Description:
Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/revenue/LendingFeeRecipient.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import "@openzeppelin/contracts-upgradeable/access/extensions/AccessControlEnumerableUpgradeable.sol";
import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol";
import { SafeERC20, IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "moolah-vault/interfaces/IMoolahVault.sol";
import "moolah/interfaces/IMoolah.sol";
contract LendingFeeRecipient is UUPSUpgradeable, AccessControlEnumerableUpgradeable {
using SafeERC20 for IERC20;
IMoolah public moolah;
address[] public vaults;
address public marketFeeRecipient;
address public vaultFeeRecipient;
bytes32 public constant MANAGER = keccak256("MANAGER"); // manager role
bytes32 public constant BOT = keccak256("BOT"); // bot role
event MarketFeeClaimed(Id id, address token, uint256 assets, uint256 shares);
event VaultFeeClaimed(address vault, address token, uint256 assets, uint256 shares);
event VaultAdded(address vault);
event VaultRemoved(address vault);
event SetMarketFeeRecipient(address feeRecipient);
event SetVaultFeeRecipient(address feeRecipient);
event EmergencyWithdraw(address token, uint256 amount);
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
/// @dev initialize contract
/// @param _moolah the moolah address.
/// @param admin the new admin role of the contract.
/// @param manager the new manager role of the contract.
/// @param bot the new bot role of the contract.
/// @param _marketFeeRecipient the new market fee recipient.
/// @param _vaultFeeRecipient the new vault fee recipient.
function initialize(
address _moolah,
address admin,
address manager,
address bot,
address _marketFeeRecipient,
address _vaultFeeRecipient
) public initializer {
require(_moolah != address(0), "moolah cannot be zero address");
require(admin != address(0), "admin cannot be zero address");
require(manager != address(0), "manager cannot be zero address");
require(bot != address(0), "bot cannot be zero address");
require(_marketFeeRecipient != address(0), "marketFeeRecipient cannot be zero address");
require(_vaultFeeRecipient != address(0), "vaultFeeRecipient cannot be zero address");
__AccessControl_init();
_grantRole(DEFAULT_ADMIN_ROLE, admin);
_grantRole(MANAGER, manager);
_grantRole(BOT, bot);
moolah = IMoolah(_moolah);
marketFeeRecipient = _marketFeeRecipient;
vaultFeeRecipient = _vaultFeeRecipient;
}
/// @dev set the market fee recipient.
/// @param _marketFeeRecipient the new market fee recipient.
function setMarketFeeRecipient(address _marketFeeRecipient) external onlyRole(MANAGER) {
require(_marketFeeRecipient != address(0), "marketFeeRecipient cannot be zero address");
require(_marketFeeRecipient != marketFeeRecipient, "marketFeeRecipient already set to this address");
marketFeeRecipient = _marketFeeRecipient;
emit SetMarketFeeRecipient(_marketFeeRecipient);
}
/// @dev set the vault fee recipient.
/// @param _vaultFeeRecipient the new vault fee recipient.
function setVaultFeeRecipient(address _vaultFeeRecipient) external onlyRole(MANAGER) {
require(_vaultFeeRecipient != address(0), "vaultFeeRecipient cannot be zero address");
require(_vaultFeeRecipient != vaultFeeRecipient, "vaultFeeRecipient already set to this address");
vaultFeeRecipient = _vaultFeeRecipient;
emit SetVaultFeeRecipient(_vaultFeeRecipient);
}
/// @dev add a new vault to the list of vaults.
/// @param _vault the address of the vault to add.
function addVault(address _vault) external onlyRole(MANAGER) {
require(_vault != address(0), "vault cannot be zero address");
for (uint256 i = 0; i < vaults.length; i++) {
require(vaults[i] != _vault, "vault already exists");
}
vaults.push(_vault);
emit VaultAdded(_vault);
}
/// @dev remove a vault from the list of vaults.
/// @param _vault the address of the vault to remove.
function removeVault(address _vault) external onlyRole(MANAGER) {
for (uint256 i = 0; i < vaults.length; i++) {
if (vaults[i] == _vault) {
vaults[i] = vaults[vaults.length - 1];
vaults.pop();
emit VaultRemoved(_vault);
return;
}
}
revert("vault not found");
}
/// @dev claim market fees for the given market IDs.
/// @param marketIds the array of market IDs to claim fees for.
function claimMarketFee(Id[] calldata marketIds) external onlyRole(BOT) {
for (uint256 i = 0; i < marketIds.length; i++) {
Id marketId = marketIds[i];
Position memory position = moolah.position(marketId, address(this));
if (position.supplyShares > 0) {
MarketParams memory marketParams = moolah.idToMarketParams(marketId);
(uint256 assets, ) = moolah.withdraw(marketParams, 0, position.supplyShares, address(this), marketFeeRecipient);
emit MarketFeeClaimed(marketId, marketParams.loanToken, assets, position.supplyShares);
}
}
}
/// @dev claim vault fees for all vaults.
function claimVaultFee() external onlyRole(BOT) {
for (uint256 i = 0; i < vaults.length; i++) {
IMoolahVault vault = IMoolahVault(vaults[i]);
uint256 shares = vault.balanceOf(address(this));
if (shares > 0) {
uint256 assets = vault.redeem(shares, vaultFeeRecipient, address(this));
emit VaultFeeClaimed(address(vault), vault.asset(), assets, shares);
}
}
}
/// @dev claim vault fees for the given vaults.
function claimVaultFee(address[] calldata _vaults) external onlyRole(BOT) {
for (uint256 i = 0; i < _vaults.length; i++) {
IMoolahVault vault = IMoolahVault(_vaults[i]);
uint256 shares = vault.balanceOf(address(this));
if (shares > 0) {
uint256 assets = vault.redeem(shares, vaultFeeRecipient, address(this));
emit VaultFeeClaimed(address(vault), vault.asset(), assets, shares);
}
}
}
/// @dev get all vaults
function getVaults() external view returns (address[] memory) {
address[] memory vaultsList = new address[](vaults.length);
for (uint256 i = 0; i < vaults.length; i++) {
vaultsList[i] = vaults[i];
}
return vaultsList;
}
/**
* @dev allows manager to withdraw reward tokens for emergency or recover any other mistaken ERC20 tokens.
* @param token ERC20 token address
* @param amount token amount
* @param receiver address to receive the tokens
*/
function emergencyWithdraw(address token, uint256 amount, address receiver) external onlyRole(MANAGER) {
IERC20(token).safeTransfer(receiver, amount);
emit EmergencyWithdraw(token, amount);
}
function _authorizeUpgrade(address newImplementation) internal override onlyRole(DEFAULT_ADMIN_ROLE) {}
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/access/extensions/AccessControlEnumerableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/extensions/AccessControlEnumerable.sol)
pragma solidity ^0.8.20;
import {IAccessControlEnumerable} from "@openzeppelin/contracts/access/extensions/IAccessControlEnumerable.sol";
import {AccessControlUpgradeable} from "../AccessControlUpgradeable.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Extension of {AccessControl} that allows enumerating the members of each role.
*/
abstract contract AccessControlEnumerableUpgradeable is Initializable, IAccessControlEnumerable, AccessControlUpgradeable {
using EnumerableSet for EnumerableSet.AddressSet;
/// @custom:storage-location erc7201:openzeppelin.storage.AccessControlEnumerable
struct AccessControlEnumerableStorage {
mapping(bytes32 role => EnumerableSet.AddressSet) _roleMembers;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControlEnumerable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant AccessControlEnumerableStorageLocation = 0xc1f6fe24621ce81ec5827caf0253cadb74709b061630e6b55e82371705932000;
function _getAccessControlEnumerableStorage() private pure returns (AccessControlEnumerableStorage storage $) {
assembly {
$.slot := AccessControlEnumerableStorageLocation
}
}
function __AccessControlEnumerable_init() internal onlyInitializing {
}
function __AccessControlEnumerable_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) public view virtual returns (address) {
AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
return $._roleMembers[role].at(index);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) public view virtual returns (uint256) {
AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
return $._roleMembers[role].length();
}
/**
* @dev Return all accounts that have `role`
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function getRoleMembers(bytes32 role) public view virtual returns (address[] memory) {
AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
return $._roleMembers[role].values();
}
/**
* @dev Overload {AccessControl-_grantRole} to track enumerable memberships
*/
function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
bool granted = super._grantRole(role, account);
if (granted) {
$._roleMembers[role].add(account);
}
return granted;
}
/**
* @dev Overload {AccessControl-_revokeRole} to track enumerable memberships
*/
function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
bool revoked = super._revokeRole(role, account);
if (revoked) {
$._roleMembers[role].remove(account);
}
return revoked;
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/proxy/utils/UUPSUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.22;
import {IERC1822Proxiable} from "../../interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*/
abstract contract UUPSUpgradeable is IERC1822Proxiable {
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable
address private immutable __self = address(this);
/**
* @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
* and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
* while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
* If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
* be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
* during an upgrade.
*/
string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
/**
* @dev The call is from an unauthorized context.
*/
error UUPSUnauthorizedCallContext();
/**
* @dev The storage `slot` is unsupported as a UUID.
*/
error UUPSUnsupportedProxiableUUID(bytes32 slot);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
_checkProxy();
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
_checkNotDelegated();
_;
}
/**
* @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual notDelegated returns (bytes32) {
return ERC1967Utils.IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data);
}
/**
* @dev Reverts if the execution is not performed via delegatecall or the execution
* context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
* See {_onlyProxy}.
*/
function _checkProxy() internal view virtual {
if (
address(this) == __self || // Must be called through delegatecall
ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
) {
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Reverts if the execution is performed via delegatecall.
* See {notDelegated}.
*/
function _checkNotDelegated() internal view virtual {
if (address(this) != __self) {
// Must not be called through delegatecall
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
*
* As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
* is expected to be the implementation slot in ERC-1967.
*
* Emits an {IERC1967-Upgraded} event.
*/
function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
revert UUPSUnsupportedProxiableUUID(slot);
}
ERC1967Utils.upgradeToAndCall(newImplementation, data);
} catch {
// The implementation is not UUPS
revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
}
}
}
"
},
"lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}
"
},
"src/moolah-vault/interfaces/IMoolahVault.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import { IMoolah, Id, MarketParams } from "moolah/interfaces/IMoolah.sol";
import { MarketConfig, PendingUint192, PendingAddress } from "../libraries/PendingLib.sol";
struct MarketAllocation {
/// @notice The market to allocate.
MarketParams marketParams;
/// @notice The amount of assets to allocate.
uint256 assets;
}
interface IMulticall {
function multicall(bytes[] calldata) external returns (bytes[] memory);
}
interface IOwnable {
function transferOwnership(address) external;
function renounceOwnership() external;
function acceptOwnership() external;
}
/// @dev This interface is used for factorizing IMoolahVaultStaticTyping and IMoolahVault.
/// @dev Consider using the IMoolahVault interface instead of this one.
interface IMoolahVaultBase {
/// @notice The address of the Moolah contract.
function MOOLAH() external view returns (IMoolah);
function DECIMALS_OFFSET() external view returns (uint8);
/// @notice The current fee.
function fee() external view returns (uint96);
/// @notice The fee recipient.
function feeRecipient() external view returns (address);
/// @notice The skim recipient.
function skimRecipient() external view returns (address);
/// @dev Stores the order of markets on which liquidity is supplied upon deposit.
/// @dev Can contain any market. A market is skipped as soon as its supply cap is reached.
function supplyQueue(uint256) external view returns (Id);
/// @notice Returns the length of the supply queue.
function supplyQueueLength() external view returns (uint256);
/// @dev Stores the order of markets from which liquidity is withdrawn upon withdrawal.
/// @dev Always contain all non-zero cap markets as well as all markets on which the vault supplies liquidity,
/// without duplicate.
function withdrawQueue(uint256) external view returns (Id);
/// @notice Returns the length of the withdraw queue.
function withdrawQueueLength() external view returns (uint256);
/// @notice Stores the total assets managed by this vault when the fee was last accrued.
/// @dev May be greater than `totalAssets()` due to removal of markets with non-zero supply or socialized bad debt.
/// This difference will decrease the fee accrued until one of the functions updating `lastTotalAssets` is
/// triggered (deposit/mint/withdraw/redeem/setFee/setFeeRecipient).
function lastTotalAssets() external view returns (uint256);
/// @notice The address of the provider.
function provider() external view returns (address);
/// @notice set market removal
function setMarketRemoval(MarketParams memory) external;
/// @notice submit cap
function setCap(MarketParams memory, uint256) external;
/// @notice Skims the vault `token` balance to `skimRecipient`.
function skim(address) external;
/// @notice Sets the `fee` to `newFee`.
function setFee(uint256 newFee) external;
/// @notice Sets `feeRecipient` to `newFeeRecipient`.
function setFeeRecipient(address newFeeRecipient) external;
/// @notice Sets `skimRecipient` to `newSkimRecipient`.
function setSkimRecipient(address newSkimRecipient) external;
/// @notice Sets `supplyQueue` to `newSupplyQueue`.
/// @param newSupplyQueue is an array of enabled markets, and can contain duplicate markets, but it would only
/// increase the cost of depositing to the vault.
function setSupplyQueue(Id[] calldata newSupplyQueue) external;
/// @notice Updates the withdraw queue. Some markets can be removed, but no market can be added.
/// @notice Removing a market requires the vault to have 0 supply on it, or to have previously submitted a removal
/// for this market (with the function `submitMarketRemoval`).
/// @notice Warning: Anyone can supply on behalf of the vault so the call to `updateWithdrawQueue` that expects a
/// market to be empty can be griefed by a front-run. To circumvent this, the allocator can simply bundle a
/// reallocation that withdraws max from this market with a call to `updateWithdrawQueue`.
/// @dev Warning: Removing a market with supply will decrease the fee accrued until one of the functions updating
/// `lastTotalAssets` is triggered (deposit/mint/withdraw/redeem/setFee/setFeeRecipient).
/// @dev Warning: `updateWithdrawQueue` is not idempotent. Submitting twice the same tx will change the queue twice.
/// @param indexes The indexes of each market in the previous withdraw queue, in the new withdraw queue's order.
function updateWithdrawQueue(uint256[] calldata indexes) external;
/// @notice Reallocates the vault's liquidity so as to reach a given allocation of assets on each given market.
/// @dev The behavior of the reallocation can be altered by state changes, including:
/// - Deposits on the vault that supplies to markets that are expected to be supplied to during reallocation.
/// - Withdrawals from the vault that withdraws from markets that are expected to be withdrawn from during
/// reallocation.
/// - Donations to the vault on markets that are expected to be supplied to during reallocation.
/// - Withdrawals from markets that are expected to be withdrawn from during reallocation.
/// @dev Sender is expected to pass `assets = type(uint256).max` with the last MarketAllocation of `allocations` to
/// supply all the remaining withdrawn liquidity, which would ensure that `totalWithdrawn` = `totalSupplied`.
/// @dev A supply in a reallocation step will make the reallocation revert if the amount is greater than the net
/// amount from previous steps (i.e. total withdrawn minus total supplied).
function reallocate(MarketAllocation[] calldata allocations) external;
function setBotRole(address _address) external;
function revokeBotRole(address _address) external;
/// @notice Sets the address of the provider.
function setProvider(address _provider) external;
/// @notice Add account to whitelist
function addWhiteList(address account) external;
/// @notice Remove account from whitelist
function removeWhiteList(address account) external;
/// @notice Returns the list of whitelisted accounts.
function getWhiteList() external view returns (address[] memory);
/// @notice Returns `true` if `account` is whitelisted.
function isWhiteList(address account) external view returns (bool);
}
/// @dev This interface is inherited by MoolahVault so that function signatures are checked by the compiler.
/// @dev Consider using the IMoolahVault interface instead of this one.
interface IMoolahVaultStaticTyping is IMoolahVaultBase {
/// @notice Returns the current configuration of each market.
function config(Id) external view returns (uint184 cap, bool enabled, uint64 removableAt);
}
/// @title IMoolahVault
/// @author Lista DAO
/// @dev Use this interface for MoolahVault to have access to all the functions with the appropriate function signatures.
interface IMoolahVault is IMoolahVaultBase, IERC4626, IERC20Permit, IOwnable, IMulticall {
/// @notice Returns the current configuration of each market.
function config(Id) external view returns (MarketConfig memory);
/// @notice Returns `true` if `account` has been granted `role`.
function hasRole(bytes32 role, address account) external view returns (bool);
/// @dev Returns the number of accounts that have `role`.
function getRoleMemberCount(bytes32 role) external view returns (uint256);
/// @notice grants `role` to `account`.
function grantRole(bytes32 role, address account) external;
/// @notice revokes `role` from `account`.
function revokeRole(bytes32 role, address account) external;
/// @notice called by provider to withdraw assets from the vault.
function withdrawFor(uint256 assets, address owner, address sender) external returns (uint256 shares);
/// @notice called by provider to redeem shares from the vault.
function redeemFor(uint256 shares, address owner, address sender) external returns (uint256 assets);
}
"
},
"src/moolah/interfaces/IMoolah.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
type Id is bytes32;
struct MarketParams {
address loanToken;
address collateralToken;
address oracle;
address irm;
uint256 lltv;
}
/// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
/// accrual.
struct Position {
uint256 supplyShares;
uint128 borrowShares;
uint128 collateral;
}
/// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalSupplyShares` does not contain the additional shares accrued by `feeRecipient` since the last
/// interest accrual.
struct Market {
uint128 totalSupplyAssets;
uint128 totalSupplyShares;
uint128 totalBorrowAssets;
uint128 totalBorrowShares;
uint128 lastUpdate;
uint128 fee;
}
struct Authorization {
address authorizer;
address authorized;
bool isAuthorized;
uint256 nonce;
uint256 deadline;
}
struct Signature {
uint8 v;
bytes32 r;
bytes32 s;
}
/// @dev This interface is used for factorizing IMoolahStaticTyping and IMoolah.
/// @dev Consider using the IMoolah interface instead of this one.
interface IMoolahBase {
/// @notice The EIP-712 domain separator.
/// @dev Warning: Every EIP-712 signed message based on this domain separator can be reused on chains sharing the
/// same chain id and on forks because the domain separator would be the same.
function DOMAIN_SEPARATOR() external view returns (bytes32);
/// @notice The fee recipient of all markets.
/// @dev The recipient receives the fees of a given market through a supply position on that market.
function feeRecipient() external view returns (address);
/// @notice Whether the `irm` is enabled.
function isIrmEnabled(address irm) external view returns (bool);
/// @notice Whether the `lltv` is enabled.
function isLltvEnabled(uint256 lltv) external view returns (bool);
/// @notice Whether `authorized` is authorized to modify `authorizer`'s position on all markets.
/// @dev Anyone is authorized to modify their own positions, regardless of this variable.
function isAuthorized(address authorizer, address authorized) external view returns (bool);
/// @notice The `authorizer`'s current nonce. Used to prevent replay attacks with EIP-712 signatures.
function nonce(address authorizer) external view returns (uint256);
/// @notice Enables `irm` as a possible IRM for market creation.
/// @dev Warning: It is not possible to disable an IRM.
function enableIrm(address irm) external;
/// @notice Enables `lltv` as a possible LLTV for market creation.
/// @dev Warning: It is not possible to disable a LLTV.
function enableLltv(uint256 lltv) external;
/// @notice Sets the `newFee` for the given market `marketParams`.
/// @param newFee The new fee, scaled by WAD.
/// @dev Warning: The recipient can be the zero address.
function setFee(MarketParams memory marketParams, uint256 newFee) external;
/// @notice Sets `newFeeRecipient` as `feeRecipient` of the fee.
/// @dev Warning: If the fee recipient is set to the zero address, fees will accrue there and will be lost.
/// @dev Modifying the fee recipient will allow the new recipient to claim any pending fees not yet accrued. To
/// ensure that the current recipient receives all due fees, accrue interest manually prior to making any changes.
function setFeeRecipient(address newFeeRecipient) external;
/// @notice Creates the market `marketParams`.
/// @dev Here is the list of assumptions on the market's dependencies (tokens, IRM and oracle) that guarantees
/// Moolah behaves as expected:
/// - The token should be ERC-20 compliant, except that it can omit return values on `transfer` and `transferFrom`.
/// - The token balance of Moolah should only decrease on `transfer` and `transferFrom`. In particular, tokens with
/// burn functions are not supported.
/// - The token should not re-enter Moolah on `transfer` nor `transferFrom`.
/// - The token balance of the sender (resp. receiver) should decrease (resp. increase) by exactly the given amount
/// on `transfer` and `transferFrom`. In particular, tokens with fees on transfer are not supported.
/// - The IRM should not re-enter Moolah.
/// - The oracle should return a price with the correct scaling.
/// @dev Here is a list of properties on the market's dependencies that could break Moolah's liveness properties
/// (funds could get stuck):
/// - The token can revert on `transfer` and `transferFrom` for a reason other than an approval or balance issue.
/// - A very high amount of assets (~1e35) supplied or borrowed can make the computation of `toSharesUp` and
/// `toSharesDown` overflow.
/// - The IRM can revert on `borrowRate`.
/// - A very high borrow rate returned by the IRM can make the computation of `interest` in `_accrueInterest`
/// overflow.
/// - The oracle can revert on `price`. Note that this can be used to prevent `borrow`, `withdrawCollateral` and
/// `liquidate` from being used under certain market conditions.
/// - The price from the oracle must have 8 decimals.
/// - A very high price returned by the oracle can make the computation of `maxBorrow` in `_isHealthy` overflow, or
/// the computation of `assetsRepaid` in `liquidate` overflow.
/// @dev The borrow share price of a market with less than 1e4 assets borrowed can be decreased by manipulations, to
/// the point where `totalBorrowShares` is very large and borrowing overflows.
function createMarket(MarketParams memory marketParams) external;
/// @notice Supplies `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
/// `onMoolahSupply` function with the given `data`.
/// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
/// caller is guaranteed to have `assets` tokens pulled from their balance, but the possibility to mint a specific
/// amount of shares is given for full compatibility and precision.
/// @dev Supplying a large amount can revert for overflow.
/// @dev Supplying an amount of shares may lead to supply more or fewer assets than expected due to slippage.
/// Consider using the `assets` parameter to avoid this.
/// @param marketParams The market to supply assets to.
/// @param assets The amount of assets to supply.
/// @param shares The amount of shares to mint.
/// @param onBehalf The address that will own the increased supply position.
/// @param data Arbitrary data to pass to the `onMoolahSupply` callback. Pass empty data if not needed.
/// @return assetsSupplied The amount of assets supplied.
/// @return sharesSupplied The amount of shares minted.
function supply(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
bytes memory data
) external returns (uint256 assetsSupplied, uint256 sharesSupplied);
/// @notice Withdraws `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
/// @dev Either `assets` or `shares` should be zero. To withdraw max, pass the `shares`'s balance of `onBehalf`.
/// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
/// @dev Withdrawing an amount corresponding to more shares than supplied will revert for underflow.
/// @dev It is advised to use the `shares` input when withdrawing the full position to avoid reverts due to
/// conversion roundings between shares and assets.
/// @param marketParams The market to withdraw assets from.
/// @param assets The amount of assets to withdraw.
/// @param shares The amount of shares to burn.
/// @param onBehalf The address of the owner of the supply position.
/// @param receiver The address that will receive the withdrawn assets.
/// @return assetsWithdrawn The amount of assets withdrawn.
/// @return sharesWithdrawn The amount of shares burned.
function withdraw(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
address receiver
) external returns (uint256 assetsWithdrawn, uint256 sharesWithdrawn);
/// @notice Borrows `assets` or `shares` on behalf of `onBehalf` and sends the assets to `receiver`.
/// @dev Either `assets` or `shares` should be zero. Most use cases should rely on `assets` as an input so the
/// caller is guaranteed to borrow `assets` of tokens, but the possibility to mint a specific amount of shares is
/// given for full compatibility and precision.
/// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
/// @dev Borrowing a large amount can revert for overflow.
/// @dev Borrowing an amount of shares may lead to borrow fewer assets than expected due to slippage.
/// Consider using the `assets` parameter to avoid this.
/// @param marketParams The market to borrow assets from.
/// @param assets The amount of assets to borrow.
/// @param shares The amount of shares to mint.
/// @param onBehalf The address that will own the increased borrow position.
/// @param receiver The address that will receive the borrowed assets.
/// @return assetsBorrowed The amount of assets borrowed.
/// @return sharesBorrowed The amount of shares minted.
function borrow(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
address receiver
) external returns (uint256 assetsBorrowed, uint256 sharesBorrowed);
/// @notice Repays `assets` or `shares` on behalf of `onBehalf`, optionally calling back the caller's
/// `onMoolahRepay` function with the given `data`.
/// @dev Either `assets` or `shares` should be zero. To repay max, pass the `shares`'s balance of `onBehalf`.
/// @dev Repaying an amount corresponding to more shares than borrowed will revert for underflow.
/// @dev It is advised to use the `shares` input when repaying the full position to avoid reverts due to conversion
/// roundings between shares and assets.
/// @dev An attacker can front-run a repay with a small repay making the transaction revert for underflow.
/// @param marketParams The market to repay assets to.
/// @param assets The amount of assets to repay.
/// @param shares The amount of shares to burn.
/// @param onBehalf The address of the owner of the debt position.
/// @param data Arbitrary data to pass to the `onMoolahRepay` callback. Pass empty data if not needed.
/// @return assetsRepaid The amount of assets repaid.
/// @return sharesRepaid The amount of shares burned.
function repay(
MarketParams memory marketParams,
uint256 assets,
uint256 shares,
address onBehalf,
bytes memory data
) external returns (uint256 assetsRepaid, uint256 sharesRepaid);
/// @notice Supplies `assets` of collateral on behalf of `onBehalf`, optionally calling back the caller's
/// `onMoolahSupplyCollateral` function with the given `data`.
/// @dev Interest are not accrued since it's not required and it saves gas.
/// @dev Supplying a large amount can revert for overflow.
/// @param marketParams The market to supply collateral to.
/// @param assets The amount of collateral to supply.
/// @param onBehalf The address that will own the increased collateral position.
/// @param data Arbitrary data to pass to the `onMoolahSupplyCollateral` callback. Pass empty data if not needed.
function supplyCollateral(
MarketParams memory marketParams,
uint256 assets,
address onBehalf,
bytes memory data
) external;
/// @notice Withdraws `assets` of collateral on behalf of `onBehalf` and sends the assets to `receiver`.
/// @dev `msg.sender` must be authorized to manage `onBehalf`'s positions.
/// @dev Withdrawing an amount corresponding to more collateral than supplied will revert for underflow.
/// @param marketParams The market to withdraw collateral from.
/// @param assets The amount of collateral to withdraw.
/// @param onBehalf The address of the owner of the collateral position.
/// @param receiver The address that will receive the collateral assets.
function withdrawCollateral(
MarketParams memory marketParams,
uint256 assets,
address onBehalf,
address receiver
) external;
/// @notice Liquidates the given `repaidShares` of debt asset or seize the given `seizedAssets` of collateral on the
/// given market `marketParams` of the given `borrower`'s position, optionally calling back the caller's
/// `onMoolahLiquidate` function with the given `data`.
/// @dev Either `seizedAssets` or `repaidShares` should be zero.
/// @dev Seizing more than the collateral balance will underflow and revert without any error message.
/// @dev Repaying more than the borrow balance will underflow and revert without any error message.
/// @dev An attacker can front-run a liquidation with a small repay making the transaction revert for underflow.
/// @param marketParams The market of the position.
/// @param borrower The owner of the position.
/// @param seizedAssets The amount of collateral to seize.
/// @param repaidShares The amount of shares to repay.
/// @param data Arbitrary data to pass to the `onMoolahLiquidate` callback. Pass empty data if not needed.
/// @return The amount of assets seized.
/// @return The amount of assets repaid.
function liquidate(
MarketParams memory marketParams,
address borrower,
uint256 seizedAssets,
uint256 repaidShares,
bytes memory data
) external returns (uint256, uint256);
/// @notice Executes a flash loan.
/// @dev Flash loans have access to the whole balance of the contract (the liquidity and deposited collateral of all
/// markets combined, plus donations).
/// @dev Warning: Not ERC-3156 compliant but compatibility is easily reached:
/// - `flashFee` is zero.
/// - `maxFlashLoan` is the token's balance of this contract.
/// - The receiver of `assets` is the caller.
/// @param token The token to flash loan.
/// @param assets The amount of assets to flash loan.
/// @param data Arbitrary data to pass to the `onMoolahFlashLoan` callback.
function flashLoan(address token, uint256 assets, bytes calldata data) external;
/// @notice Sets the authorization for `authorized` to manage `msg.sender`'s positions.
/// @param authorized The authorized address.
/// @param newIsAuthorized The new authorization status.
function setAuthorization(address authorized, bool newIsAuthorized) external;
/// @notice Sets the authorization for `authorization.authorized` to manage `authorization.authorizer`'s positions.
/// @dev Warning: Reverts if the signature has already been submitted.
/// @dev The signature is malleable, but it has no impact on the security here.
/// @dev The nonce is passed as argument to be able to revert with a different error message.
/// @param authorization The `Authorization` struct.
/// @param signature The signature.
function setAuthorizationWithSig(Authorization calldata authorization, Signature calldata signature) external;
/// @notice Accrues interest for the given market `marketParams`.
function accrueInterest(MarketParams memory marketParams) external;
/// @notice Adds `account` to the liquidation whitelist of the market `id`.
function addLiquidationWhitelist(Id id, address account) external;
/// @notice Removes `account` from the liquidation whitelist of the market `id`.
function removeLiquidationWhitelist(Id id, address account) external;
/// @notice Add/removes `accounts` from the liquidation whitelist of markets `ids`.
function batchToggleLiquidationWhitelist(Id[] memory ids, address[][] memory accounts, bool isAddition) external;
/// @notice Returns the liquidation whitelist of the market `id`.
function getLiquidationWhitelist(Id id) external view returns (address[] memory);
/// @notice Returns whether `account` is in the liquidation whitelist of the market `id`.
function isLiquidationWhitelist(Id id, address account) external view returns (bool);
/// @notice Set the minimum loan token assets(USD) (supply and borrow).
function setMinLoanValue(uint256 minLoan) external;
/// @notice get the minimum loan token assets (supply and borrow) for the market.
function minLoan(MarketParams memory marketParams) external view returns (uint256);
/// @notice add a new provider for the token.
function addProvider(Id id, address provider) external;
/// @notice remove the provider for the token.
function removeProvider(Id id, address token) external;
/// @notice get the provider for the market.
function providers(Id id, address token) external view returns (address);
/// @notice Return the whitelist of the market `id`.
function getWhiteList(Id id) external view returns (address[] memory);
/// @notice Returns `true` if `account` is whitelisted of market `id`.
function isWhiteList(Id id, address account) external view returns (bool);
/// @notice Add `account` to the whitelist of the market `id`.
function addWhiteList(Id id, address account) external;
/// @notice Remove `account` from the whitelist of the market `id`.
function removeWhiteList(Id id, address account) external;
/// @notice Returns the default market fee.
function defaultMarketFee() external view returns (uint256);
/// @notice Set the default market fee for new markets.
function setDefaultMarketFee(uint256 newFee) external;
}
/// @dev This interface is inherited by Moolah so that function signatures are checked by the compiler.
/// @dev Consider using the IMoolah interface instead of this one.
interface IMoolahStaticTyping is IMoolahBase {
/// @notice The state of the position of `user` on the market corresponding to `id`.
/// @dev Warning: For `feeRecipient`, `supplyShares` does not contain the accrued shares since the last interest
/// accrual.
function position(
Id id,
address user
) external view returns (uint256 supplyShares, uint128 borrowShares, uint128 collateral);
/// @notice The state of the market corresponding to `id`.
/// @dev Warning: `totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `totalSupplyShares` does not contain the accrued shares by `feeRecipient` since the last interest
/// accrual.
function market(
Id id
)
external
view
returns (
uint128 totalSupplyAssets,
uint128 totalSupplyShares,
uint128 totalBorrowAssets,
uint128 totalBorrowShares,
uint128 lastUpdate,
uint128 fee
);
/// @notice The market params corresponding to `id`.
/// @dev This mapping is not used in Moolah. It is there to enable reducing the cost associated to calldata on layer
/// 2s by creating a wrapper contract with functions that take `id` as input instead of `marketParams`.
function idToMarketParams(
Id id
) external view returns (address loanToken, address collateralToken, address oracle, address irm, uint256 lltv);
/// @notice Returns whether the position of `borrower` in the given market `marketParams` is healthy.
function isHealthy(MarketParams memory marketParams, Id id, address borrower) external view returns (bool);
}
/// @title IMoolah
/// @author Lista DAO
/// @dev Use this interface for Moolah to have access to all the functions with the appropriate function signatures.
interface IMoolah is IMoolahBase {
/// @notice The state of the position of `user` on the market corresponding to `id`.
/// @dev Warning: For `feeRecipient`, `p.supplyShares` does not contain the accrued shares since the last interest
/// accrual.
function position(Id id, address user) external view returns (Position memory p);
/// @notice The state of the market corresponding to `id`.
/// @dev Warning: `m.totalSupplyAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `m.totalBorrowAssets` does not contain the accrued interest since the last interest accrual.
/// @dev Warning: `m.totalSupplyShares` does not contain the accrued shares by `feeRecipient` since the last
/// interest accrual.
function market(Id id) external view returns (Market memory m);
/// @notice The market params corresponding to `id`.
/// @dev This mapping is not used in Moolah. It is there to enable reducing the cost associated to calldata on layer
/// 2s by creating a wrapper contract with functions that take `id` as input instead of `marketParams`.
function idToMarketParams(Id id) external view returns (MarketParams memory);
function getPrice(MarketParams calldata marketParams) external view returns (uint256);
/// @notice grants `role` to `account`.
function grantRole(bytes32 role, address account) external;
}
"
},
"lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/access/extensions/IAccessControlEnumerable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/extensions/IAccessControlEnumerable.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "../IAccessControl.sol";
/**
* @dev External interface of AccessControlEnumerable declared to support ERC-165 detection.
*/
interface IAccessControlEnumerable is IAccessControl {
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) external view returns (address);
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) external view returns (uint256);
}
"
},
"lib/openzeppelin-contracts-upgradeable/contracts/access/AccessControlUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/// @custom:storage-location erc7201:openzeppelin.storage.AccessControl
struct AccessControlStorage {
mapping(bytes32 role => RoleData) _roles;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800;
function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) {
assembly {
$.slot := AccessControlStorageLocation
}
}
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
function __AccessControl_init() internal onlyInitializing {
}
function __AccessControl_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
AccessControlStorage storage $ = _getAccessControlStorage();
return $._roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
AccessControlStorage storage $ = _getAccessControlStorage();
return $._roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
Submitted on: 2025-09-26 12:42:18
Comments
Log in to comment.
No comments yet.