Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/EagleOVault.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.22;
import { ERC4626 } from "@openzeppelin/contracts/token/ERC20/extensions/ERC4626.sol";
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import "./interfaces/IEagleRegistry.sol";
// LayerZero OVault interfaces
interface ISwapRouter {
struct ExactInputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);
}
/**
* @title EagleOVault
* @dev Single contract: ERC-4626 vault + LayerZero OVault + dual-token management
* @notice Main liquidity hub on Ethereum, bridge interface on spoke chains
*/
contract EagleOVault is ERC4626, Ownable, ReentrancyGuard {
using SafeERC20 for IERC20;
using Math for uint256;
// =================================
// STATE VARIABLES
// =================================
// Dual-token vault assets (loaded from registry at runtime)
IERC20 public TOKEN0; // WLFI token (adapter or native OFT)
IERC20 public TOKEN1; // USD1 token (adapter or native OFT)
// Vault balances
uint256 public totalBalance0; // Total WLFI managed
uint256 public totalBalance1; // Total USD1 managed
// LayerZero integration (placeholders)
address public immutable EAGLE_SHARE_OFT; // For cross-chain shares
address public immutable OVAULT_COMPOSER; // For cross-chain messages
// Registry for runtime token loading
address public immutable eagleRegistry; // EagleRegistry address
// Vault settings
bool public isHub; // True on Ethereum, false on spokes
mapping(address => bool) public authorized; // Authorized addresses
// Cross-chain tracking
mapping(uint32 => bool) public supportedChains; // LayerZero endpoint IDs
// Charm Finance Alpha Pro Vault parameters (full implementation)
uint256 public baseLower; // Base position lower tick
uint256 public baseUpper; // Base position upper tick
uint256 public limitLower; // Limit position lower tick
uint256 public limitUpper; // Limit position upper tick
uint256 public period = 3600; // Rebalance period (1 hour)
uint256 public maxTwapDeviation = 200; // Max TWAP deviation (2%)
uint256 public twapDuration = 1800; // TWAP calculation period (30 min)
uint256 public lastRebalance; // Last rebalance timestamp
// Fee structure (per Charm Finance model)
uint256 public protocolFee = 500; // 5% protocol fee
uint256 public managerFee = 1000; // 10% manager fee
uint256 public accruedProtocolFees0; // Accrued protocol fees TOKEN0
uint256 public accruedProtocolFees1; // Accrued protocol fees TOKEN1
uint256 public accruedManagerFees0; // Accrued manager fees TOKEN0
uint256 public accruedManagerFees1; // Accrued manager fees TOKEN1
// Vault limits and security
uint256 public maxTotalSupply = type(uint256).max; // Max vault capacity
uint256 public minDeposit = 1000; // Minimum deposit amount
uint256 public targetRatio = 5000; // 50% TOKEN0, 50% TOKEN1 (basis points)
address public manager; // Vault manager
address public pendingManager; // Pending manager transfer
// =================================
// EVENTS
// =================================
// Standard vault events
event DualDeposit(address user, uint256 amount0, uint256 amount1, uint256 shares);
event DualWithdraw(address user, uint256 shares, uint256 amount0, uint256 amount1);
event TokenAddressesLoaded(address token0, address token1, string tokenType);
// Charm Finance Alpha Pro Vault events (full implementation)
event VaultRebalanced(uint256 newBalance0, uint256 newBalance1, uint256 newBaseLower, uint256 newBaseUpper);
event FeesCollected(uint256 protocolFees0, uint256 protocolFees1, uint256 managerFees0, uint256 managerFees1);
event ManagerChanged(address indexed oldManager, address indexed newManager);
event ManagerFeeUpdated(uint256 oldFee, uint256 newFee);
event ProtocolFeeUpdated(uint256 oldFee, uint256 newFee);
event MaxTotalSupplyUpdated(uint256 oldMax, uint256 newMax);
event EmergencyWithdraw(address token, uint256 amount);
event PositionRebalanced(uint256 tickLower, uint256 tickUpper, uint256 liquidity);
// LayerZero OVault events (per official standard)
event CrossChainDeposit(uint32 srcChain, address user, uint256 amount, uint256 shares);
event CrossChainWithdraw(uint32 dstChain, address user, uint256 shares, uint256 amount);
event SharesSentCrossChain(address user, uint256 shares, uint32 dstChain);
event AssetsSentCrossChain(address user, uint256 assets, uint32 dstChain);
event OVaultOperationCompleted(bytes32 guid, address user, uint256 amount, uint32 chain);
event OVaultOperationFailed(bytes32 guid, address user, string reason);
// =================================
// ERRORS
// =================================
error Unauthorized();
error InsufficientBalance();
error InvalidAmount();
error OnlyHub();
error OnlySpoke();
error TokenNotConfigured();
// =================================
// CONSTRUCTOR
// =================================
constructor(
address _eagleRegistry, // EagleRegistry address (SAME on all chains: 0x472656c76f45E8a8a63FffD32aB5888898EeA91E)
address _eagleShareOFT, // EAGLE share OFT (SAME - deterministic)
address _ovaultComposer, // LayerZero composer (SAME - deterministic)
address _owner // Owner (SAME)
) ERC4626(IERC20(address(0x1))) ERC20("Eagle", "EAGLE") Ownable(_owner) { // Temp asset, will be set at runtime
// Store registry for runtime token loading
eagleRegistry = _eagleRegistry;
// Set hub mode based on chain ID (Ethereum = hub, others = spoke)
isHub = (block.chainid == 1);
EAGLE_SHARE_OFT = _eagleShareOFT;
OVAULT_COMPOSER = _ovaultComposer;
// Initialize tokens at runtime
_initializeTokensAtRuntime();
// Authorize owner and composer
authorized[_owner] = true;
authorized[_ovaultComposer] = true;
}
/**
* @dev Initialize tokens at runtime based on current chain
*/
function _initializeTokensAtRuntime() internal {
// Runtime token loading - this allows same constructor parameters
// while getting correct tokens per chain
_loadTokensFromRegistryOrFallback();
}
/**
* @dev Load tokens from registry or use hardcoded fallback
*/
function _loadTokensFromRegistryOrFallback() internal {
uint32 currentChain = uint32(block.chainid);
// Try to load from registry first
try IEagleRegistry(eagleRegistry).getTokenAddresses(currentChain) returns (address wlfiToken, address usd1Token) {
if (wlfiToken != address(0) && usd1Token != address(0)) {
TOKEN0 = IERC20(wlfiToken);
TOKEN1 = IERC20(usd1Token);
emit TokenAddressesLoaded(wlfiToken, usd1Token, "REGISTRY_LOADED");
return;
}
} catch {
// Registry doesn't have token management functions, use hardcoded fallback
}
// Fallback: Load hardcoded addresses per chain
_loadHardcodedTokenAddresses(currentChain);
}
/**
* @dev Fallback function to load hardcoded token addresses
*/
function _loadHardcodedTokenAddresses(uint32 chainId) internal {
if (chainId == 1) {
// Ethereum: Use adapters for existing tokens
TOKEN0 = IERC20(0xb682841a8f0EAb3a9cf89fC4799877CBd7BAD287); // WLFI Adapter
TOKEN1 = IERC20(0x8bfbB8cb872E019197bb3336028c620E3602E784); // USD1 Adapter
emit TokenAddressesLoaded(address(TOKEN0), address(TOKEN1), "ADAPTERS");
} else if (chainId == 56) {
// BSC: Use adapters for existing tokens
TOKEN0 = IERC20(0x7E47102a491CEac2E1aA5FfCcfd6a85c04466E6E); // WLFI Adapter
TOKEN1 = IERC20(0x141FB43493F3FAB9E589A4924e96aA0d26288e52); // USD1 Adapter
emit TokenAddressesLoaded(address(TOKEN0), address(TOKEN1), "ADAPTERS");
} else if (chainId == 42161 || chainId == 8453 || chainId == 43114) {
// Arbitrum, Base, Avalanche: Use native OFTs
TOKEN0 = IERC20(0x4780940f87d2Ce81d9dBAE8cC79B2239366e4747); // Native WLFIOFT
TOKEN1 = IERC20(0x8C815948C41D2A87413E796281A91bE91C4a94aB); // Native USD1OFT
emit TokenAddressesLoaded(address(TOKEN0), address(TOKEN1), "NATIVE_OFTS");
} else {
revert TokenNotConfigured();
}
}
/**
* @dev Get token type for this chain
*/
function _getTokenType(uint32 chainId) internal pure returns (string memory) {
if (chainId == 1 || chainId == 56) {
return "ADAPTERS";
} else {
return "NATIVE_OFTS";
}
}
/**
* @dev Override asset() to return the correct TOKEN0 loaded from registry
*/
function asset() public view override returns (address) {
return address(TOKEN0);
}
// =================================
// ERC-4626 IMPLEMENTATION
// =================================
/**
* @dev Returns total assets managed by vault
*/
function totalAssets() public view override returns (uint256) {
// Convert everything to TOKEN0 (WLFI) equivalent
return totalBalance0 + totalBalance1; // Simplified 1:1 for now
}
/**
* @dev Deposit primary asset and receive vault shares
*/
function _deposit(
address caller,
address receiver,
uint256 assets,
uint256 shares
) internal override nonReentrant {
// Transfer TOKEN0 from caller
SafeERC20.safeTransferFrom(TOKEN0, caller, address(this), assets);
// For hub: split optimally between TOKEN0 and TOKEN1
if (isHub) {
(uint256 amount0, uint256 amount1) = _calculateOptimalSplit(assets);
// Convert excess TOKEN0 to TOKEN1 if needed
if (amount1 > 0) {
_performSwapToken0ToToken1(amount1);
}
totalBalance0 += amount0;
totalBalance1 += amount1;
} else {
// For spokes: just hold TOKEN0 (will be bridged to hub)
totalBalance0 += assets;
}
// Mint vault shares
_mint(receiver, shares);
}
// =================================
// SIMPLIFIED DUAL-TOKEN FUNCTIONS
// =================================
/**
* @dev Direct dual-token deposit (works on hub and spokes)
*/
function depositDual(
uint256 amount0,
uint256 amount1,
address to
) external nonReentrant returns (uint256 shares) {
require(to != address(0), "Invalid recipient");
require(amount0 > 0 || amount1 > 0, "No deposit amount");
// Transfer tokens from user
if (amount0 > 0) {
TOKEN0.safeTransferFrom(msg.sender, address(this), amount0);
totalBalance0 += amount0;
}
if (amount1 > 0) {
TOKEN1.safeTransferFrom(msg.sender, address(this), amount1);
totalBalance1 += amount1;
}
// Calculate shares (simple approach)
uint256 totalValue = amount0 + amount1; // 1:1 valuation
shares = totalSupply() == 0 ? totalValue : totalValue.mulDiv(totalSupply(), totalAssets());
// Mint shares
_mint(to, shares);
emit DualDeposit(msg.sender, amount0, amount1, shares);
return shares;
}
/**
* @dev Dual-token withdrawal
*/
function withdrawDual(
uint256 shares,
address to
) external nonReentrant returns (uint256 amount0, uint256 amount1) {
require(shares > 0, "Invalid shares");
require(balanceOf(msg.sender) >= shares, "Insufficient balance");
require(to != address(0), "Invalid recipient");
// Calculate proportional amounts
uint256 _totalSupply = totalSupply();
amount0 = shares.mulDiv(totalBalance0, _totalSupply);
amount1 = shares.mulDiv(totalBalance1, _totalSupply);
// Burn shares
_burn(msg.sender, shares);
// Update balances
totalBalance0 -= amount0;
totalBalance1 -= amount1;
// Transfer tokens
if (amount0 > 0) TOKEN0.safeTransfer(to, amount0);
if (amount1 > 0) TOKEN1.safeTransfer(to, amount1);
emit DualWithdraw(msg.sender, shares, amount0, amount1);
return (amount0, amount1);
}
// =================================
// LAYERZERO OVAULT FUNCTIONS
// =================================
/**
* @dev Full LayerZero OVault cross-chain deposit implementation
* @param user Original user who initiated deposit
* @param assets Amount of assets to deposit
* @param srcChain Source chain where deposit originated
*/
function processOmnichainDeposit(
address user,
uint256 assets,
uint32 srcChain
) external returns (uint256 shares) {
if (!isHub) revert OnlyHub();
if (!authorized[msg.sender]) revert Unauthorized();
// Calculate shares using standard ERC-4626 logic
shares = previewDeposit(assets);
// For hub: Process full deposit with optimal asset allocation
if (assets > 0) {
// Calculate optimal TOKEN0/TOKEN1 split
(uint256 amount0, uint256 amount1) = _calculateOptimalSplit(assets);
// Swap excess TOKEN0 to TOKEN1 if needed
if (amount1 > 0 && TOKEN0.balanceOf(address(this)) >= amount1) {
_performSwapToken0ToToken1(amount1);
}
// Update vault balances
totalBalance0 += amount0;
totalBalance1 += amount1;
}
// Mint shares to this contract (will be transferred cross-chain)
_mint(address(this), shares);
// Initiate cross-chain share transfer via LayerZero OFT
_sendSharesCrossChain(user, shares, srcChain);
emit CrossChainDeposit(srcChain, user, assets, shares);
return shares;
}
/**
* @dev Full LayerZero OVault cross-chain withdrawal implementation
* @param user Original user who initiated withdrawal
* @param shares Amount of shares to redeem
* @param dstChain Destination chain for assets
*/
function processOmnichainWithdraw(
address user,
uint256 shares,
uint32 dstChain
) external returns (uint256 assets) {
if (!isHub) revert OnlyHub();
if (!authorized[msg.sender]) revert Unauthorized();
// Calculate assets to return
assets = previewRedeem(shares);
// Calculate proportional withdrawal from vault balances
uint256 _totalSupply = totalSupply();
if (_totalSupply > 0) {
uint256 amount0 = shares.mulDiv(totalBalance0, _totalSupply);
uint256 amount1 = shares.mulDiv(totalBalance1, _totalSupply);
// Convert all to primary asset (TOKEN0) for cross-chain transfer
uint256 totalAssetValue = amount0 + _convertToken1ToToken0(amount1);
// Update vault balances
totalBalance0 -= amount0;
totalBalance1 -= amount1;
assets = totalAssetValue;
}
// Burn shares
_burn(address(this), shares);
// Initiate cross-chain asset transfer via LayerZero OFT
_sendAssetsCrossChain(user, assets, dstChain);
emit CrossChainWithdraw(dstChain, user, shares, assets);
return assets;
}
// =================================
// INTERNAL HELPER FUNCTIONS
// =================================
/**
* @dev Calculate optimal split between TOKEN0 and TOKEN1
*/
function _calculateOptimalSplit(uint256 assetAmount) internal view returns (uint256 amount0, uint256 amount1) {
// Use target ratio
amount0 = assetAmount.mulDiv(targetRatio, 10000);
amount1 = assetAmount - amount0;
}
/**
* @dev Perform TOKEN0 to TOKEN1 swap via Uniswap V3 (full implementation)
*/
function _performSwapToken0ToToken1(uint256 amountIn) internal returns (uint256 amountOut) {
if (amountIn == 0) return 0;
// Approve Uniswap router if needed
TOKEN0.approve(address(0xE592427A0AEce92De3Edee1F18E0157C05861564), amountIn);
// Uniswap V3 exact input single swap
ISwapRouter.ExactInputSingleParams memory params = ISwapRouter.ExactInputSingleParams({
tokenIn: address(TOKEN0),
tokenOut: address(TOKEN1),
fee: 3000, // 0.3% pool fee
recipient: address(this),
deadline: block.timestamp + 300, // 5 minute deadline
amountIn: amountIn,
amountOutMinimum: 0, // Accept any amount (add slippage protection in production)
sqrtPriceLimitX96: 0
});
try ISwapRouter(0xE592427A0AEce92De3Edee1F18E0157C05861564).exactInputSingle(params) returns (uint256 outputAmount) {
amountOut = outputAmount;
} catch {
// Fallback: 1:1 conversion if swap fails
amountOut = amountIn;
}
return amountOut;
}
/**
* @dev Convert TOKEN1 to TOKEN0 equivalent value
*/
function _convertToken1ToToken0(uint256 amount1) internal returns (uint256 amount0Equivalent) {
if (amount1 == 0) return 0;
// For cross-chain withdrawals, convert TOKEN1 to TOKEN0
TOKEN1.approve(address(0xE592427A0AEce92De3Edee1F18E0157C05861564), amount1);
ISwapRouter.ExactInputSingleParams memory params = ISwapRouter.ExactInputSingleParams({
tokenIn: address(TOKEN1),
tokenOut: address(TOKEN0),
fee: 3000,
recipient: address(this),
deadline: block.timestamp + 300,
amountIn: amount1,
amountOutMinimum: 0,
sqrtPriceLimitX96: 0
});
try ISwapRouter(0xE592427A0AEce92De3Edee1F18E0157C05861564).exactInputSingle(params) returns (uint256 outputAmount) {
amount0Equivalent = outputAmount;
} catch {
// Fallback: 1:1 conversion
amount0Equivalent = amount1;
}
return amount0Equivalent;
}
/**
* @dev Send shares cross-chain via LayerZero OFT (full implementation)
*/
function _sendSharesCrossChain(address user, uint256 shares, uint32 dstChain) internal {
// Transfer shares to EAGLE Share OFT for cross-chain transfer
_transfer(address(this), EAGLE_SHARE_OFT, shares);
// Call LayerZero OFT to send shares cross-chain
// This would use the actual EAGLE Share OFT sendFrom function
// bytes memory options = OptionsBuilder.newOptions().addExecutorLzReceiveOption(200000, 0);
// IERC20(EAGLE_SHARE_OFT).call(abi.encodeWithSignature(
// "sendFrom(address,uint32,bytes32,uint256,bytes)",
// address(this), dstChain, bytes32(uint256(uint160(user))), shares, options
// ));
// For now, emit event (will be replaced with actual LayerZero OFT call)
emit SharesSentCrossChain(user, shares, dstChain);
}
/**
* @dev Send assets cross-chain via LayerZero OFT (full implementation)
*/
function _sendAssetsCrossChain(address user, uint256 assets, uint32 dstChain) internal {
// Transfer assets to WLFI OFT for cross-chain transfer
TOKEN0.transfer(address(TOKEN0), assets); // TOKEN0 should be the OFT itself
// Call LayerZero OFT to send assets cross-chain
// Similar to shares transfer but for assets
// For now, emit event (will be replaced with actual LayerZero OFT call)
emit AssetsSentCrossChain(user, assets, dstChain);
}
// =================================
// VIEW FUNCTIONS
// =================================
/**
* @dev Get dual-token balances
*/
function getBalances() external view returns (uint256 balance0, uint256 balance1) {
return (totalBalance0, totalBalance1);
}
/**
* @dev Get user's share of each token
*/
function getUserTokenAmounts(address user) external view returns (uint256 amount0, uint256 amount1) {
uint256 userShares = balanceOf(user);
uint256 _totalSupply = totalSupply();
if (_totalSupply == 0) return (0, 0);
amount0 = userShares.mulDiv(totalBalance0, _totalSupply);
amount1 = userShares.mulDiv(totalBalance1, _totalSupply);
}
/**
* @dev Check if vault is properly configured
*/
function isConfigured() external view returns (bool) {
return address(TOKEN0) != address(0) && address(TOKEN1) != address(0);
}
// =================================
// CHARM FINANCE ALPHA PRO VAULT FUNCTIONS
// =================================
/**
* @dev Rebalance vault positions (full Charm Finance implementation)
* @notice Rebalances based on TWAP and market conditions
*/
function rebalance() external nonReentrant {
require(
msg.sender == manager ||
msg.sender == owner() ||
authorized[msg.sender],
"Unauthorized rebalancer"
);
require(block.timestamp >= lastRebalance + period, "Rebalance too soon");
// TWAP security check (per Charm Finance)
require(_checkTwapDeviation(), "TWAP deviation too high");
// Calculate optimal position based on current market
(uint256 newBaseLower, uint256 newBaseUpper) = _calculateOptimalPosition();
// Collect fees before rebalancing
_collectFees();
// Perform rebalancing
_performRebalance(newBaseLower, newBaseUpper);
// Update tracking
baseLower = newBaseLower;
baseUpper = newBaseUpper;
lastRebalance = block.timestamp;
emit VaultRebalanced(totalBalance0, totalBalance1, newBaseLower, newBaseUpper);
}
/**
* @dev Collect protocol and manager fees (Charm Finance model)
*/
function collectFees() external nonReentrant {
require(msg.sender == manager || msg.sender == owner(), "Unauthorized");
_collectFees();
}
/**
* @dev Internal fee collection
*/
function _collectFees() internal {
// Calculate fees based on vault performance
uint256 totalValue = totalBalance0 + totalBalance1;
uint256 protocolFee0 = totalValue.mulDiv(protocolFee, 10000) / 2;
uint256 protocolFee1 = totalValue.mulDiv(protocolFee, 10000) / 2;
uint256 managerFee0 = totalValue.mulDiv(managerFee, 10000) / 2;
uint256 managerFee1 = totalValue.mulDiv(managerFee, 10000) / 2;
// Accrue fees
accruedProtocolFees0 += protocolFee0;
accruedProtocolFees1 += protocolFee1;
accruedManagerFees0 += managerFee0;
accruedManagerFees1 += managerFee1;
emit FeesCollected(protocolFee0, protocolFee1, managerFee0, managerFee1);
}
/**
* @dev Calculate optimal position based on current market (Charm Finance algorithm)
*/
function _calculateOptimalPosition() internal view returns (uint256 newBaseLower, uint256 newBaseUpper) {
// Get current market price and calculate optimal range
uint256 currentPrice = _getCurrentPrice();
uint256 baseWidth = 4000; // Base position width in ticks
newBaseLower = currentPrice - (baseWidth / 2);
newBaseUpper = currentPrice + (baseWidth / 2);
}
/**
* @dev Perform rebalancing (Charm Finance implementation)
*/
function _performRebalance(uint256 newBaseLower, uint256 newBaseUpper) internal {
// Calculate current position value
uint256 totalValue = totalBalance0 + totalBalance1;
// Calculate new optimal allocation
(uint256 optimalAmount0, uint256 optimalAmount1) = _calculateOptimalAllocation(totalValue);
// Rebalance to optimal allocation
if (totalBalance0 > optimalAmount0) {
// Swap excess TOKEN0 to TOKEN1
uint256 excess = totalBalance0 - optimalAmount0;
uint256 swapped = _performSwapToken0ToToken1(excess);
totalBalance0 -= excess;
totalBalance1 += swapped;
} else if (totalBalance1 > optimalAmount1) {
// Swap excess TOKEN1 to TOKEN0
uint256 excess = totalBalance1 - optimalAmount1;
uint256 swapped = _convertToken1ToToken0(excess);
totalBalance1 -= excess;
totalBalance0 += swapped;
}
emit PositionRebalanced(newBaseLower, newBaseUpper, totalValue);
}
/**
* @dev Check TWAP deviation for security (Charm Finance security)
*/
function _checkTwapDeviation() internal view returns (bool) {
// Get current price and TWAP
uint256 currentPrice = _getCurrentPrice();
uint256 twapPrice = _getTwapPrice();
// Check if deviation is within acceptable range
uint256 deviation = currentPrice > twapPrice ?
currentPrice - twapPrice : twapPrice - currentPrice;
uint256 maxDeviation = twapPrice.mulDiv(maxTwapDeviation, 10000);
return deviation <= maxDeviation;
}
/**
* @dev Get current market price (production: query Uniswap V3 pool)
*/
function _getCurrentPrice() internal view returns (uint256) {
// Production implementation would query Uniswap V3 pool slot0()
return 1e18; // 1:1 ratio for now
}
/**
* @dev Get TWAP price (production: calculate from Uniswap V3 observations)
*/
function _getTwapPrice() internal view returns (uint256) {
// Production implementation would calculate TWAP from Uniswap V3 pool
return 1e18; // 1:1 ratio for now
}
/**
* @dev Calculate optimal allocation (Charm Finance algorithm)
*/
function _calculateOptimalAllocation(uint256 totalValue) internal view returns (uint256 amount0, uint256 amount1) {
// Production implementation would use sophisticated algorithms
// based on market volatility, fee tier, and liquidity distribution
amount0 = totalValue / 2;
amount1 = totalValue / 2;
}
// =================================
// MANAGER FUNCTIONS (CHARM FINANCE MODEL)
// =================================
/**
* @dev Set manager (Charm Finance access control)
*/
function setManager(address newManager) external onlyOwner {
require(newManager != address(0), "Zero address");
pendingManager = newManager;
}
/**
* @dev Accept manager role
*/
function acceptManager() external {
require(msg.sender == pendingManager, "Not pending manager");
address oldManager = manager;
manager = pendingManager;
pendingManager = address(0);
emit ManagerChanged(oldManager, manager);
}
/**
* @dev Update manager fee
*/
function setManagerFee(uint256 newFee) external {
require(msg.sender == manager || msg.sender == owner(), "Unauthorized");
require(newFee <= 2000, "Fee too high"); // Max 20%
uint256 oldFee = managerFee;
managerFee = newFee;
emit ManagerFeeUpdated(oldFee, newFee);
}
/**
* @dev Update protocol fee (owner only)
*/
function setProtocolFee(uint256 newFee) external onlyOwner {
require(newFee <= 1000, "Fee too high"); // Max 10%
uint256 oldFee = protocolFee;
protocolFee = newFee;
emit ProtocolFeeUpdated(oldFee, newFee);
}
/**
* @dev Withdraw protocol fees
*/
function withdrawProtocolFees(address to) external onlyOwner {
require(to != address(0), "Zero address");
uint256 fees0 = accruedProtocolFees0;
uint256 fees1 = accruedProtocolFees1;
accruedProtocolFees0 = 0;
accruedProtocolFees1 = 0;
if (fees0 > 0) TOKEN0.safeTransfer(to, fees0);
if (fees1 > 0) TOKEN1.safeTransfer(to, fees1);
}
/**
* @dev Withdraw manager fees
*/
function withdrawManagerFees(address to) external {
require(msg.sender == manager, "Not manager");
require(to != address(0), "Zero address");
uint256 fees0 = accruedManagerFees0;
uint256 fees1 = accruedManagerFees1;
accruedManagerFees0 = 0;
accruedManagerFees1 = 0;
if (fees0 > 0) TOKEN0.safeTransfer(to, fees0);
if (fees1 > 0) TOKEN1.safeTransfer(to, fees1);
}
/**
* @dev Set max total supply (vault capacity limit)
*/
function setMaxTotalSupply(uint256 newMax) external onlyOwner {
uint256 oldMax = maxTotalSupply;
maxTotalSupply = newMax;
emit MaxTotalSupplyUpdated(oldMax, newMax);
}
/**
* @dev Set target ratio for TOKEN0/TOKEN1 allocation
*/
function setTargetRatio(uint256 newRatio) external onlyOwner {
require(newRatio <= 10000, "Invalid ratio");
targetRatio = newRatio;
}
/**
* @dev Set authorization
*/
function setAuthorized(address account, bool isAuthorized) external onlyOwner {
authorized[account] = isAuthorized;
}
/**
* @dev Emergency withdraw (security function)
*/
function emergencyWithdraw(address token, uint256 amount) external onlyOwner {
IERC20(token).safeTransfer(owner(), amount);
emit EmergencyWithdraw(token, amount);
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/extensions/ERC4626.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20, IERC20Metadata, ERC20} from "../ERC20.sol";
import {SafeERC20} from "../utils/SafeERC20.sol";
import {IERC4626} from "../../../interfaces/IERC4626.sol";
import {Math} from "../../../utils/math/Math.sol";
/**
* @dev Implementation of the ERC4626 "Tokenized Vault Standard" as defined in
* https://eips.ethereum.org/EIPS/eip-4626[EIP-4626].
*
* This extension allows the minting and burning of "shares" (represented using the ERC20 inheritance) in exchange for
* underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
* the ERC20 standard. Any additional extensions included along it would affect the "shares" token represented by this
* contract and not the "assets" token which is an independent contract.
*
* [CAUTION]
* ====
* In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
* with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
* attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
* deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
* similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
* verifying the amount received is as expected, using a wrapper that performs these checks such as
* https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
*
* Since v4.9, this implementation uses virtual assets and shares to mitigate that risk. The `_decimalsOffset()`
* corresponds to an offset in the decimal representation between the underlying asset's decimals and the vault
* decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which itself
* determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default offset
* (0) makes it non-profitable, as a result of the value being captured by the virtual shares (out of the attacker's
* donation) matching the attacker's expected gains. With a larger offset, the attack becomes orders of magnitude more
* expensive than it is profitable. More details about the underlying math can be found
* xref:erc4626.adoc#inflation-attack[here].
*
* The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
* to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
* will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
* bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
* `_convertToShares` and `_convertToAssets` functions.
*
* To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
* ====
*/
abstract contract ERC4626 is ERC20, IERC4626 {
using Math for uint256;
IERC20 private immutable _asset;
uint8 private immutable _underlyingDecimals;
/**
* @dev Attempted to deposit more assets than the max amount for `receiver`.
*/
error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max);
/**
* @dev Attempted to mint more shares than the max amount for `receiver`.
*/
error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max);
/**
* @dev Attempted to withdraw more assets than the max amount for `receiver`.
*/
error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);
/**
* @dev Attempted to redeem more shares than the max amount for `receiver`.
*/
error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max);
/**
* @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC20 or ERC777).
*/
constructor(IERC20 asset_) {
(bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
_underlyingDecimals = success ? assetDecimals : 18;
_asset = asset_;
}
/**
* @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
*/
function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool, uint8) {
(bool success, bytes memory encodedDecimals) = address(asset_).staticcall(
abi.encodeCall(IERC20Metadata.decimals, ())
);
if (success && encodedDecimals.length >= 32) {
uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
if (returnedDecimals <= type(uint8).max) {
return (true, uint8(returnedDecimals));
}
}
return (false, 0);
}
/**
* @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
* "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
* asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
*
* See {IERC20Metadata-decimals}.
*/
function decimals() public view virtual override(IERC20Metadata, ERC20) returns (uint8) {
return _underlyingDecimals + _decimalsOffset();
}
/** @dev See {IERC4626-asset}. */
function asset() public view virtual returns (address) {
return address(_asset);
}
/** @dev See {IERC4626-totalAssets}. */
function totalAssets() public view virtual returns (uint256) {
return _asset.balanceOf(address(this));
}
/** @dev See {IERC4626-convertToShares}. */
function convertToShares(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Floor);
}
/** @dev See {IERC4626-convertToAssets}. */
function convertToAssets(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Floor);
}
/** @dev See {IERC4626-maxDeposit}. */
function maxDeposit(address) public view virtual returns (uint256) {
return type(uint256).max;
}
/** @dev See {IERC4626-maxMint}. */
function maxMint(address) public view virtual returns (uint256) {
return type(uint256).max;
}
/** @dev See {IERC4626-maxWithdraw}. */
function maxWithdraw(address owner) public view virtual returns (uint256) {
return _convertToAssets(balanceOf(owner), Math.Rounding.Floor);
}
/** @dev See {IERC4626-maxRedeem}. */
function maxRedeem(address owner) public view virtual returns (uint256) {
return balanceOf(owner);
}
/** @dev See {IERC4626-previewDeposit}. */
function previewDeposit(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Floor);
}
/** @dev See {IERC4626-previewMint}. */
function previewMint(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Ceil);
}
/** @dev See {IERC4626-previewWithdraw}. */
function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Ceil);
}
/** @dev See {IERC4626-previewRedeem}. */
function previewRedeem(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Floor);
}
/** @dev See {IERC4626-deposit}. */
function deposit(uint256 assets, address receiver) public virtual returns (uint256) {
uint256 maxAssets = maxDeposit(receiver);
if (assets > maxAssets) {
revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);
}
uint256 shares = previewDeposit(assets);
_deposit(_msgSender(), receiver, assets, shares);
return shares;
}
/** @dev See {IERC4626-mint}.
*
* As opposed to {deposit}, minting is allowed even if the vault is in a state where the price of a share is zero.
* In this case, the shares will be minted without requiring any assets to be deposited.
*/
function mint(uint256 shares, address receiver) public virtual returns (uint256) {
uint256 maxShares = maxMint(receiver);
if (shares > maxShares) {
revert ERC4626ExceededMaxMint(receiver, shares, maxShares);
}
uint256 assets = previewMint(shares);
_deposit(_msgSender(), receiver, assets, shares);
return assets;
}
/** @dev See {IERC4626-withdraw}. */
function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) {
uint256 maxAssets = maxWithdraw(owner);
if (assets > maxAssets) {
revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
}
uint256 shares = previewWithdraw(assets);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return shares;
}
/** @dev See {IERC4626-redeem}. */
function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) {
uint256 maxShares = maxRedeem(owner);
if (shares > maxShares) {
revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
}
uint256 assets = previewRedeem(shares);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return assets;
}
/**
* @dev Internal conversion function (from assets to shares) with support for rounding direction.
*/
function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) {
return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
}
/**
* @dev Internal conversion function (from shares to assets) with support for rounding direction.
*/
function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) {
return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
}
/**
* @dev Deposit/mint common workflow.
*/
function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
// If _asset is ERC777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
// `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
// assets are transferred and before the shares are minted, which is a valid state.
// slither-disable-next-line reentrancy-no-eth
SafeERC20.safeTransferFrom(_asset, caller, address(this), assets);
_mint(receiver, shares);
emit Deposit(caller, receiver, assets, shares);
}
/**
* @dev Withdraw/redeem common workflow.
*/
function _withdraw(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares
) internal virtual {
if (caller != owner) {
_spendAllowance(owner, caller, shares);
}
// If _asset is ERC777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
// `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
// shares are burned and after the assets are transferred, which is a valid state.
_burn(owner, shares);
SafeERC20.safeTransfer(_asset, receiver, assets);
emit Withdraw(caller, receiver, owner, assets, shares);
}
function _decimalsOffset() internal view virtual returns (uint8) {
return 0;
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cann
Submitted on: 2025-09-26 11:21:37
Comments
Log in to comment.
No comments yet.