PendleV2Farm

Description:

Multi-signature wallet contract requiring multiple confirmations for transaction execution.

Blockchain: Ethereum

Source Code: View Code On The Blockchain

Solidity Source Code:

{{
  "language": "Solidity",
  "sources": {
    "src/integrations/farms/PendleV2Farm.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";

import {IOracle} from "@interfaces/IOracle.sol";
import {ISYToken} from "@interfaces/pendle/ISYToken.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {Accounting} from "@finance/Accounting.sol";
import {Farm, IFarm} from "@integrations/Farm.sol";
import {IPendleMarket} from "@interfaces/pendle/IPendleMarket.sol";
import {IPendleOracle} from "@interfaces/pendle/IPendleOracle.sol";
import {IMaturityFarm, IFarm} from "@interfaces/IMaturityFarm.sol";

/// @title Pendle V2 Farm
/// @notice This contract is used to deploy assets to Pendle v2
contract PendleV2Farm is Farm, IMaturityFarm {
    using SafeERC20 for IERC20;
    using FixedPointMathLib for uint256;

    error PTAlreadyMatured(uint256 maturity);
    error PTNotMatured(uint256 maturity);
    error SwapFailed(bytes reason);

    /// @notice Maturity of the Pendle market.
    uint256 public immutable maturity;

    /// @notice Reference to the Pendle market.
    address public immutable pendleMarket;

    /// @notice Reference to the Pendle oracle (for PT <-> underlying exchange rates).
    address public immutable pendleOracle;
    uint32 private constant _PENDLE_ORACLE_TWAP_DURATION = 3600;

    /// @notice Reference to the Pendle market's underlying token (the token into
    /// which PTs convert at maturity).
    address public immutable underlyingToken;

    /// @notice Reference to the Principal Token of the Pendle market.
    address public immutable ptToken;

    /// @notice Reference to the SY token of the Pendle market
    address public immutable syToken;

    /// @notice Reference to the protocol accounting contract
    address public immutable accounting;

    /// @notice address of the Pendle router used for swaps
    address public pendleRouter;

    /// @notice Number of assets() wrapped as PTs
    uint256 private totalWrappedAssets;
    /// @notice Number of assets() unwrapped from PTs
    uint256 private totalUnwrappedAssets;
    /// @notice Number of PTs received from wrapping assets()
    uint256 private totalReceivedPTs;
    /// @notice Number of PTs unwrapped to assets()
    uint256 private totalRedeemedPTs;

    /// @notice Total yield already interpolated
    /// @dev this should be updated everytime we deposit and wrap assets
    uint256 private _alreadyInterpolatedYield;

    /// @notice Timestamp of the last wrapping
    uint256 private _lastWrappedTimestamp;

    constructor(address _core, address _assetToken, address _pendleMarket, address _pendleOracle, address _accounting)
        Farm(_core, _assetToken)
    {
        pendleMarket = _pendleMarket;
        pendleOracle = _pendleOracle;
        accounting = _accounting;

        // read contracts and keep some immutable variables to save gas
        (syToken, ptToken,) = IPendleMarket(_pendleMarket).readTokens();
        (, underlyingToken,) = ISYToken(syToken).assetInfo();

        maturity = IPendleMarket(_pendleMarket).expiry();

        // set default slippage tolerance to 99.5%
        maxSlippage = 0.995e18;
    }

    function setPendleRouter(address _pendleRouter) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
        pendleRouter = _pendleRouter;
    }

    /// @notice Returns the total assets in the farm
    /// before maturity, the assets are the sum of assets in the farm + assets wrapped + the interpolated yield
    /// after maturity, the assets are the sum of the assets() + the value of the PTs based on oracle prices
    /// @dev Note that the assets() function includes the current balance of assetTokens,
    /// this is because deposit()s and withdraw()als in this farm are handled asynchronously,
    /// as they have to go through swaps which calldata has to be generated offchain.
    /// This farm therefore holds its reserve in 2 tokens, assetToken and ptToken.
    function assets() public view override(Farm, IFarm) returns (uint256) {
        uint256 assetTokenBalance = IERC20(assetToken).balanceOf(address(this));
        if (block.timestamp < maturity) {
            // before maturity, interpolate yield
            return assetTokenBalance + totalWrappedAssets + _interpolatingYield();
        } else {
            // after maturity, return the total USDC held in the farm +
            // the PTs value if any are still held
            uint256 balanceOfPTs = IERC20(ptToken).balanceOf(address(this));
            uint256 ptAssetsValue = 0;
            if (balanceOfPTs > 0) {
                // estimate the value of the PTs at maturity,
                // accounting for possible max slippage
                ptAssetsValue = _ptToAssets(balanceOfPTs).mulWadDown(maxSlippage);
            }
            return assetTokenBalance + ptAssetsValue;
        }
    }

    /// @notice Current liquidity of the farm is the held assetTokens
    function liquidity() public view override returns (uint256) {
        return IERC20(assetToken).balanceOf(address(this));
    }

    /// @notice Wraps assetTokens as PTs.
    /// @dev The transaction may be submitted privately to avoid sandwiching, and the function
    /// can be called multiple times with partial amounts to help reduce slippage.
    /// @dev The caller is trusted to not be sandwiching the swap to steal yield.
    function wrapAssetToPt(uint256 _assetsIn, bytes memory _calldata)
        external
        whenNotPaused
        onlyCoreRole(CoreRoles.FARM_SWAP_CALLER)
    {
        require(block.timestamp < maturity, PTAlreadyMatured(maturity));
        // update the already interpolated yield on each wrap
        _alreadyInterpolatedYield = _interpolatingYield();
        uint256 ptBalanceBefore = IERC20(ptToken).balanceOf(address(this));

        // do swap
        IERC20(assetToken).forceApprove(pendleRouter, _assetsIn);
        (bool success, bytes memory reason) = pendleRouter.call(_calldata);
        require(success, SwapFailed(reason));

        // check slippage
        uint256 ptBalanceAfter = IERC20(ptToken).balanceOf(address(this));
        uint256 ptReceived = ptBalanceAfter - ptBalanceBefore;
        uint256 minAssetsOut = _assetsIn.mulWadDown(maxSlippage);
        require(_ptToAssets(ptReceived) >= minAssetsOut, SlippageTooHigh(minAssetsOut, _ptToAssets(ptReceived)));

        // update wrapped assets
        totalWrappedAssets += _assetsIn;
        totalReceivedPTs += ptReceived;
        _lastWrappedTimestamp = block.timestamp;
    }

    /// @notice Unwraps PTs to assetTokens.
    /// @dev The transaction may be submitted privately to avoid sandwiching, and the function
    /// can be called multiple times with partial amounts to help reduce slippage.
    function unwrapPtToAsset(uint256 _ptTokensIn, bytes memory _calldata)
        external
        whenNotPaused
        onlyCoreRole(CoreRoles.FARM_SWAP_CALLER)
    {
        require(block.timestamp >= maturity, PTNotMatured(maturity));
        uint256 assetsBefore = IERC20(assetToken).balanceOf(address(this));

        // do swap
        IERC20(ptToken).forceApprove(pendleRouter, _ptTokensIn);
        (bool success, bytes memory reason) = pendleRouter.call(_calldata);
        require(success, SwapFailed(reason));

        // check slippage
        uint256 assetsAfter = IERC20(assetToken).balanceOf(address(this));
        uint256 assetsReceived = assetsAfter - assetsBefore;
        uint256 minAssetsOut = _ptToAssets(_ptTokensIn).mulWadDown(maxSlippage);
        require(assetsReceived >= minAssetsOut, SlippageTooHigh(minAssetsOut, assetsReceived));

        // update unwrapped assets
        totalUnwrappedAssets += assetsReceived;
        totalRedeemedPTs += _ptTokensIn;
    }

    /// @dev Deposit does nothing, assetTokens are just held on this farm.
    /// @dev See call to wrapAssetToPt() for the actual swap into Pendle PTs.
    function _deposit(uint256) internal view override {}

    function deposit() external view override(Farm, IFarm) onlyCoreRole(CoreRoles.FARM_MANAGER) whenNotPaused {
        // prevent deposits to this farm after maturity is reached
        require(block.timestamp < maturity, PTAlreadyMatured(maturity));
    }

    /// @dev Withdrawal can only handle the held assetTokens (i.e. the liquidity()).
    /// @dev See call to unwrapPtToAsset() for the actual swap out of Pendle PTs.
    function _withdraw(uint256 _amount, address _to) internal override {
        IERC20(assetToken).safeTransfer(_to, _amount);
    }

    /// @dev e.g. for ptToken = PT-sUSDE-29MAY2025 and assetToken = USDC,
    /// this oracle returns the exchange rate of USDE (the underlying token) to USDC.
    /// Since USDE has 18 decimals and USDC has 6, and the exchange rate is ~1:1,
    /// the oracle should return a value ~= 1e6 because the USDC oracle returns 1e30
    /// and the USDE oracle returns 1e18.
    function _assetToPtUnderlyingRate() internal view returns (uint256) {
        uint256 assetPrice = Accounting(accounting).price(assetToken);
        uint256 underlyingPrice = Accounting(accounting).price(underlyingToken);
        return underlyingPrice.divWadDown(assetPrice);
    }

    /// @notice Converts a number of PTs to assetTokens based on oracle rates.
    function _ptToAssets(uint256 _ptAmount) internal view returns (uint256) {
        // read oracles
        uint256 ptToUnderlyingRate =
            IPendleOracle(pendleOracle).getPtToAssetRate(pendleMarket, _PENDLE_ORACLE_TWAP_DURATION);
        // convert
        uint256 ptUnderlying = _ptAmount.mulWadDown(ptToUnderlyingRate);
        return ptUnderlying.mulWadDown(_assetToPtUnderlyingRate());
    }

    /// @notice Computes the yield to interpolate from the last deposit to maturity.
    /// @dev this function is and should only be called before maturity
    function _interpolatingYield() internal view returns (uint256) {
        // if no wrapping has been made yet, no yield to interpolate
        if (_lastWrappedTimestamp == 0) return 0;
        uint256 balanceOfPTs = IERC20(ptToken).balanceOf(address(this));
        // if not PTs held, no need to interpolate
        if (balanceOfPTs == 0) return 0;

        // we want to interpolate the yield from the current time to maturity
        // to do that, we first need to compute how much USDC we should be able to get once maturity is reached
        // at maturity, 1 PT is worth 1 underlying PT asset (e.g. USDE)
        // so we can compute the amount of assets (eg USDC) we should get at maturity by using the assetToPtUnderlyingRate
        // in this example, assetToPtUnderlyingRate gives the price of USDE in USDC. probably close to 1:1
        uint256 maturityAssetAmount = balanceOfPTs.mulWadDown(_assetToPtUnderlyingRate());
        // account for slippage, because unwrapping PTs => assets will cause some slippage using pendle's AMM
        maturityAssetAmount = maturityAssetAmount.mulWadDown(maxSlippage);

        // compute the yield to interpolate, which is the target amount (maturityAssetAmount) minus the amount of assets wrapped
        // minus the already interpolated yield (can be != 0 if we made multiple wraps)
        int256 totalYieldRemainingToInterpolate =
            int256(maturityAssetAmount) - int256(totalWrappedAssets) - int256(_alreadyInterpolatedYield);

        // in case the rate moved against us, we return the already interpolated yield
        if (totalYieldRemainingToInterpolate < 0) return _alreadyInterpolatedYield;

        // cannot underflow because _lastWrappedTimestamp cannot be after maturity as we cannot wrap after maturity
        // and _lastWrappedTimestamp is always > 0 otherwise the first line of this function would have returned 0
        uint256 yieldPerSecond =
            uint256(totalYieldRemainingToInterpolate) * FixedPointMathLib.WAD / (maturity - _lastWrappedTimestamp);
        uint256 secondsSinceLastWrap = block.timestamp - _lastWrappedTimestamp;
        uint256 interpolatedYield = yieldPerSecond * secondsSinceLastWrap;
        return _alreadyInterpolatedYield + interpolatedYield / FixedPointMathLib.WAD;
    }
}
"
    },
    "lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
    },
    "lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}
"
    },
    "lib/solmate/src/utils/FixedPointMathLib.sol": {
      "content": "// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant MAX_UINT256 = 2**256 - 1;

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // Divide x * y by the denominator.
            z := div(mul(x, y), denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // If x * y modulo the denominator is strictly greater than 0,
            // 1 is added to round up the division of x * y by the denominator.
            z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Mod x by y. Note this will return
            // 0 instead of reverting if y is zero.
            z := mod(x, y)
        }
    }

    function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Divide x by y. Note this will return
            // 0 instead of reverting if y is zero.
            r := div(x, y)
        }
    }

    function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Add 1 to x * y if x % y > 0. Note this will
            // return 0 instead of reverting if y is zero.
            z := add(gt(mod(x, y), 0), div(x, y))
        }
    }
}
"
    },
    "src/interfaces/IOracle.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

interface IOracle {
    /// @notice price of a token expressed in a reference token.
    /// @dev be mindful of the decimals here, because if quote token
    /// doesn't have 18 decimals, value is used to scale the decimals.
    /// For example, for USDC quote (6 decimals) expressed in
    /// DAI reference (18 decimals), value should be around ~1e30,
    /// so that price is:
    /// 1e6 * 1e30 / WAD (1e18)
    /// ~= WAD (1e18)
    /// ~= 1:1
    function price() external view returns (uint256);
}
"
    },
    "src/interfaces/pendle/ISYToken.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

interface ISYToken {
    function getAbsoluteSupplyCap() external view returns (uint256);

    function getAbsoluteTotalSupply() external view returns (uint256);

    function assetInfo() external view returns (uint8 assetType, address assetAddress, uint8 assetDecimals);

    function yieldToken() external view returns (address);
}
"
    },
    "src/libraries/CoreRoles.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/// @notice Holds a complete list of all roles which can be held by contracts inside the InfiniFi protocol.
library CoreRoles {
    /// ----------- Core roles for access control --------------

    /// @notice the all-powerful role. Controls all other roles and protocol functionality.
    bytes32 internal constant GOVERNOR = keccak256("GOVERNOR");

    /// @notice Can pause contracts in an emergency.
    bytes32 internal constant PAUSE = keccak256("PAUSE");

    /// @notice Can unpause contracts after an emergency.
    bytes32 internal constant UNPAUSE = keccak256("UNPAUSE");

    /// @notice can tweak protocol parameters
    bytes32 internal constant PROTOCOL_PARAMETERS = keccak256("PROTOCOL_PARAMETERS");

    /// @notice can manage minor roles
    bytes32 internal constant MINOR_ROLES_MANAGER = keccak256("MINOR_ROLES_MANAGER");

    /// ----------- User Flow Management -----------------------

    /// @notice Granted to the user entry point of the system
    bytes32 internal constant ENTRY_POINT = keccak256("ENTRY_POINT");

    /// ----------- Token Management ---------------------------

    /// @notice can mint DebtToken arbitrarily
    bytes32 internal constant RECEIPT_TOKEN_MINTER = keccak256("RECEIPT_TOKEN_MINTER");

    /// @notice can burn DebtToken tokens
    bytes32 internal constant RECEIPT_TOKEN_BURNER = keccak256("RECEIPT_TOKEN_BURNER");

    /// @notice can mint arbitrarily & burn held LockedPositionToken
    bytes32 internal constant LOCKED_TOKEN_MANAGER = keccak256("LOCKED_TOKEN_MANAGER");

    /// @notice can prevent transfers of LockedPositionToken
    bytes32 internal constant TRANSFER_RESTRICTOR = keccak256("TRANSFER_RESTRICTOR");

    /// ----------- Funds Management & Accounting --------------

    /// @notice contract that can allocate funds between farms
    bytes32 internal constant FARM_MANAGER = keccak256("FARM_MANAGER");

    /// @notice addresses who can use the manual rebalancer
    bytes32 internal constant MANUAL_REBALANCER = keccak256("MANUAL_REBALANCER");

    /// @notice addresses who can use the periodic rebalancer
    bytes32 internal constant PERIODIC_REBALANCER = keccak256("PERIODIC_REBALANCER");

    /// @notice addresses who can move funds from farms to a safe address
    bytes32 internal constant EMERGENCY_WITHDRAWAL = keccak256("EMERGENCY_WITHDRAWAL");

    /// @notice addresses who can trigger swaps in Farms
    bytes32 internal constant FARM_SWAP_CALLER = keccak256("FARM_SWAP_CALLER");

    /// @notice can set oracles references within the system
    bytes32 internal constant ORACLE_MANAGER = keccak256("ORACLE_MANAGER");

    /// @notice trusted to report profit and losses in the system.
    /// This role can be used to slash depositors in case of losses, and
    /// can also deposit profits for distribution to end users.
    bytes32 internal constant FINANCE_MANAGER = keccak256("FINANCE_MANAGER");

    /// ----------- Timelock management ------------------------
    /// The hashes are the same as OpenZeppelins's roles in TimelockController

    /// @notice can propose new actions in timelocks
    bytes32 internal constant PROPOSER_ROLE = keccak256("PROPOSER_ROLE");

    /// @notice can execute actions in timelocks after their delay
    bytes32 internal constant EXECUTOR_ROLE = keccak256("EXECUTOR_ROLE");

    /// @notice can cancel actions in timelocks
    bytes32 internal constant CANCELLER_ROLE = keccak256("CANCELLER_ROLE");
}
"
    },
    "src/finance/Accounting.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";

import {IFarm} from "@interfaces/IFarm.sol";
import {IOracle} from "@interfaces/IOracle.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {FarmRegistry} from "@integrations/FarmRegistry.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {FixedPriceOracle} from "@finance/oracles/FixedPriceOracle.sol";

/// @notice InfiniFi Accounting contract
contract Accounting is CoreControlled {
    using FixedPointMathLib for uint256;

    event PriceSet(uint256 indexed timestamp, address indexed asset, uint256 price);
    event OracleSet(uint256 indexed timestamp, address indexed asset, address oracle);

    /// @notice reference to the farm registry
    address public immutable farmRegistry;

    constructor(address _core, address _farmRegistry) CoreControlled(_core) {
        farmRegistry = _farmRegistry;
    }

    /// @notice mapping from asset to oracle
    mapping(address => address) public oracle;

    /// @notice returns the price of an asset
    function price(address _asset) external view returns (uint256) {
        return IOracle(oracle[_asset]).price();
    }

    /// @notice set the oracle for an asset
    function setOracle(address _asset, address _oracle) external onlyCoreRole(CoreRoles.ORACLE_MANAGER) {
        oracle[_asset] = _oracle;
        emit OracleSet(block.timestamp, _asset, _oracle);
    }

    /// -------------------------------------------------------------------------------------------
    /// Reference token getters (e.g. USD for iUSD, ETH for iETH, ...)
    /// @dev note that the "USD" token does not exist, it is just an abstract unit of account
    /// used in the protocol to represent stablecoins pegged to USD, that allows to uniformly
    /// account for a diverse reserve composed of USDC, DAI, FRAX, etc.
    /// -------------------------------------------------------------------------------------------

    /// @notice returns the sum of the value of all assets held on protocol contracts listed in the farm registry.
    function totalAssetsValue() external view returns (uint256 _totalValue) {
        address[] memory assets = FarmRegistry(farmRegistry).getEnabledAssets();
        for (uint256 i = 0; i < assets.length; i++) {
            uint256 assetPrice = IOracle(oracle[assets[i]]).price();
            uint256 _assets = _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetFarms(assets[i]));
            _totalValue += _assets.mulWadDown(assetPrice);
        }
    }

    /// @notice returns the sum of the value of all liquid assets held on protocol contracts listed in the farm registry.
    /// @dev see totalAssetsValue()
    function totalAssetsValueOf(uint256 _type) external view returns (uint256 _totalValue) {
        address[] memory assets = FarmRegistry(farmRegistry).getEnabledAssets();
        for (uint256 i = 0; i < assets.length; i++) {
            uint256 assetPrice = IOracle(oracle[assets[i]]).price();
            address[] memory assetFarms = FarmRegistry(farmRegistry).getAssetTypeFarms(assets[i], uint256(_type));
            uint256 _assets = _calculateTotalAssets(assetFarms);
            _totalValue += _assets.mulWadDown(assetPrice);
        }
    }

    /// -------------------------------------------------------------------------------------------
    /// Specific asset getters (e.g. USDC, DAI, ...)
    /// -------------------------------------------------------------------------------------------

    /// @notice returns the sum of the balance of all farms of a given asset.
    function totalAssets(address _asset) external view returns (uint256) {
        return _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetFarms(_asset));
    }

    function totalAssetsOf(address _asset, uint256 _type) external view returns (uint256) {
        return _calculateTotalAssets(FarmRegistry(farmRegistry).getAssetTypeFarms(_asset, uint256(_type)));
    }

    /// -------------------------------------------------------------------------------------------
    /// Internal helpers
    /// -------------------------------------------------------------------------------------------

    function _calculateTotalAssets(address[] memory _farms) internal view returns (uint256 _totalAssets) {
        uint256 length = _farms.length;
        for (uint256 index = 0; index < length; index++) {
            _totalAssets += IFarm(_farms[index]).assets();
        }
    }
}
"
    },
    "src/integrations/Farm.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";

import {IFarm} from "@interfaces/IFarm.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {CoreControlled} from "@core/CoreControlled.sol";

/// @notice InfiniFi Farm base contract
abstract contract Farm is CoreControlled, IFarm {
    using FixedPointMathLib for uint256;

    address public immutable assetToken;

    /// @notice cap on the amount of assets that can be deposited into the farm
    uint256 public cap;

    /// @notice Max slippage for depositing and witdhrawing assets from the farm.
    /// @dev Stored as a percentage with 18 decimals of precision, of the minimum
    /// position size compared to the previous position size (so actually 1 - slippage).
    /// @dev Set to 0 to disable slippage checks.
    uint256 public maxSlippage;

    error CapExceeded(uint256 newAmount, uint256 cap);
    error SlippageTooHigh(uint256 minAssetsOut, uint256 assetsReceived);

    event CapUpdated(uint256 newCap);
    event MaxSlippageUpdated(uint256 newMaxSlippage);

    constructor(address _core, address _assetToken) CoreControlled(_core) {
        assetToken = _assetToken;
        cap = type(uint256).max;

        // default to 99.9999%
        // most farms should not have deposits/withdrawals fees, unless explicitly
        // implemented, and should at worst round against depositors which should
        // only cause some wei of losses when our farms do a deposit/withdraw.
        maxSlippage = 0.999999e18;
    }

    /// @notice set the deposit cap of the farm
    function setCap(uint256 _newCap) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
        cap = _newCap;
        emit CapUpdated(_newCap);
    }

    /// @notice set the max tolerated slippage for depositing and witdhrawing assets from the farm
    function setMaxSlippage(uint256 _maxSlippage) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
        maxSlippage = _maxSlippage;
        emit MaxSlippageUpdated(_maxSlippage);
    }

    // --------------------------------------------------------------------
    // Accounting
    // --------------------------------------------------------------------

    function assets() public view virtual returns (uint256);

    // --------------------------------------------------------------------
    // Adapter logic
    // --------------------------------------------------------------------

    function maxDeposit() external view virtual returns (uint256) {
        uint256 currentAssets = assets();
        if (currentAssets >= cap) {
            return 0;
        }
        return cap - currentAssets;
    }

    function deposit() external virtual onlyCoreRole(CoreRoles.FARM_MANAGER) whenNotPaused {
        uint256 assetsToDeposit = ERC20(assetToken).balanceOf(address(this));
        uint256 assetsBefore = assets();

        if (assetsBefore + assetsToDeposit > cap) {
            revert CapExceeded(assetsBefore + assetsToDeposit, cap);
        }

        _deposit(assetsToDeposit);

        uint256 assetsAfter = assets();
        uint256 assetsReceived = assetsAfter - assetsBefore;

        // check slippage
        uint256 minAssetsOut = assetsToDeposit.mulWadDown(maxSlippage);
        require(assetsReceived >= minAssetsOut, SlippageTooHigh(minAssetsOut, assetsReceived));

        emit AssetsUpdated(block.timestamp, assetsBefore, assetsAfter);
    }

    function _deposit(uint256 assetsToDeposit) internal virtual;

    function withdraw(uint256 amount, address to) external virtual onlyCoreRole(CoreRoles.FARM_MANAGER) whenNotPaused {
        uint256 assetsBefore = assets();

        _withdraw(amount, to);

        uint256 assetsAfter = assets();

        uint256 assetsSpent = assetsBefore - assetsAfter;

        uint256 minAssetsOut = assetsSpent.mulWadDown(maxSlippage);
        require(amount >= minAssetsOut, SlippageTooHigh(minAssetsOut, amount));

        emit AssetsUpdated(block.timestamp, assetsBefore, assetsAfter);
    }

    function _withdraw(uint256, address) internal virtual;
}
"
    },
    "src/interfaces/pendle/IPendleMarket.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

interface IPendleMarket {
    function readTokens() external view returns (address sy, address pt, address yt);
    function expiry() external view returns (uint256 timestamp);
}
"
    },
    "src/interfaces/pendle/IPendleOracle.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

interface IPendleOracle {
    /// @notice Get the PT to SY rate
    /// @param market The address of the Pendle market
    /// @param twapDuration The duration of the TWAP
    /// @return The PT to SY rate with 18 decimals of precision
    function getPtToSyRate(address market, uint32 twapDuration) external view returns (uint256);

    /// @notice Get the PT to asset rate
    /// @param market The address of the Pendle market
    /// @param twapDuration The duration of the TWAP
    /// @return The PT to asset rate with 18 decimals of precision
    function getPtToAssetRate(address market, uint32 twapDuration) external view returns (uint256);
}
"
    },
    "src/interfaces/IMaturityFarm.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IFarm} from "@interfaces/IFarm.sol";

/// @notice Interface for an InfiniFi Farm contract that has a maturity date
/// @dev These farms represent illiquid farm/asset class
interface IMaturityFarm is IFarm {
    /// @notice timestamp at which more funds can be made available for withdrawal
    function maturity() external view returns (uint256);
}
"
    },
    "lib/openzeppelin-contracts/contracts/interfaces/IERC1363.sol": {
      "content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
"
    },
    "src/interfaces/IFarm.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/// @notice Interface for an InfiniFi Farm contract
interface IFarm {
    /// @notice emitted when there is a deposit of withdrawal from the farm
    event AssetsUpdated(uint256 timestamp, uint256 assetsBefore, uint256 assetsAfter);

    // --------------------------------------------------------------------
    // Accounting
    // --------------------------------------------------------------------

    /// @notice the cap of the farm
    function cap() external view returns (uint256);

    /// @notice the asset used by deposits and withdrawals in the farm
    function assetToken() external view returns (address);

    /// @notice the total assets in the farm, reported as a balance of asset()
    function assets() external view returns (uint256);

    // --------------------------------------------------------------------
    // Adapter logic
    // --------------------------------------------------------------------
    /// @notice deposit all asset() held by the contract into the farm
    function deposit() external;

    /// @notice Returns the max deposit amount for the underlying protocol
    function maxDeposit() external view returns (uint256);

    /// @notice withdraw an amount of the asset() from the farm
    /// @param amount Amount of assets to withdraw
    /// @param to Address to receive the withdrawn assets
    function withdraw(uint256 amount, address to) external;

    /// @notice available number of assetToken() withdrawable instantly from the farm
    function liquidity() external view returns (uint256);
}
"
    },
    "src/integrations/FarmRegistry.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IFarm} from "@interfaces/IFarm.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {CoreControlled} from "@core/CoreControlled.sol";

/// @notice InfiniFi Farm registry
contract FarmRegistry is CoreControlled {
    error FarmAlreadyAdded(address farm);
    error FarmNotFound(address farm);
    error AssetNotEnabled(address farm, address asset);
    error AssetAlreadyEnabled(address asset);
    error AssetNotFound(address asset);

    event AssetEnabled(uint256 indexed timestamp, address asset);
    event AssetDisabled(uint256 indexed timestamp, address asset);
    event FarmsAdded(uint256 indexed timestamp, uint256 farmType, address[] indexed farms);
    event FarmsRemoved(uint256 indexed timestamp, uint256 farmType, address[] indexed farms);

    using EnumerableSet for EnumerableSet.AddressSet;

    EnumerableSet.AddressSet private assets;
    EnumerableSet.AddressSet private farms;
    mapping(uint256 _type => EnumerableSet.AddressSet _farms) private typeFarms;
    mapping(address _asset => EnumerableSet.AddressSet _farms) private assetFarms;
    mapping(address _asset => mapping(uint256 _type => EnumerableSet.AddressSet _farms)) private assetTypeFarms;

    constructor(address _core) CoreControlled(_core) {}

    /// ----------------------------------------------------------------------------
    /// READ METHODS
    /// ----------------------------------------------------------------------------

    function getEnabledAssets() external view returns (address[] memory) {
        return assets.values();
    }

    function isAssetEnabled(address _asset) external view returns (bool) {
        return assets.contains(_asset);
    }

    function getFarms() external view returns (address[] memory) {
        return farms.values();
    }

    function getTypeFarms(uint256 _type) external view returns (address[] memory) {
        return typeFarms[_type].values();
    }

    function getAssetFarms(address _asset) external view returns (address[] memory) {
        return assetFarms[_asset].values();
    }

    function getAssetTypeFarms(address _asset, uint256 _type) external view returns (address[] memory) {
        return assetTypeFarms[_asset][_type].values();
    }

    function isFarm(address _farm) external view returns (bool) {
        return farms.contains(_farm);
    }

    function isFarmOfAsset(address _farm, address _asset) external view returns (bool) {
        return assetFarms[_asset].contains(_farm);
    }

    function isFarmOfType(address _farm, uint256 _type) external view returns (bool) {
        return typeFarms[_type].contains(_farm);
    }

    /// ----------------------------------------------------------------------------
    /// WRITE METHODS
    /// ----------------------------------------------------------------------------

    function enableAsset(address _asset) external onlyCoreRole(CoreRoles.GOVERNOR) {
        require(assets.add(_asset), AssetAlreadyEnabled(_asset));
        emit AssetEnabled(block.timestamp, _asset);
    }

    function disableAsset(address _asset) external onlyCoreRole(CoreRoles.GOVERNOR) {
        require(assets.remove(_asset), AssetNotFound(_asset));
        emit AssetDisabled(block.timestamp, _asset);
    }

    function addFarms(uint256 _type, address[] calldata _list) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
        _addFarms(_type, _list);
        emit FarmsAdded(block.timestamp, _type, _list);
    }

    function removeFarms(uint256 _type, address[] calldata _list)
        external
        onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS)
    {
        _removeFarms(_type, _list);
        emit FarmsRemoved(block.timestamp, _type, _list);
    }

    /// ----------------------------------------------------------------------------
    /// INTERNAL METHODS
    /// ----------------------------------------------------------------------------

    function _addFarms(uint256 _type, address[] calldata _list) internal {
        for (uint256 i = 0; i < _list.length; i++) {
            address farmAsset = IFarm(_list[i]).assetToken();
            require(assets.contains(farmAsset), AssetNotEnabled(_list[i], farmAsset));
            require(farms.add(_list[i]), FarmAlreadyAdded(_list[i]));
            require(typeFarms[_type].add(_list[i]), FarmAlreadyAdded(_list[i]));
            require(assetFarms[farmAsset].add(_list[i]), FarmAlreadyAdded(_list[i]));
            require(assetTypeFarms[farmAsset][_type].add(_list[i]), FarmAlreadyAdded(_list[i]));
        }
    }

    function _removeFarms(uint256 _type, address[] calldata _list) internal {
        for (uint256 i = 0; i < _list.length; i++) {
            address farmAsset = IFarm(_list[i]).assetToken();
            require(farms.remove(_list[i]), FarmNotFound(_list[i]));
            require(typeFarms[_type].remove(_list[i]), FarmNotFound(_list[i]));
            require(assetFarms[farmAsset].remove(_list[i]), FarmNotFound(_list[i]));
            require(assetTypeFarms[farmAsset][_type].remove(_list[i]), FarmNotFound(_list[i]));
        }
    }
}
"
    },
    "src/core/CoreControlled.sol": {
      "content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {InfiniFiCore} from "@core/InfiniFiCore.sol";

/// @notice Defines some modifiers and utilities around interacting with Core
abstract contract CoreControlled is Pausable {
    error UnderlyingCallReverted(bytes returnData);

    /// @notice emitted when the reference to core is updated
    event CoreUpdate(address indexed oldCore, address indexed newCore);

    /// @notice reference to Core
    InfiniFiCore private _core;

    constructor(address coreAddress) {
        _core = InfiniFiCore(coreAddress);
    }

    /// @notice named onlyCoreRole to prevent collision with OZ onlyRole modifier
    modifier onlyCoreRole(bytes32 role) {
        require(_core.hasRole(role, msg.sender), "UNAUTHORIZED");
        _;
    }

    /// @notice address of the Core contract referenced
    function core() public view returns (InfiniFiCore) {
        return _core;
    }

    /// @notice WARNING CALLING THIS FUNCTION CAN POTENTIALLY
    /// BRICK A CONTRACT IF CORE IS SET INCORRECTLY
    /// @notice set new reference to core
    /// only callable by governor
    /// @param newCore to reference
    function setCore(address newCore) external onlyCoreRole(CoreRoles.GOVERNOR) {
        _setCore(newCore);
    }

    /// @notice WARNING CALLING THIS FUNCTION CAN POTENTIALLY
    /// BRICK A CONTRACT IF CORE IS SET INCORRECTLY
    /// @notice set new reference to core
    /// @param newCore to reference
    function _setCore(address newCore) internal {
        address oldCore = address(_core);
        _core = InfiniFiCore(newCore);

        emit CoreUpdate(ol

Tags:
ERC20, ERC165, Multisig, Pausable, Swap, Liquidity, Yield, Voting, Timelock, Upgradeable, Multi-Signature, Factory, Oracle|addr:0x2510fb368ee818935f0ed49c44e4f616cbf7bf0d|verified:true|block:23446563|tx:0x400ede94d759b48bca779af97cd6125c160c4263c421804737ebcca2162fbb6f|first_check:1758882406

Submitted on: 2025-09-26 12:26:49

Comments

Log in to comment.

No comments yet.