Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0 ^0.8.19 ^0.8.3;
// lib/open-zeppelin/utils/Context.sol
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// src/core/interfaces/IAggregatorV3Interface.sol
interface IAggregatorV3Interface {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
function getRoundData(
uint80 _roundId
) external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
function latestRoundData()
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}
// lib/open-zeppelin/token/ERC20/IERC20.sol
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// src/core/interfaces/IEnableOnlyAssetsWhitelist.sol
interface IEnableOnlyAssetsWhitelist {
error ZeroAddressError();
error WhitelistLimitReached();
error InvalidOraclePrice();
error InvalidAddress();
error ReferenceAssetNotPermitted();
error InvalidDecimalPlaces();
error AssetAlreadyEnabled();
error StalePrice();
error RoundNotComplete();
error InvalidTimePeriod();
error InvalidOracleTimestamp();
struct OracleInfo {
address oracleAddress;
address tokenAddress;
uint8 oracleDecimals;
uint8 tokenDecimals;
}
function enableAsset(
address depositableAssetAddr,
address oracleAddr,
uint256 newOracleDuration
) external;
function getWhitelistedAssets() external view returns (address[] memory);
function isWhitelisted(address addr) external view returns (bool);
function getOracleAddress(address assetAddr) external view returns (address);
function fromInputAssetToReferenceAsset(address assetAddr, uint256 amount) external view returns (uint256);
function getTotalAssetsValuation(uint256 externalAssets) external view returns (uint256);
function convertToShares(
address lpTokenAddress,
address assetInAddr,
address vaultAddr,
uint256 assetInAmount,
uint256 externalAssets
) external view returns (uint256 shares, uint256 amountInReferenceTokens);
function REFERENCE_ASSET() external view returns (address);
function REFERENCE_ASSET_DECIMALS() external view returns (uint8);
}
// lib/open-zeppelin/utils/math/MathUpgradeable.sol
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library MathUpgradeable {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// src/core/OwnableGuarded.sol
abstract contract OwnableGuarded {
// ----------------------------------------------------------------------------------------------------
// Constants
// ----------------------------------------------------------------------------------------------------
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
// ----------------------------------------------------------------------------------------------------
// Errors
// ----------------------------------------------------------------------------------------------------
error OwnerOnly();
error OwnerAddressRequired();
error ReentrancyGuardReentrantCall();
// ----------------------------------------------------------------------------------------------------
// Storage layout
// ----------------------------------------------------------------------------------------------------
uint256 private _status;
address internal _owner;
// ----------------------------------------------------------------------------------------------------
// Events
// ----------------------------------------------------------------------------------------------------
/**
* @notice Triggers when contract ownership changes.
* @param previousOwner The previous owner of the contract.
* @param newOwner The new owner of the contract.
*/
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
// ----------------------------------------------------------------------------------------------------
// Modifiers
// ----------------------------------------------------------------------------------------------------
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
_;
// By storing the original value once again, a refund is triggered (see https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
if (msg.sender != _owner) revert OwnerOnly();
_;
}
// ----------------------------------------------------------------------------------------------------
// Functions
// ----------------------------------------------------------------------------------------------------
/**
* @notice Transfers ownership of the contract to the account specified.
* @param newOwner The address of the new owner.
*/
function transferOwnership(address newOwner) external virtual nonReentrant onlyOwner {
_transferOwnership(newOwner);
}
function _transferOwnership(address newOwner) internal virtual {
if (newOwner == address(0)) revert OwnerAddressRequired();
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @notice Gets the owner of the contract.
* @return address The address who owns the contract.
*/
function owner() external view virtual returns (address) {
return _owner;
}
}
// lib/open-zeppelin/token/ERC20/extensions/IERC20Metadata.sol
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// lib/open-zeppelin/token/ERC20/ERC20.sol
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// src/core/EnableOnlyAssetsWhitelist.sol
/**
* @title Assets whitelist.
* @dev Assets cannot be disabled once they're enabled. There is one whitelist per Reference Asset.
*/
contract EnableOnlyAssetsWhitelist is IEnableOnlyAssetsWhitelist, OwnableGuarded {
using MathUpgradeable for uint256;
// --------------------------------------------------------------------------
// Storage layout
// --------------------------------------------------------------------------
/// @dev The list of whitelisted assets
address[] internal _whitelistedAssets;
/// @notice The address of the reference asset
address public immutable override REFERENCE_ASSET;
/// @notice The decimal places of the reference asset
uint8 public immutable override REFERENCE_ASSET_DECIMALS;
/// @dev Tracks the oracle assigned to a synthetic pair (input asset => OracleInfo)
mapping (address => OracleInfo) internal _oracleOfInputAsset;
/// @notice The difference between the current timestamp and the quote from the external oracle, expressed in seconds.
mapping (address => uint256) public maxOracleUpdatesDuration;
// --------------------------------------------------------------------------
// Constructor
// --------------------------------------------------------------------------
constructor(address ownerAddr, address referenceAssetAddr) {
if (ownerAddr == address(0)) revert OwnerAddressRequired();
if (referenceAssetAddr == address(0)) revert InvalidAddress();
_owner = ownerAddr;
REFERENCE_ASSET = referenceAssetAddr;
REFERENCE_ASSET_DECIMALS = ERC20(referenceAssetAddr).decimals();
}
// --------------------------------------------------------------------------
// Functions
// --------------------------------------------------------------------------
/**
* @notice Enables the asset specified.
* @dev Enabling an asset requires assigning an oracle to the synthetic pair.
* @param assetAddr The address of the asset to enable.
* @param oracleAddr The oracle assigned to the asset specified.
* @param newOracleDuration The lag accepted on the oracle of this asset
*/
function enableAsset(
address assetAddr,
address oracleAddr,
uint256 newOracleDuration
) external override nonReentrant onlyOwner {
if ((oracleAddr == address(0)) || (assetAddr == address(0))) revert ZeroAddressError();
if (_whitelistedAssets.length > 30) revert WhitelistLimitReached();
if (assetAddr == REFERENCE_ASSET) revert ReferenceAssetNotPermitted();
// Make sure the asset is not duplicated
if (_oracleOfInputAsset[assetAddr].tokenAddress != address(0)) revert AssetAlreadyEnabled();
_whitelistedAssets.push(assetAddr);
uint8 tokenDecimals = ERC20(assetAddr).decimals();
// Make sure the token has 6 decimal positions at least
if (tokenDecimals < 6) revert InvalidDecimalPlaces();
uint8 oracleDecimals = IAggregatorV3Interface(oracleAddr).decimals();
_oracleOfInputAsset[assetAddr] = OracleInfo({
oracleAddress: oracleAddr,
tokenAddress: assetAddr,
oracleDecimals: oracleDecimals,
tokenDecimals: tokenDecimals
});
maxOracleUpdatesDuration[assetAddr] = newOracleDuration;
}
/**
* @notice Updates the maximum lag of oracles.
* @param newMaxOracleUpdatesDuration The lag we are willing to accept.
* @param assetAddr The asset address
*/
function updateOracleLagDuration(uint256 newMaxOracleUpdatesDuration, address assetAddr) external nonReentrant onlyOwner {
maxOracleUpdatesDuration[assetAddr] = newMaxOracleUpdatesDuration;
}
/**
* @notice Shares conversion function.
* @param lpTokenAddress The address of the LP token.
* @param assetInAddr The address of the deposit token.
* @param vaultAddr The address of the vault.
* @param assetInAmount The deposit amount.
* @param externalAssets The external assets reported by the vault.
* @return shares The number of shares
* @return amountInReferenceTokens The amount expressed in reference tokens
*/
function convertToShares(
address lpTokenAddress,
address assetInAddr,
address vaultAddr,
uint256 assetInAmount,
uint256 externalAssets
) external view override returns (
uint256 shares,
uint256 amountInReferenceTokens
) {
if (assetInAmount < 1) return (0, 0);
uint256 tSupply = IERC20(lpTokenAddress).totalSupply();
amountInReferenceTokens = (assetInAddr == REFERENCE_ASSET) ? assetInAmount : _fromInputAssetToReferenceAsset(assetInAddr, assetInAmount);
uint256 totalAssetsInReferenceTokens = _getTotalAssetsValuation(vaultAddr, externalAssets);
shares = (tSupply < 1) ? amountInReferenceTokens : amountInReferenceTokens.mulDiv(tSupply, totalAssetsInReferenceTokens, MathUpgradeable.Rounding.Down);
}
/**
* @notice Gets the oracle assigned to the asset specified.
* @return address Returns the address of the oracle.
*/
function getOracleAddress(address assetAddr) external view override returns (address) {
return _oracleOfInputAsset[assetAddr].oracleAddress;
}
/**
* @notice Indicates if a given asset is whitelisted.
* @return bool Returns true if the asset is whitelisted.
*/
function isWhitelisted(address assetAddr) external view override returns (bool) {
return _oracleOfInputAsset[assetAddr].oracleAddress != address(0);
}
/**
* @notice Gets the list of whitelisted assets.
* @return address[] Returns an array of asset addresses.
*/
function getWhitelistedAssets() external view override returns (address[] memory) {
return _whitelistedAssets;
}
/**
* @notice Converts the input amount into the respective amount of reference tokens.
* @param assetAddr The asset address.
* @param amount The asset amount.
*/
function fromInputAssetToReferenceAsset(
address assetAddr,
uint256 amount
) external view override returns (uint256) {
return _fromInputAssetToReferenceAsset(assetAddr, amount);
}
/**
* @notice Gets the valuation (total assets) of the sender specified. The sender is a vault.
* @param externalAssets The external assets reported by the vault.
* @return uint256 The total valuation of the vault.
*/
function getTotalAssetsValuation(uint256 externalAssets) external view override returns (uint256) {
return _getTotalAssetsValuation(msg.sender, externalAssets);
}
function _convertToAssets(
address vaultAddr,
address lpTokenAddress,
uint256 externalAssets,
uint256 shares,
MathUpgradeable.Rounding rounding
) internal view returns (uint256) {
uint256 tSupply = IERC20(lpTokenAddress).totalSupply();
return (tSupply < 1) ? shares : shares.mulDiv(_getTotalAssetsValuation(vaultAddr, externalAssets), tSupply, rounding);
}
/// @dev Calculates the valuation of the vault specified. The result is expressed in reference tokens.
function _getTotalAssetsValuation(
address vaultAddr,
uint256 externalAssets
) internal view returns (uint256) {
address assetAddr;
uint256 assetBalance;
uint256 balanceInReferenceTokens;
uint256 t = _whitelistedAssets.length;
uint256 acum = externalAssets + IERC20(REFERENCE_ASSET).balanceOf(vaultAddr);
for (uint256 i; i < t; i++) {
assetAddr = _whitelistedAssets[i];
assetBalance = IERC20(assetAddr).balanceOf(vaultAddr);
if (assetBalance > 0) {
balanceInReferenceTokens = _fromInputAssetToReferenceAsset(assetAddr, assetBalance);
acum += balanceInReferenceTokens;
}
}
// External assets + multi assets liquidity + liquidity of the reference token
return acum;
}
/// @dev Converts the input amount into the respective amount of reference tokens
function _fromInputAssetToReferenceAsset(
address assetAddr,
uint256 amount
) internal view returns (uint256) {
address oracleAddr = _oracleOfInputAsset[assetAddr].oracleAddress;
uint8 tokenDecimals = _oracleOfInputAsset[assetAddr].tokenDecimals;
uint8 oracleDecimals = _oracleOfInputAsset[assetAddr].oracleDecimals;
// Query the external Oracle
(
uint80 quoteRoundId,
int256 quoteAnswer,
,
uint256 quoteTimestamp,
uint80 quoteAnsweredInRound
) = IAggregatorV3Interface(oracleAddr).latestRoundData();
// Validate the Oracle's response
if (quoteAnswer < 1) revert InvalidOraclePrice();
if (quoteAnsweredInRound < quoteRoundId) revert StalePrice();
if (quoteTimestamp < 1) revert RoundNotComplete();
if (quoteTimestamp > block.timestamp) revert InvalidOracleTimestamp(); // Cannot trust in the external contract/oracle, thus the check.
if (block.timestamp - quoteTimestamp > maxOracleUpdatesDuration[assetAddr]) revert InvalidTimePeriod();
// Distance between the decimals of the oracle and the decimals of the token
uint256 d1 = (oracleDecimals > tokenDecimals) ? 10 ** (oracleDecimals - tokenDecimals) : 1;
uint256 d2 = (REFERENCE_ASSET_DECIMALS > oracleDecimals) ? 10 ** (REFERENCE_ASSET_DECIMALS - oracleDecimals) : 1;
uint256 amountInNormalized = amount * d1;
// Distance between the maximum scale and the scale provided by the oracle
uint256 d3 = 10 ** (18 - oracleDecimals);
uint256 ratio = (10 ** oracleDecimals) * d3 / uint256(quoteAnswer); // Scaled to d2
uint256 result = ratio * amountInNormalized * d2 / d3;
if (tokenDecimals == REFERENCE_ASSET_DECIMALS) {
if (REFERENCE_ASSET_DECIMALS == 6) {
result /= d1;
}
else if (REFERENCE_ASSET_DECIMALS > 17) {
ratio = uint256(quoteAnswer);
result = ratio * amountInNormalized * d2 / d3 / 1e18;
}
}
if (REFERENCE_ASSET_DECIMALS == 6) {
if (tokenDecimals == 18) result /= 1e7;
else if (tokenDecimals == 8) result /= 1e2;
}
return result;
}
}
Submitted on: 2025-09-26 16:49:00
Comments
Log in to comment.
No comments yet.