Description:
Proxy contract enabling upgradeable smart contract patterns. Delegates calls to an implementation contract.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"src/FlashArbitrage.sol": {
"content": "// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
// Aave
import {IPool} from "aave-v3-core/contracts/interfaces/IPool.sol";
import {IPoolAddressesProvider} from "aave-v3-core/contracts/interfaces/IPoolAddressesProvider.sol";
// OpenZeppelin
import {IERC20} from "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
// Uniswap
import {IUniswapV2Router02} from "v2-periphery/interfaces/IUniswapV2Router02.sol";
import {ISwapRouter} from "v3-periphery/interfaces/ISwapRouter.sol";
contract ProductionFlashArbitrage {
// --- State Variables ---
IPool public immutable POOL;
// FIXED: Renamed owner to OWNER for convention.
address public immutable OWNER;
bool private locked;
// --- Enums and Structs ---
enum DexType { V2, V3 }
struct SwapData {
address router;
address tokenIn;
address tokenOut;
uint24 fee;
DexType dexType;
}
// --- Constants ---
address public constant AAVE_ADDRESS_PROVIDER = 0x2f39d218133AFaB8F2B819B1066c7E434Ad94E9e; // Mainnet
// --- Modifiers ---
modifier nonReentrant() {
require(!locked, "Re-entrant call detected");
locked = true;
_;
locked = false;
}
// --- Constructor ---
constructor() {
OWNER = msg.sender;
POOL = IPool(IPoolAddressesProvider(AAVE_ADDRESS_PROVIDER).getPool());
}
function requestFlashLoan(SwapData[] calldata _swaps, uint256 _loanAmount) external {
// FIXED: Check against OWNER.
require(msg.sender == OWNER, "Only owner can call");
require(_swaps.length > 0, "No swaps provided");
address loanToken = _swaps[0].tokenIn;
bytes memory params = abi.encode(_swaps);
POOL.flashLoanSimple(
address(this),
loanToken,
_loanAmount,
params,
0
);
}
function executeOperation(
address asset,
uint256 amount,
uint256 premium,
// FIXED: Removed unused 'initiator' variable name.
address /* initiator */,
bytes calldata params
) external nonReentrant returns (bool) {
require(msg.sender == address(POOL), "Caller is not Aave Pool");
SwapData[] memory swaps = abi.decode(params, (SwapData[]));
uint256 currentBalance = amount;
for (uint i = 0; i < swaps.length; i++) {
SwapData memory swap = swaps[i];
IERC20(swap.tokenIn).approve(swap.router, currentBalance);
if (swap.dexType == DexType.V2) {
address[] memory path = new address[](2);
path[0] = swap.tokenIn;
path[1] = swap.tokenOut;
uint[] memory amountsOut = IUniswapV2Router02(swap.router).swapExactTokensForTokens(
currentBalance,
0,
path,
address(this),
block.timestamp
);
currentBalance = amountsOut[1];
} else if (swap.dexType == DexType.V3) {
ISwapRouter.ExactInputSingleParams memory swapParams = ISwapRouter.ExactInputSingleParams({
tokenIn: swap.tokenIn,
tokenOut: swap.tokenOut,
fee: swap.fee,
recipient: address(this),
deadline: block.timestamp,
amountIn: currentBalance,
amountOutMinimum: 0,
sqrtPriceLimitX96: 0
});
currentBalance = ISwapRouter(swap.router).exactInputSingle(swapParams);
}
}
uint256 amountToRepay = amount + premium;
require(currentBalance >= amountToRepay, "Arbitrage failed; not enough to repay");
uint256 profit = currentBalance - amountToRepay;
if (profit > 0) {
// FIXED: Check the return value of the transfer for safety.
// FIXED: Send profit to OWNER.
require(IERC20(asset).transfer(OWNER, profit), "Profit transfer failed");
}
IERC20(asset).approve(address(POOL), amountToRepay);
return true;
}
receive() external payable {}
}
"
},
"lib/aave-v3-core/contracts/interfaces/IPool.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
import {IPoolAddressesProvider} from './IPoolAddressesProvider.sol';
import {DataTypes} from '../protocol/libraries/types/DataTypes.sol';
/**
* @title IPool
* @author Aave
* @notice Defines the basic interface for an Aave Pool.
*/
interface IPool {
/**
* @dev Emitted on mintUnbacked()
* @param reserve The address of the underlying asset of the reserve
* @param user The address initiating the supply
* @param onBehalfOf The beneficiary of the supplied assets, receiving the aTokens
* @param amount The amount of supplied assets
* @param referralCode The referral code used
*/
event MintUnbacked(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
uint16 indexed referralCode
);
/**
* @dev Emitted on backUnbacked()
* @param reserve The address of the underlying asset of the reserve
* @param backer The address paying for the backing
* @param amount The amount added as backing
* @param fee The amount paid in fees
*/
event BackUnbacked(address indexed reserve, address indexed backer, uint256 amount, uint256 fee);
/**
* @dev Emitted on supply()
* @param reserve The address of the underlying asset of the reserve
* @param user The address initiating the supply
* @param onBehalfOf The beneficiary of the supply, receiving the aTokens
* @param amount The amount supplied
* @param referralCode The referral code used
*/
event Supply(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
uint16 indexed referralCode
);
/**
* @dev Emitted on withdraw()
* @param reserve The address of the underlying asset being withdrawn
* @param user The address initiating the withdrawal, owner of aTokens
* @param to The address that will receive the underlying
* @param amount The amount to be withdrawn
*/
event Withdraw(address indexed reserve, address indexed user, address indexed to, uint256 amount);
/**
* @dev Emitted on borrow() and flashLoan() when debt needs to be opened
* @param reserve The address of the underlying asset being borrowed
* @param user The address of the user initiating the borrow(), receiving the funds on borrow() or just
* initiator of the transaction on flashLoan()
* @param onBehalfOf The address that will be getting the debt
* @param amount The amount borrowed out
* @param interestRateMode The rate mode: 1 for Stable, 2 for Variable
* @param borrowRate The numeric rate at which the user has borrowed, expressed in ray
* @param referralCode The referral code used
*/
event Borrow(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
DataTypes.InterestRateMode interestRateMode,
uint256 borrowRate,
uint16 indexed referralCode
);
/**
* @dev Emitted on repay()
* @param reserve The address of the underlying asset of the reserve
* @param user The beneficiary of the repayment, getting his debt reduced
* @param repayer The address of the user initiating the repay(), providing the funds
* @param amount The amount repaid
* @param useATokens True if the repayment is done using aTokens, `false` if done with underlying asset directly
*/
event Repay(
address indexed reserve,
address indexed user,
address indexed repayer,
uint256 amount,
bool useATokens
);
/**
* @dev Emitted on swapBorrowRateMode()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user swapping his rate mode
* @param interestRateMode The current interest rate mode of the position being swapped: 1 for Stable, 2 for Variable
*/
event SwapBorrowRateMode(
address indexed reserve,
address indexed user,
DataTypes.InterestRateMode interestRateMode
);
/**
* @dev Emitted on borrow(), repay() and liquidationCall() when using isolated assets
* @param asset The address of the underlying asset of the reserve
* @param totalDebt The total isolation mode debt for the reserve
*/
event IsolationModeTotalDebtUpdated(address indexed asset, uint256 totalDebt);
/**
* @dev Emitted when the user selects a certain asset category for eMode
* @param user The address of the user
* @param categoryId The category id
*/
event UserEModeSet(address indexed user, uint8 categoryId);
/**
* @dev Emitted on setUserUseReserveAsCollateral()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user enabling the usage as collateral
*/
event ReserveUsedAsCollateralEnabled(address indexed reserve, address indexed user);
/**
* @dev Emitted on setUserUseReserveAsCollateral()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user enabling the usage as collateral
*/
event ReserveUsedAsCollateralDisabled(address indexed reserve, address indexed user);
/**
* @dev Emitted on rebalanceStableBorrowRate()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user for which the rebalance has been executed
*/
event RebalanceStableBorrowRate(address indexed reserve, address indexed user);
/**
* @dev Emitted on flashLoan()
* @param target The address of the flash loan receiver contract
* @param initiator The address initiating the flash loan
* @param asset The address of the asset being flash borrowed
* @param amount The amount flash borrowed
* @param interestRateMode The flashloan mode: 0 for regular flashloan, 1 for Stable debt, 2 for Variable debt
* @param premium The fee flash borrowed
* @param referralCode The referral code used
*/
event FlashLoan(
address indexed target,
address initiator,
address indexed asset,
uint256 amount,
DataTypes.InterestRateMode interestRateMode,
uint256 premium,
uint16 indexed referralCode
);
/**
* @dev Emitted when a borrower is liquidated.
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
* @param user The address of the borrower getting liquidated
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param liquidatedCollateralAmount The amount of collateral received by the liquidator
* @param liquidator The address of the liquidator
* @param receiveAToken True if the liquidators wants to receive the collateral aTokens, `false` if he wants
* to receive the underlying collateral asset directly
*/
event LiquidationCall(
address indexed collateralAsset,
address indexed debtAsset,
address indexed user,
uint256 debtToCover,
uint256 liquidatedCollateralAmount,
address liquidator,
bool receiveAToken
);
/**
* @dev Emitted when the state of a reserve is updated.
* @param reserve The address of the underlying asset of the reserve
* @param liquidityRate The next liquidity rate
* @param stableBorrowRate The next stable borrow rate
* @param variableBorrowRate The next variable borrow rate
* @param liquidityIndex The next liquidity index
* @param variableBorrowIndex The next variable borrow index
*/
event ReserveDataUpdated(
address indexed reserve,
uint256 liquidityRate,
uint256 stableBorrowRate,
uint256 variableBorrowRate,
uint256 liquidityIndex,
uint256 variableBorrowIndex
);
/**
* @dev Emitted when the protocol treasury receives minted aTokens from the accrued interest.
* @param reserve The address of the reserve
* @param amountMinted The amount minted to the treasury
*/
event MintedToTreasury(address indexed reserve, uint256 amountMinted);
/**
* @notice Mints an `amount` of aTokens to the `onBehalfOf`
* @param asset The address of the underlying asset to mint
* @param amount The amount to mint
* @param onBehalfOf The address that will receive the aTokens
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
*/
function mintUnbacked(
address asset,
uint256 amount,
address onBehalfOf,
uint16 referralCode
) external;
/**
* @notice Back the current unbacked underlying with `amount` and pay `fee`.
* @param asset The address of the underlying asset to back
* @param amount The amount to back
* @param fee The amount paid in fees
* @return The backed amount
*/
function backUnbacked(address asset, uint256 amount, uint256 fee) external returns (uint256);
/**
* @notice Supplies an `amount` of underlying asset into the reserve, receiving in return overlying aTokens.
* - E.g. User supplies 100 USDC and gets in return 100 aUSDC
* @param asset The address of the underlying asset to supply
* @param amount The amount to be supplied
* @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user
* wants to receive them on his own wallet, or a different address if the beneficiary of aTokens
* is a different wallet
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
*/
function supply(address asset, uint256 amount, address onBehalfOf, uint16 referralCode) external;
/**
* @notice Supply with transfer approval of asset to be supplied done via permit function
* see: https://eips.ethereum.org/EIPS/eip-2612 and https://eips.ethereum.org/EIPS/eip-713
* @param asset The address of the underlying asset to supply
* @param amount The amount to be supplied
* @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user
* wants to receive them on his own wallet, or a different address if the beneficiary of aTokens
* is a different wallet
* @param deadline The deadline timestamp that the permit is valid
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
* @param permitV The V parameter of ERC712 permit sig
* @param permitR The R parameter of ERC712 permit sig
* @param permitS The S parameter of ERC712 permit sig
*/
function supplyWithPermit(
address asset,
uint256 amount,
address onBehalfOf,
uint16 referralCode,
uint256 deadline,
uint8 permitV,
bytes32 permitR,
bytes32 permitS
) external;
/**
* @notice Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned
* E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC
* @param asset The address of the underlying asset to withdraw
* @param amount The underlying amount to be withdrawn
* - Send the value type(uint256).max in order to withdraw the whole aToken balance
* @param to The address that will receive the underlying, same as msg.sender if the user
* wants to receive it on his own wallet, or a different address if the beneficiary is a
* different wallet
* @return The final amount withdrawn
*/
function withdraw(address asset, uint256 amount, address to) external returns (uint256);
/**
* @notice Allows users to borrow a specific `amount` of the reserve underlying asset, provided that the borrower
* already supplied enough collateral, or he was given enough allowance by a credit delegator on the
* corresponding debt token (StableDebtToken or VariableDebtToken)
* - E.g. User borrows 100 USDC passing as `onBehalfOf` his own address, receiving the 100 USDC in his wallet
* and 100 stable/variable debt tokens, depending on the `interestRateMode`
* @param asset The address of the underlying asset to borrow
* @param amount The amount to be borrowed
* @param interestRateMode The interest rate mode at which the user wants to borrow: 1 for Stable, 2 for Variable
* @param referralCode The code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
* @param onBehalfOf The address of the user who will receive the debt. Should be the address of the borrower itself
* calling the function if he wants to borrow against his own collateral, or the address of the credit delegator
* if he has been given credit delegation allowance
*/
function borrow(
address asset,
uint256 amount,
uint256 interestRateMode,
uint16 referralCode,
address onBehalfOf
) external;
/**
* @notice Repays a borrowed `amount` on a specific reserve, burning the equivalent debt tokens owned
* - E.g. User repays 100 USDC, burning 100 variable/stable debt tokens of the `onBehalfOf` address
* @param asset The address of the borrowed underlying asset previously borrowed
* @param amount The amount to repay
* - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode`
* @param interestRateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable
* @param onBehalfOf The address of the user who will get his debt reduced/removed. Should be the address of the
* user calling the function if he wants to reduce/remove his own debt, or the address of any other
* other borrower whose debt should be removed
* @return The final amount repaid
*/
function repay(
address asset,
uint256 amount,
uint256 interestRateMode,
address onBehalfOf
) external returns (uint256);
/**
* @notice Repay with transfer approval of asset to be repaid done via permit function
* see: https://eips.ethereum.org/EIPS/eip-2612 and https://eips.ethereum.org/EIPS/eip-713
* @param asset The address of the borrowed underlying asset previously borrowed
* @param amount The amount to repay
* - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode`
* @param interestRateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable
* @param onBehalfOf Address of the user who will get his debt reduced/removed. Should be the address of the
* user calling the function if he wants to reduce/remove his own debt, or the address of any other
* other borrower whose debt should be removed
* @param deadline The deadline timestamp that the permit is valid
* @param permitV The V parameter of ERC712 permit sig
* @param permitR The R parameter of ERC712 permit sig
* @param permitS The S parameter of ERC712 permit sig
* @return The final amount repaid
*/
function repayWithPermit(
address asset,
uint256 amount,
uint256 interestRateMode,
address onBehalfOf,
uint256 deadline,
uint8 permitV,
bytes32 permitR,
bytes32 permitS
) external returns (uint256);
/**
* @notice Repays a borrowed `amount` on a specific reserve using the reserve aTokens, burning the
* equivalent debt tokens
* - E.g. User repays 100 USDC using 100 aUSDC, burning 100 variable/stable debt tokens
* @dev Passing uint256.max as amount will clean up any residual aToken dust balance, if the user aToken
* balance is not enough to cover the whole debt
* @param asset The address of the borrowed underlying asset previously borrowed
* @param amount The amount to repay
* - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode`
* @param interestRateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable
* @return The final amount repaid
*/
function repayWithATokens(
address asset,
uint256 amount,
uint256 interestRateMode
) external returns (uint256);
/**
* @notice Allows a borrower to swap his debt between stable and variable mode, or vice versa
* @param asset The address of the underlying asset borrowed
* @param interestRateMode The current interest rate mode of the position being swapped: 1 for Stable, 2 for Variable
*/
function swapBorrowRateMode(address asset, uint256 interestRateMode) external;
/**
* @notice Rebalances the stable interest rate of a user to the current stable rate defined on the reserve.
* - Users can be rebalanced if the following conditions are satisfied:
* 1. Usage ratio is above 95%
* 2. the current supply APY is below REBALANCE_UP_THRESHOLD * maxVariableBorrowRate, which means that too
* much has been borrowed at a stable rate and suppliers are not earning enough
* @param asset The address of the underlying asset borrowed
* @param user The address of the user to be rebalanced
*/
function rebalanceStableBorrowRate(address asset, address user) external;
/**
* @notice Allows suppliers to enable/disable a specific supplied asset as collateral
* @param asset The address of the underlying asset supplied
* @param useAsCollateral True if the user wants to use the supply as collateral, false otherwise
*/
function setUserUseReserveAsCollateral(address asset, bool useAsCollateral) external;
/**
* @notice Function to liquidate a non-healthy position collateral-wise, with Health Factor below 1
* - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives
* a proportionally amount of the `collateralAsset` plus a bonus to cover market risk
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
* @param user The address of the borrower getting liquidated
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param receiveAToken True if the liquidators wants to receive the collateral aTokens, `false` if he wants
* to receive the underlying collateral asset directly
*/
function liquidationCall(
address collateralAsset,
address debtAsset,
address user,
uint256 debtToCover,
bool receiveAToken
) external;
/**
* @notice Allows smartcontracts to access the liquidity of the pool within one transaction,
* as long as the amount taken plus a fee is returned.
* @dev IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept
* into consideration. For further details please visit https://docs.aave.com/developers/
* @param receiverAddress The address of the contract receiving the funds, implementing IFlashLoanReceiver interface
* @param assets The addresses of the assets being flash-borrowed
* @param amounts The amounts of the assets being flash-borrowed
* @param interestRateModes Types of the debt to open if the flash loan is not returned:
* 0 -> Don't open any debt, just revert if funds can't be transferred from the receiver
* 1 -> Open debt at stable rate for the value of the amount flash-borrowed to the `onBehalfOf` address
* 2 -> Open debt at variable rate for the value of the amount flash-borrowed to the `onBehalfOf` address
* @param onBehalfOf The address that will receive the debt in the case of using on `modes` 1 or 2
* @param params Variadic packed params to pass to the receiver as extra information
* @param referralCode The code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
*/
function flashLoan(
address receiverAddress,
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata interestRateModes,
address onBehalfOf,
bytes calldata params,
uint16 referralCode
) external;
/**
* @notice Allows smartcontracts to access the liquidity of the pool within one transaction,
* as long as the amount taken plus a fee is returned.
* @dev IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept
* into consideration. For further details please visit https://docs.aave.com/developers/
* @param receiverAddress The address of the contract receiving the funds, implementing IFlashLoanSimpleReceiver interface
* @param asset The address of the asset being flash-borrowed
* @param amount The amount of the asset being flash-borrowed
* @param params Variadic packed params to pass to the receiver as extra information
* @param referralCode The code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
*/
function flashLoanSimple(
address receiverAddress,
address asset,
uint256 amount,
bytes calldata params,
uint16 referralCode
) external;
/**
* @notice Returns the user account data across all the reserves
* @param user The address of the user
* @return totalCollateralBase The total collateral of the user in the base currency used by the price feed
* @return totalDebtBase The total debt of the user in the base currency used by the price feed
* @return availableBorrowsBase The borrowing power left of the user in the base currency used by the price feed
* @return currentLiquidationThreshold The liquidation threshold of the user
* @return ltv The loan to value of The user
* @return healthFactor The current health factor of the user
*/
function getUserAccountData(
address user
)
external
view
returns (
uint256 totalCollateralBase,
uint256 totalDebtBase,
uint256 availableBorrowsBase,
uint256 currentLiquidationThreshold,
uint256 ltv,
uint256 healthFactor
);
/**
* @notice Initializes a reserve, activating it, assigning an aToken and debt tokens and an
* interest rate strategy
* @dev Only callable by the PoolConfigurator contract
* @param asset The address of the underlying asset of the reserve
* @param aTokenAddress The address of the aToken that will be assigned to the reserve
* @param stableDebtAddress The address of the StableDebtToken that will be assigned to the reserve
* @param variableDebtAddress The address of the VariableDebtToken that will be assigned to the reserve
* @param interestRateStrategyAddress The address of the interest rate strategy contract
*/
function initReserve(
address asset,
address aTokenAddress,
address stableDebtAddress,
address variableDebtAddress,
address interestRateStrategyAddress
) external;
/**
* @notice Drop a reserve
* @dev Only callable by the PoolConfigurator contract
* @param asset The address of the underlying asset of the reserve
*/
function dropReserve(address asset) external;
/**
* @notice Updates the address of the interest rate strategy contract
* @dev Only callable by the PoolConfigurator contract
* @param asset The address of the underlying asset of the reserve
* @param rateStrategyAddress The address of the interest rate strategy contract
*/
function setReserveInterestRateStrategyAddress(
address asset,
address rateStrategyAddress
) external;
/**
* @notice Sets the configuration bitmap of the reserve as a whole
* @dev Only callable by the PoolConfigurator contract
* @param asset The address of the underlying asset of the reserve
* @param configuration The new configuration bitmap
*/
function setConfiguration(
address asset,
DataTypes.ReserveConfigurationMap calldata configuration
) external;
/**
* @notice Returns the configuration of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The configuration of the reserve
*/
function getConfiguration(
address asset
) external view returns (DataTypes.ReserveConfigurationMap memory);
/**
* @notice Returns the configuration of the user across all the reserves
* @param user The user address
* @return The configuration of the user
*/
function getUserConfiguration(
address user
) external view returns (DataTypes.UserConfigurationMap memory);
/**
* @notice Returns the normalized income of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The reserve's normalized income
*/
function getReserveNormalizedIncome(address asset) external view returns (uint256);
/**
* @notice Returns the normalized variable debt per unit of asset
* @dev WARNING: This function is intended to be used primarily by the protocol itself to get a
* "dynamic" variable index based on time, current stored index and virtual rate at the current
* moment (approx. a borrower would get if opening a position). This means that is always used in
* combination with variable debt supply/balances.
* If using this function externally, consider that is possible to have an increasing normalized
* variable debt that is not equivalent to how the variable debt index would be updated in storage
* (e.g. only updates with non-zero variable debt supply)
* @param asset The address of the underlying asset of the reserve
* @return The reserve normalized variable debt
*/
function getReserveNormalizedVariableDebt(address asset) external view returns (uint256);
/**
* @notice Returns the state and configuration of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The state and configuration data of the reserve
*/
function getReserveData(address asset) external view returns (DataTypes.ReserveData memory);
/**
* @notice Validates and finalizes an aToken transfer
* @dev Only callable by the overlying aToken of the `asset`
* @param asset The address of the underlying asset of the aToken
* @param from The user from which the aTokens are transferred
* @param to The user receiving the aTokens
* @param amount The amount being transferred/withdrawn
* @param balanceFromBefore The aToken balance of the `from` user before the transfer
* @param balanceToBefore The aToken balance of the `to` user before the transfer
*/
function finalizeTransfer(
address asset,
address from,
address to,
uint256 amount,
uint256 balanceFromBefore,
uint256 balanceToBefore
) external;
/**
* @notice Returns the list of the underlying assets of all the initialized reserves
* @dev It does not include dropped reserves
* @return The addresses of the underlying assets of the initialized reserves
*/
function getReservesList() external view returns (address[] memory);
/**
* @notice Returns the address of the underlying asset of a reserve by the reserve id as stored in the DataTypes.ReserveData struct
* @param id The id of the reserve as stored in the DataTypes.ReserveData struct
* @return The address of the reserve associated with id
*/
function getReserveAddressById(uint16 id) external view returns (address);
/**
* @notice Returns the PoolAddressesProvider connected to this contract
* @return The address of the PoolAddressesProvider
*/
function ADDRESSES_PROVIDER() external view returns (IPoolAddressesProvider);
/**
* @notice Updates the protocol fee on the bridging
* @param bridgeProtocolFee The part of the premium sent to the protocol treasury
*/
function updateBridgeProtocolFee(uint256 bridgeProtocolFee) external;
/**
* @notice Updates flash loan premiums. Flash loan premium consists of two parts:
* - A part is sent to aToken holders as extra, one time accumulated interest
* - A part is collected by the protocol treasury
* @dev The total premium is calculated on the total borrowed amount
* @dev The premium to protocol is calculated on the total premium, being a percentage of `flashLoanPremiumTotal`
* @dev Only callable by the PoolConfigurator contract
* @param flashLoanPremiumTotal The total premium, expressed in bps
* @param flashLoanPremiumToProtocol The part of the premium sent to the protocol treasury, expressed in bps
*/
function updateFlashloanPremiums(
uint128 flashLoanPremiumTotal,
uint128 flashLoanPremiumToProtocol
) external;
/**
* @notice Configures a new category for the eMode.
* @dev In eMode, the protocol allows very high borrowing power to borrow assets of the same category.
* The category 0 is reserved as it's the default for volatile assets
* @param id The id of the category
* @param config The configuration of the category
*/
function configureEModeCategory(uint8 id, DataTypes.EModeCategory memory config) external;
/**
* @notice Returns the data of an eMode category
* @param id The id of the category
* @return The configuration data of the category
*/
function getEModeCategoryData(uint8 id) external view returns (DataTypes.EModeCategory memory);
/**
* @notice Allows a user to use the protocol in eMode
* @param categoryId The id of the category
*/
function setUserEMode(uint8 categoryId) external;
/**
* @notice Returns the eMode the user is using
* @param user The address of the user
* @return The eMode id
*/
function getUserEMode(address user) external view returns (uint256);
/**
* @notice Resets the isolation mode total debt of the given asset to zero
* @dev It requires the given asset has zero debt ceiling
* @param asset The address of the underlying asset to reset the isolationModeTotalDebt
*/
function resetIsolationModeTotalDebt(address asset) external;
/**
* @notice Returns the percentage of available liquidity that can be borrowed at once at stable rate
* @return The percentage of available liquidity to borrow, expressed in bps
*/
function MAX_STABLE_RATE_BORROW_SIZE_PERCENT() external view returns (uint256);
/**
* @notice Returns the total fee on flash loans
* @return The total fee on flashloans
*/
function FLASHLOAN_PREMIUM_TOTAL() external view returns (uint128);
/**
* @notice Returns the part of the bridge fees sent to protocol
* @return The bridge fee sent to the protocol treasury
*/
function BRIDGE_PROTOCOL_FEE() external view returns (uint256);
/**
* @notice Returns the part of the flashloan fees sent to protocol
* @return The flashloan fee sent to the protocol treasury
*/
function FLASHLOAN_PREMIUM_TO_PROTOCOL() external view returns (uint128);
/**
* @notice Returns the maximum number of reserves supported to be listed in this Pool
* @return The maximum number of reserves supported
*/
function MAX_NUMBER_RESERVES() external view returns (uint16);
/**
* @notice Mints the assets accrued through the reserve factor to the treasury in the form of aTokens
* @param assets The list of reserves for which the minting needs to be executed
*/
function mintToTreasury(address[] calldata assets) external;
/**
* @notice Rescue and transfer tokens locked in this contract
* @param token The address of the token
* @param to The address of the recipient
* @param amount The amount of token to transfer
*/
function rescueTokens(address token, address to, uint256 amount) external;
/**
* @notice Supplies an `amount` of underlying asset into the reserve, receiving in return overlying aTokens.
* - E.g. User supplies 100 USDC and gets in return 100 aUSDC
* @dev Deprecated: Use the `supply` function instead
* @param asset The address of the underlying asset to supply
* @param amount The amount to be supplied
* @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user
* wants to receive them on his own wallet, or a different address if the beneficiary of aTokens
* is a different wallet
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
*/
function deposit(address asset, uint256 amount, address onBehalfOf, uint16 referralCode) external;
}
"
},
"lib/aave-v3-core/contracts/interfaces/IPoolAddressesProvider.sol": {
"content": "// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
/**
* @title IPoolAddressesProvider
* @author Aave
* @notice Defines the basic interface for a Pool Addresses Provider.
*/
interface IPoolAddressesProvider {
/**
* @dev Emitted when the market identifier is updated.
* @param oldMarketId The old id of the market
* @param newMarketId The new id of the market
*/
event MarketIdSet(string indexed oldMarketId, string indexed newMarketId);
/**
* @dev Emitted when the pool is updated.
* @param oldAddress The old address of the Pool
* @param newAddress The new address of the Pool
*/
event PoolUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the pool configurator is updated.
* @param oldAddress The old address of the PoolConfigurator
* @param newAddress The new address of the PoolConfigurator
*/
event PoolConfiguratorUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the price oracle is updated.
* @param oldAddress The old address of the PriceOracle
* @param newAddress The new address of the PriceOracle
*/
event PriceOracleUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the ACL manager is updated.
* @param oldAddress The old address of the ACLManager
* @param newAddress The new address of the ACLManager
*/
event ACLManagerUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the ACL admin is updated.
* @param oldAddress The old address of the ACLAdmin
* @param newAddress The new address of the ACLAdmin
*/
event ACLAdminUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the price oracle sentinel is updated.
* @param oldAddress The old address of the PriceOracleSentinel
* @param newAddress The new address of the PriceOracleSentinel
*/
event PriceOracleSentinelUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the pool data provider is updated.
* @param oldAddress The old address of the PoolDataProvider
* @param newAddress The new address of the PoolDataProvider
*/
event PoolDataProviderUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when a new proxy is created.
* @param id The identifier of the proxy
* @param proxyAddress The address of the created proxy contract
* @param implementationAddress The address of the implementation contract
*/
event ProxyCreated(
bytes32 indexed id,
address indexed proxyAddress,
address indexed implementationAddress
);
/**
* @dev Emitted when a new non-proxied contract address is registered.
* @param id The identifier of the contract
* @param oldAddress The address of the old contract
* @param newAddress The address of the new contract
*/
event AddressSet(bytes32 indexed id, address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the implementation of the proxy registered with id is updated
* @param id The identifier of the contract
* @param proxyAddress The address of the proxy contract
* @param oldImplementationAddress The address of the old implementation contract
* @param newImplementationAddress The address of the new implementation contract
*/
event AddressSetAsProxy(
bytes32 indexed id,
address indexed proxyAddress,
address oldImplementationAddress,
address indexed newImplementationAddress
);
/**
* @notice Returns the id of the Aave market to which this contract points to.
* @return The market id
*/
function getMarketId() external view returns (string memory);
/**
* @notice Associates an id with a specific PoolAddressesProvider.
* @dev This can be used to create an onchain registry of PoolAddressesProviders to
* identify and validate multiple Aave markets.
* @param newMarketId The market id
*/
function setMarketId(string calldata newMarketId) external;
/**
* @notice Returns an address by its identifier.
* @dev The returned address might be an EOA or a contract, potentially proxied
* @dev It returns ZERO if there is no registered address with the given id
* @param id The id
* @return The address of the registered for the specified id
*/
function getAddress(bytes32 id) external view returns (address);
/**
* @notice General function to update the implementation of a proxy registered with
* certain `id`. If there is no proxy registered, it will instantiate one and
* set as implementation the `newImplementationAddress`.
* @dev IMPORTANT Use this function carefully, only for ids that don't have an explicit
* setter function, in order to avoid unexpected consequences
* @param id The id
* @param newImplementationAddress The address of the new implementation
*/
function setAddressAsProxy(bytes32 id, address newImplementationAddress) external;
/**
* @notice Sets an address for an id replacing the address saved in the addresses map.
* @dev IMPORTANT Use this function carefully, as it will do a hard replacement
* @param id The id
* @param newAddress The address to set
*/
function setAddress(bytes32 id, address newAddress) external;
/**
* @notice Returns the address of the Pool proxy.
* @return The Pool proxy address
*/
function getPool() external view returns (address);
/**
* @notice Updates the implementation of the Pool, or creates a proxy
* setting the new `pool` implementation when the function is called for the first time.
* @param newPoolImpl The new Pool implementation
*/
function setPoolImpl(address newPoolImpl) external;
/**
* @notice Returns the address of the PoolConfigurator proxy.
* @return The PoolConfigurator proxy address
*/
function getPoolConfigurator() external view returns (address);
/**
* @notice Updates the implementation of the PoolConfigurator, or creates a proxy
* setting the new `PoolConfigurator` implementation when the function is called for the first time.
* @param newPoolConfiguratorImpl The new PoolConfigurator implementation
*/
function setPoolConfiguratorImpl(address newPoolConfiguratorImpl) external;
/**
* @notice Returns the address of the price oracle.
* @return The address of the PriceOracle
*/
function getPriceOracle() external view returns (address);
/**
* @notice Updates the address of the price oracle.
* @param newPriceOracle The address of the new PriceOracle
*/
function setPriceOracle(address newPriceOracle) external;
/**
* @notice Returns the address of the ACL manager.
* @return The address of the ACLManager
*/
function getACLManager() external view returns (address);
/**
* @notice Updates the address of the ACL manager.
* @param newAclManager The address of the new ACLManager
*/
function setACLManager(address newAclManager) external;
/**
* @notice Returns the address of the ACL admin.
* @return The address of the ACL admin
*/
function getACLAdmin() external view returns (address);
/**
* @notice Updates the address of the ACL admin.
* @param newAclAdmin The address of the new ACL admin
*/
function setACLAdmin(address newAclAdmin) external;
/**
* @notice Returns the address of the price oracle sentinel.
* @return The address of the PriceOracleSentinel
*/
function getPriceOracleSentinel() external view returns (address);
/**
* @notice Updates the address of the price oracle sentinel.
* @param newPriceOracleSentinel The address of the new PriceOracleSentinel
*/
function setPriceOracleSentinel(address newPriceOracleSentinel) external;
/**
* @notice Returns the address of the data provider.
* @return The address of the DataProvider
*/
function getPoolDataProvider() external view returns (address);
/**
* @notice Updates the address of the data provider.
* @param newDataProvider The address of the new DataProvider
*/
function setPoolDataProvider(address newDataProvider) external;
}
"
},
"lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"lib/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol": {
"content": "pragma solidity >=0.6.2;
import './IUniswapV2Router01.sol';
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
"
},
"lib/v3-periphery/contracts/interfaces/ISwapRouter.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol';
/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Uniswap V3
interface ISwapRouter is IUniswapV3SwapCallback {
struct ExactInputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
/// @notice Swaps `amountIn` of one token for as much as possible of another token
/// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
/// @return amountOut The amount of the received token
function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);
struct ExactInputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
}
/// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
/// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
/// @return amountOut The amount of the received token
function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);
struct ExactOutputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 deadline;
uint256 amountOut;
uint256 amountInMaximum;
uint160 sqrtPriceLimitX96;
}
/// @notice Swaps as little as possible of one token for `amountOut` of another token
/// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
/// @return amountIn The amount of the input token
function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn);
struct ExactOutputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountOut;
uint256 amountInMaximum;
}
/// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
/// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
/// @return amountIn The amount of the input token
function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
}
"
},
"lib/aave-v3-core/contracts/protocol/libraries/types/DataTypes.sol": {
"content": "// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
library DataTypes {
struct ReserveData {
//stores the reserve configuration
ReserveConfigurationMap configuration;
//the liquidity index. Expressed in ray
uint128 liquidityIndex;
//the current supply rate. Expressed in ray
uint128 currentLiquidityRate;
//variable borrow index. Expressed in ray
uint128 variableBorrowIndex;
//the current variable borrow rate. Expressed in ray
uint128 currentVariableBorrowRate;
//the current stable borrow rate. Expressed in ray
uint128 currentStableBorrowRate;
//timestamp of last update
uint40 lastUpdateTimestamp;
//the id of the reserve. Represents the position in the list of the active reserves
uint16 id;
//aToken address
address aTokenAddress;
//stableDebtToken address
address stableDebtTokenAddress;
//variableDebtToken address
address variableDebtTokenAddress;
//address of the interest rate strategy
address interestRateStrategyAddress;
//the current treasury balance, scaled
uint128 accruedToTreasury;
//the outstanding unbacked aTokens minted through the bridging feature
uint128 unbacked;
//the outstanding debt borrowed against this asset in isolation mode
uint128 isolationModeTotalDebt;
}
struct ReserveConfigurationMap {
//bit 0-15: LTV
//bit 16-31: Liq. threshold
//bit 32-47: Liq. bonus
//bit 48-55: Decimals
//bit 56: reserve is active
//bit 57: reserve is frozen
//bit 58: borrowing is enabled
//bit 59: stable rate borrowing enabled
//bit 60: asset is paused
//bit 61: borrowing in isolation mode is enabled
//bit 62: siloed borrowing enabled
//bit 63: flashloaning enabled
//bit 64-79: reserve factor
//bit 80-115 borrow cap in whole tokens, borrowCap == 0 => no cap
//bit 116-151 supply cap in whole tokens, supplyCap == 0 => no cap
//bit 152-167 liquidation protocol fee
//bit 168-175 eMode category
//bit 176-211 unbacked mint cap in whole tokens, unbackedMintCap == 0 => minting disabled
//bit 212-251 debt ceiling for isolation mode with (ReserveConfiguration::DEBT_CEILING_DECIMALS) decimals
//bit 252-255 unused
uint256 data;
}
struct UserConfigurationMap {
/**
* @dev Bitmap of the users collaterals and borrows. It is divided in pairs of bits, one pair per asset.
* The first bit indicates if an asset is used as collateral by the user, the second whether an
* asset is borrowed by the user.
*/
uint256 data;
}
struct EModeCategory {
// each eMode category has a custom ltv and liquidation threshold
uint16 ltv;
uint16 liquidationThreshold;
uint16 liquidationBonus;
// each eMode category may or may not have a custom oracle to override the individual assets price oracles
address priceSource;
string label;
}
enum InterestRateMode {NONE, STABLE, VARIABLE}
struct ReserveCache {
uint256 currScaledVariableDebt;
uint256 nextScaledVariableDebt;
uint256 currPrincipalStableDebt;
uint256 currAvgStableBorrowRate;
uint256 currTotalStableDebt;
uint256 nextAvgStableBorrowRate;
uint256 nextTotalStableDebt;
uint256 currLiquidityIndex;
uint256 nextLiquidityIndex;
uint256 currVariableBorrowIndex;
uint256 nextVariableBorrowIndex;
uint256 currLiquidityRate;
uint256 currVariableBorrowRate;
uint256 reserveFactor;
ReserveConfigurationMap reserveConfiguration;
address aTokenAddress;
address stableDebtTokenAddress;
address variableDebtTokenAddress;
uint40 reserveLastUpdateTimestamp;
uint40 stableDebtLastUpdateTimestamp;
}
struct ExecuteLiquidationCallParams {
uint256 reservesCount;
uint256 debtToCover;
address collateralAsset;
address debtAsset;
address user;
bool receiveAToken;
address priceOracle;
uint8 userEModeCategory;
address priceOracleSentinel;
}
struct ExecuteSupplyParams {
address asset;
uint256 amount;
address onBehalfOf;
uint16 referralCode;
}
struct ExecuteBorrowParams {
address asset;
address user;
address onBehalfOf;
uint256 amount;
InterestRateMode interestRateMode;
uint16 referralCode;
bool releaseUnderlying;
uint256 maxStableRateBorrowSizePercent;
uint256 reservesCount;
address oracle;
uint8 userEModeCategory;
address priceOracleSentinel;
}
struct ExecuteRepayParams {
address asset;
uint256 amount;
InterestRateMode interestRateMode;
address onBehalfOf;
bool useATokens;
}
struct ExecuteWithdrawParams {
address asset;
uint256 amount;
address to;
uint256 reservesCount;
address oracle;
uint8 userEModeCategory;
}
struct ExecuteSetUserEModeParams {
uint256 reservesCount;
address oracle;
uint8 categoryId;
}
struct FinalizeTransferParams {
address asset;
address from;
address to;
uint256 amount;
uint256 balanceFromBefore;
uint256 balanceToBefore;
uint256 reservesCount;
address oracle;
uint8 fromEModeCategory;
}
struct FlashloanParams {
address receiverAddress;
address[] assets;
uint256[] amounts;
uint256[] interestRateModes;
address onBehalfOf;
bytes params;
uint16 referralCode;
uint256 flashLoanPremiumToProtocol;
uint256 flashLoanPremiumTotal;
uint256 maxStableRateBorrowSizePercent;
uint256 reservesCount;
address addressesProvider;
uint8 userEModeCategory;
bool isAuthorizedFlashBorrower;
}
struct FlashloanSimpleParams {
address receiverAddress;
address asset;
uint256 amount;
bytes params;
uint16 referralCode;
uint256 flashLoanPremiumToProtocol;
uint256 flashLoanPremiumTotal;
}
struct FlashLoanRepaymentParams {
uint256 amount;
uint256 totalPremium;
uint256 flashLoanPremiumToProtocol;
address asset;
address receiverAddress;
uint16 referralCode;
}
struct CalculateUserAccountDataParams {
UserConfigurationMap userConfig;
uint256 reservesCount;
address user;
address oracle;
uint8 userEModeCategory;
}
struct ValidateBorrowParams {
ReserveCache reserveCache;
UserConfigurationMap userConfig;
address asset;
address userAddress;
uint256 amount;
InterestRateMode interestRateMode;
uint256 maxStableLoanPercent;
uint256 reservesCount;
address oracle;
uint8 userEModeCategory;
address priceOracleSentinel;
bool isolationModeActive;
address isolationModeCollateralAddress;
uint256 isolationModeDebtCeiling;
}
struct ValidateLiquidationCallParams {
ReserveCache debtReserveCache;
uint256 totalDebt;
uint256 healthFactor;
address priceOracleSentinel;
}
struct CalculateInterestRatesParams {
uint256 unbacked;
uint256 liquidityAdded;
uint256 liquidityTaken;
uint256 totalStableDebt;
uint256 totalVariableDebt;
uint256 averageStableBorrowRate;
uint256 reserveFactor;
address reserve;
address aToken;
}
struct InitReserveParams {
address asset;
address aTokenAddress;
address stableDebtAddress;
address variableDebtAddress;
address interestRateStrategyAddress;
uint16 reservesCount;
uint16 maxNumberReserves;
}
}
"
},
"lib/v2-periphery/contracts/interfaces/IUniswapV2Router01.sol": {
"content": "pragma solidity >=0.6.2;
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
"
},
"lib/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol": {
"content": "// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolAc
Submitted on: 2025-09-26 19:48:31
Comments
Log in to comment.
No comments yet.