskHash, bytes memory result) public pure returns (bytes32) {
return keccak256(abi.encode(taskHash, result));
}
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/security/ReentrancyGuardUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/access/OwnableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal onlyInitializing {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
"
},
"lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/proxy/utils/Initializable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
"
},
"lib/openzeppelin-contracts-v4.9.0/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
"
},
"lib/openzeppelin-contracts-v4.9.0/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
* 0 before setting it to a non-zero value.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
"
},
"lib/openzeppelin-contracts-v4.9.0/contracts/utils/math/SafeCast.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.0;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toUint248(uint256 value) internal pure returns (uint248) {
require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toUint240(uint256 value) internal pure returns (uint240) {
require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toUint232(uint256 value) internal pure returns (uint232) {
require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.2._
*/
function toUint224(uint256 value) internal pure returns (uint224) {
require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toUint216(uint256 value) internal pure returns (uint216) {
require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toUint208(uint256 value) internal pure returns (uint208) {
require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toUint200(uint256 value) internal pure returns (uint200) {
require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toUint192(uint256 value) internal pure returns (uint192) {
require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toUint184(uint256 value) internal pure returns (uint184) {
require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toUint176(uint256 value) internal pure returns (uint176) {
require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toUint168(uint256 value) internal pure returns (uint168) {
require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toUint160(uint256 value) internal pure returns (uint160) {
require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toUint152(uint256 value) internal pure returns (uint152) {
require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toUint144(uint256 value) internal pure returns (uint144) {
require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toUint136(uint256 value) internal pure returns (uint136) {
require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v2.5._
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toUint120(uint256 value) internal pure returns (uint120) {
require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toUint112(uint256 value) internal pure returns (uint112) {
require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toUint104(uint256 value) internal pure returns (uint104) {
require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.2._
*/
function toUint96(uint256 value) internal pure returns (uint96) {
require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toUint88(uint256 value) internal pure returns (uint88) {
require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toUint80(uint256 value) internal pure returns (uint80) {
require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toUint72(uint256 value) internal pure returns (uint72) {
require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v2.5._
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toUint56(uint256 value) internal pure returns (uint56) {
require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toUint48(uint256 value) internal pure returns (uint48) {
require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
Submitted on: 2025-09-25 10:05:42
Comments
Log in to comment.
No comments yet.