Description:
Multi-signature wallet contract requiring multiple confirmations for transaction execution.
Blockchain: Ethereum
Source Code: View Code On The Blockchain
Solidity Source Code:
{{
"language": "Solidity",
"sources": {
"contracts/apps/ucs/03-zkgm/TokenOrder.sol": {
"content": "pragma solidity ^0.8.27;
import "./Store.sol";
contract UCS03ZkgmTokenOrderImpl is Versioned, TokenBucket, UCS03ZkgmStore {
using ZkgmLib for *;
using LibString for *;
using LibBytes for *;
using SafeERC20 for *;
using Address for *;
using LibCall for *;
IWETH public immutable WETH;
ZkgmERC20 public immutable ERC20_IMPL;
bool public immutable RATE_LIMIT_ENABLED;
constructor(IWETH _weth, ZkgmERC20 _erc20Impl, bool _rateLimitEnabled) {
WETH = _weth;
ERC20_IMPL = _erc20Impl;
RATE_LIMIT_ENABLED = _rateLimitEnabled;
}
function _protocolFillMint(
uint32 channelId,
uint256 path,
address wrappedToken,
address receiver,
address relayer,
uint256 baseAmount,
uint256 quoteAmount
) internal returns (bytes memory) {
uint256 fee = baseAmount - quoteAmount;
if (quoteAmount > 0) {
IZkgmERC20(wrappedToken).mint(receiver, quoteAmount);
}
if (fee > 0) {
IZkgmERC20(wrappedToken).mint(relayer, fee);
}
return ZkgmLib.encodeTokenOrderAck(
TokenOrderAck({
fillType: ZkgmLib.FILL_TYPE_PROTOCOL,
marketMaker: ZkgmLib.ACK_EMPTY
})
);
}
function _protocolFillUnescrowV2(
uint32 channelId,
uint256 path,
bytes calldata baseToken,
address quoteToken,
address receiver,
address relayer,
uint256 baseAmount,
uint256 quoteAmount
) internal returns (bytes memory) {
uint256 fee = baseAmount - quoteAmount;
// If the base token path is being unwrapped, it's escrowed balance will be non zero.
_decreaseOutstandingV2(
channelId,
ZkgmLib.reverseChannelPath(path),
quoteToken,
baseToken,
baseAmount
);
// Specific case for native token.
if (quoteToken == ZkgmLib.NATIVE_TOKEN_ERC_7528_ADDRESS) {
if (quoteAmount + fee > 0) {
WETH.withdraw(baseAmount);
}
if (quoteAmount > 0) {
payable(receiver).sendValue(quoteAmount);
}
if (fee > 0) {
if (
!SafeTransferLib.trySafeTransferETH(
relayer,
fee,
SafeTransferLib.GAS_STIPEND_NO_STORAGE_WRITES
)
) {
return ZkgmLib.ACK_ERR_ONLYMAKER;
}
}
} else {
if (quoteAmount > 0) {
IERC20(quoteToken).safeTransfer(receiver, quoteAmount);
}
if (fee > 0) {
IERC20(quoteToken).safeTransfer(relayer, fee);
}
}
return ZkgmLib.encodeTokenOrderAck(
TokenOrderAck({
fillType: ZkgmLib.FILL_TYPE_PROTOCOL,
marketMaker: ZkgmLib.ACK_EMPTY
})
);
}
function _marketMakerFill(
address caller,
bytes calldata relayerMsg,
address quoteToken,
address payable receiver,
uint256 quoteAmount
) internal returns (bytes memory) {
if (quoteAmount != 0) {
// We want the top level handler in onRecvPacket to know we need to
// revert for another MM to get a chance to fill. If we revert now
// the entire packet would be considered to be "failed" and refunded
// at origin, which we want to avoid.
// Hence, in case of transfer failure, we yield the ack to notify the onRecvPacket.
// Special case for gas station where the user is asking for native
// gas token. The MM has to provide WETH funds that will be
// unwrapped, avoiding us from having to manage msg.value accross
// the stack.
if (quoteToken == ZkgmLib.NATIVE_TOKEN_ERC_7528_ADDRESS) {
// Transfert to protocol.
if (
!WETH.trySafeTransferFrom(caller, address(this), quoteAmount)
) {
return ZkgmLib.ACK_ERR_ONLYMAKER;
}
// Unwrap and send.
WETH.withdraw(quoteAmount);
// We allow this call to fail because in such case the MM was
// able to provide the funds. A failure ACK will be written and
// refund will happen.
receiver.sendValue(quoteAmount);
} else if (
!IERC20(quoteToken).trySafeTransferFrom(
caller, receiver, quoteAmount
)
) {
return ZkgmLib.ACK_ERR_ONLYMAKER;
}
}
return ZkgmLib.encodeTokenOrderAck(
TokenOrderAck({
fillType: ZkgmLib.FILL_TYPE_MARKETMAKER,
// The relayer has to provide it's maker address using the
// relayerMsg. This address is specific to the counterparty
// chain and is where the protocol will pay back the base amount
// on acknowledgement.
marketMaker: relayerMsg
})
);
}
function _solverFill(
IBCPacket calldata packet,
address caller,
address relayer,
bytes calldata relayerMsg,
uint256 path,
TokenOrderV2 calldata order,
bool intent
) internal returns (bytes memory) {
uint256 quoteAmount = order.quoteAmount;
SolverMetadata calldata metadata =
ZkgmLib.decodeSolverMetadata(order.metadata);
address solver = address(bytes20(metadata.solverAddress));
(bool solverFilled,, bytes memory solverReturnData) = solver.tryCall(
0,
gasleft(),
type(uint16).max,
abi.encodeCall(
ISolver.solve,
(packet, order, path, caller, relayer, relayerMsg, intent)
)
);
if (solverFilled) {
return ZkgmLib.encodeTokenOrderAck(
TokenOrderAck({
fillType: ZkgmLib.FILL_TYPE_MARKETMAKER,
// The solver has to provide it's maker addresss that the
// counterparty chain will repay on acknowledgement with the
// base token.
marketMaker: abi.decode(solverReturnData, (bytes))
})
);
} else {
return ZkgmLib.ACK_ERR_ONLYMAKER;
}
}
function _marketMakerFillV2(
IBCPacket calldata packet,
address caller,
address relayer,
bytes calldata relayerMsg,
uint256 path,
address quoteToken,
address payable receiver,
TokenOrderV2 calldata order,
bool intent
) internal returns (bytes memory) {
if (order.kind == ZkgmLib.TOKEN_ORDER_KIND_SOLVE) {
return _solverFill(
packet, caller, relayer, relayerMsg, path, order, intent
);
} else {
uint256 quoteAmount = order.quoteAmount;
// We want the top level handler in onRecvPacket to know we need to
// revert for another MM to get a chance to fill. If we revert now
// the entire packet would be considered to be "failed" and refunded
// at origin, which we want to avoid.
// Hence, in case of transfer failure, we yield the ack to notify the onRecvPacket.
// Special case for gas station where the user is asking for native
// gas token. The MM has to provide WETH funds that will be
// unwrapped, avoiding us from having to manage msg.value accross
// the stack.
if (quoteToken == ZkgmLib.NATIVE_TOKEN_ERC_7528_ADDRESS) {
if (quoteAmount > 0) {
// Transfert to protocol.
if (
!WETH.trySafeTransferFrom(
caller, address(this), quoteAmount
)
) {
return ZkgmLib.ACK_ERR_ONLYMAKER;
}
// Unwrap and send.
WETH.withdraw(quoteAmount);
// We allow this call to fail because in such case the MM was
// able to provide the funds. A failure ACK will be written and
// refund will happen.
receiver.sendValue(quoteAmount);
}
} else {
if (quoteAmount > 0) {
if (
!IERC20(quoteToken).trySafeTransferFrom(
caller, receiver, quoteAmount
)
) {
return ZkgmLib.ACK_ERR_ONLYMAKER;
}
}
}
return ZkgmLib.encodeTokenOrderAck(
TokenOrderAck({
fillType: ZkgmLib.FILL_TYPE_MARKETMAKER,
// The relayer has to provide it's maker address using the
// relayerMsg. This address is specific to the counterparty
// chain and is where the protocol will pay back the base amount
// on acknowledgement.
marketMaker: relayerMsg
})
);
}
}
function _deployWrappedTokenV2(
uint32 channelId,
uint256 path,
bytes calldata unwrappedToken,
address wrappedToken,
bytes32 wrappedTokenSalt,
TokenMetadata memory metadata,
bool canDeploy
) internal {
if (!ZkgmLib.isDeployed(wrappedToken)) {
if (!canDeploy) {
revert ZkgmLib.ErrCannotDeploy();
}
address implementation = address(bytes20(metadata.implementation));
CREATE3.deployDeterministic(
abi.encodePacked(
type(ERC1967Proxy).creationCode,
abi.encode(implementation, metadata.initializer)
),
wrappedTokenSalt
);
tokenOrigin[wrappedToken] =
ZkgmLib.updateChannelPath(path, channelId);
bytes memory encodedMetadata = ZkgmLib.encodeTokenMetadata(metadata);
metadataImageOf[wrappedToken] =
EfficientHashLib.hash(encodedMetadata);
uint8 kind = ZkgmLib.WRAPPED_TOKEN_KIND_THIRD_PARTY;
if (implementation == address(ERC20_IMPL)) {
try this.decodeZkgmERC20InitializeCall(metadata.initializer)
returns (
address tokenAuthority,
address tokenMinter,
string memory,
string memory,
uint8
) {
if (
tokenAuthority == authority()
&& tokenMinter == address(this)
) {
kind = ZkgmLib.WRAPPED_TOKEN_KIND_PROTOCOL;
}
} catch {}
}
emit ZkgmLib.CreateWrappedToken(
path,
channelId,
unwrappedToken,
wrappedToken,
encodedMetadata,
kind
);
}
}
function _makeDefaultTokenMetadata(
TokenOrderV1 calldata order
) internal view returns (TokenMetadata memory) {
return TokenMetadata({
implementation: abi.encodePacked(ERC20_IMPL),
initializer: abi.encodeCall(
ZkgmERC20.initialize,
(
authority(),
address(this),
order.baseTokenName,
order.baseTokenSymbol,
order.baseTokenDecimals
)
)
});
}
function _optionalRateLimit(address token, uint256 amount) internal {
if (RATE_LIMIT_ENABLED) {
_rateLimit(token, amount);
}
}
function executeTokenOrderV1(
address caller,
IBCPacket calldata ibcPacket,
address relayer,
bytes calldata relayerMsg,
uint256 path,
TokenOrderV1 calldata order,
bool intent
) public returns (bytes memory) {
address quoteToken = address(bytes20(order.quoteToken));
address payable receiver = payable(address(bytes20(order.receiver)));
// For intent packets, the protocol is not allowed to provide any fund
// as the packet has not been checked for membership poof. Instead, we
// know the market maker will be repaid on the source chain, if and only
// if the currently executing packet hash had been registered as sent on
// the source. In other words, the market maker is unable to lie.
if (intent) {
return _marketMakerFill(
caller, relayerMsg, quoteToken, receiver, order.quoteAmount
);
}
(address wrappedToken, bytes32 wrappedTokenSalt) = _predictWrappedToken(
path, ibcPacket.destinationChannelId, order.baseToken
);
bool baseAmountCoversQuoteAmount = order.baseAmount >= order.quoteAmount;
if (quoteToken == wrappedToken && baseAmountCoversQuoteAmount) {
_optionalRateLimit(quoteToken, order.quoteAmount);
TokenMetadata memory metadata = _makeDefaultTokenMetadata(order);
_deployWrappedTokenV2(
ibcPacket.destinationChannelId,
path,
order.baseToken,
wrappedToken,
wrappedTokenSalt,
metadata,
false
);
return _protocolFillMint(
ibcPacket.destinationChannelId,
path,
wrappedToken,
receiver,
relayer,
order.baseAmount,
order.quoteAmount
);
} else if (order.baseTokenPath != 0 && baseAmountCoversQuoteAmount) {
_optionalRateLimit(quoteToken, order.quoteAmount);
return _protocolFillUnescrowV2(
ibcPacket.destinationChannelId,
path,
order.baseToken,
quoteToken,
receiver,
relayer,
order.baseAmount,
order.quoteAmount
);
} else {
// We also allow market makers to fill orders after finality. This
// allow orders that combines protocol and mm filling (wrapped vs
// non wrapped assets).
return _marketMakerFill(
caller, relayerMsg, quoteToken, receiver, order.quoteAmount
);
}
}
function executeTokenOrderV2(
address caller,
IBCPacket calldata ibcPacket,
address relayer,
bytes calldata relayerMsg,
uint256 path,
TokenOrderV2 calldata order,
bool intent
) public returns (bytes memory) {
address quoteToken = address(bytes20(order.quoteToken));
address payable receiver = payable(address(bytes20(order.receiver)));
// For intent packets, the protocol is not allowed to provide any fund
// as the packet has not been checked for membership poof. Instead, we
// know the market maker will be repaid on the source chain, if and only
// if the currently executing packet hash had been registered as sent on
// the source. In other words, the market maker is unable to lie.
if (intent || order.kind == ZkgmLib.TOKEN_ORDER_KIND_SOLVE) {
return _marketMakerFillV2(
ibcPacket,
caller,
relayer,
relayerMsg,
path,
quoteToken,
receiver,
order,
intent
);
}
bool baseAmountCoversQuoteAmount = order.baseAmount >= order.quoteAmount;
if (
order.kind == ZkgmLib.TOKEN_ORDER_KIND_UNESCROW
&& baseAmountCoversQuoteAmount
) {
_optionalRateLimit(quoteToken, order.quoteAmount);
return _protocolFillUnescrowV2(
ibcPacket.destinationChannelId,
path,
order.baseToken,
quoteToken,
receiver,
relayer,
order.baseAmount,
order.quoteAmount
);
} else {
address wrappedToken;
bytes32 wrappedTokenSalt;
if (order.kind == ZkgmLib.TOKEN_ORDER_KIND_ESCROW) {
bytes32 metadataImage = metadataImageOf[quoteToken];
if (metadataImage == 0) {
// V1
(wrappedToken, wrappedTokenSalt) = _predictWrappedToken(
path, ibcPacket.destinationChannelId, order.baseToken
);
} else {
// V2
(wrappedToken, wrappedTokenSalt) =
_predictWrappedTokenFromMetadataImageV2(
path,
ibcPacket.destinationChannelId,
order.baseToken,
metadataImage
);
}
} else if (order.kind == ZkgmLib.TOKEN_ORDER_KIND_INITIALIZE) {
TokenMetadata calldata metadata =
ZkgmLib.decodeTokenMetadata(order.metadata);
(wrappedToken, wrappedTokenSalt) = _predictWrappedTokenV2(
path,
ibcPacket.destinationChannelId,
order.baseToken,
metadata
);
if (quoteToken != wrappedToken) {
revert ZkgmLib.ErrInvalidTokenOrderKind();
}
_deployWrappedTokenV2(
ibcPacket.destinationChannelId,
path,
order.baseToken,
wrappedToken,
wrappedTokenSalt,
metadata,
true
);
}
if (quoteToken == wrappedToken && baseAmountCoversQuoteAmount) {
_optionalRateLimit(quoteToken, order.quoteAmount);
return _protocolFillMint(
ibcPacket.destinationChannelId,
path,
wrappedToken,
receiver,
relayer,
order.baseAmount,
order.quoteAmount
);
} else {
// We also allow market makers to fill orders after finality. This
// allow orders that combines protocol and mm filling (wrapped vs
// non wrapped assets).
return _marketMakerFillV2(
ibcPacket,
caller,
relayer,
relayerMsg,
path,
quoteToken,
receiver,
order,
intent
);
}
}
}
function _acknowledgeTokenOrderV1(
IBCPacket calldata ibcPacket,
address relayer,
uint256 path,
bytes32 salt,
TokenOrderV1 calldata order,
bool successful,
bytes calldata ack
) internal {
if (successful) {
TokenOrderAck calldata assetOrderAck =
ZkgmLib.decodeTokenOrderAck(ack);
if (assetOrderAck.fillType == ZkgmLib.FILL_TYPE_PROTOCOL) {
// The protocol filled, fee was paid to relayer.
} else if (assetOrderAck.fillType == ZkgmLib.FILL_TYPE_MARKETMAKER)
{
// A market maker filled, we pay with the sent asset.
address marketMaker =
address(bytes20(assetOrderAck.marketMaker));
address baseToken = address(bytes20(order.baseToken));
if (order.baseTokenPath != 0) {
IZkgmERC20(address(baseToken)).mint(
marketMaker, order.baseAmount
);
} else {
_decreaseOutstandingV2(
ibcPacket.sourceChannelId,
path,
baseToken,
order.quoteToken,
order.baseAmount
);
if (baseToken == ZkgmLib.NATIVE_TOKEN_ERC_7528_ADDRESS) {
WETH.withdraw(order.baseAmount);
payable(marketMaker).sendValue(order.baseAmount);
} else {
// Check if the counterparty minted and wants us to burn to net.
if (marketMaker == address(0)) {
IZkgmERC20(baseToken).burn(
address(this), order.baseAmount
);
} else {
IERC20(baseToken).safeTransfer(
marketMaker, order.baseAmount
);
}
}
}
} else {
revert ZkgmLib.ErrInvalidFillType();
}
} else {
_refund(ibcPacket.sourceChannelId, path, order);
}
}
function acknowledgeTokenOrderV1(
IBCPacket calldata ibcPacket,
address relayer,
uint256 path,
bytes32 salt,
TokenOrderV1 calldata order,
bool successful,
bytes calldata ack
) public {
_acknowledgeTokenOrderV1(
ibcPacket, relayer, path, salt, order, successful, ack
);
}
function acknowledgeTokenOrderV2(
IBCPacket calldata ibcPacket,
address relayer,
uint256 path,
bytes32 salt,
TokenOrderV2 calldata order,
bool successful,
bytes calldata ack
) public {
if (successful) {
TokenOrderAck calldata assetOrderAck =
ZkgmLib.decodeTokenOrderAck(ack);
if (assetOrderAck.fillType == ZkgmLib.FILL_TYPE_PROTOCOL) {
// The protocol filled, fee was paid to relayer.
} else if (assetOrderAck.fillType == ZkgmLib.FILL_TYPE_MARKETMAKER)
{
// A market maker filled, we pay with the sent asset.
address marketMaker =
address(bytes20(assetOrderAck.marketMaker));
address baseToken = address(bytes20(order.baseToken));
if (order.kind == ZkgmLib.TOKEN_ORDER_KIND_UNESCROW) {
IZkgmERC20(address(baseToken)).mint(
marketMaker, order.baseAmount
);
} else {
_decreaseOutstandingV2(
ibcPacket.sourceChannelId,
path,
baseToken,
order.quoteToken,
order.baseAmount
);
if (baseToken == ZkgmLib.NATIVE_TOKEN_ERC_7528_ADDRESS) {
WETH.withdraw(order.baseAmount);
payable(marketMaker).sendValue(order.baseAmount);
} else {
// Check if the counterparty minted and wants us to burn to net.
if (marketMaker == address(0)) {
IZkgmERC20(baseToken).burn(
address(this), order.baseAmount
);
} else {
IERC20(baseToken).safeTransfer(
marketMaker, order.baseAmount
);
}
}
}
} else {
revert ZkgmLib.ErrInvalidFillType();
}
} else {
_refundV2(ibcPacket.sourceChannelId, path, order);
}
}
function timeoutTokenOrderV1(
IBCPacket calldata ibcPacket,
uint256 path,
TokenOrderV1 calldata order
) public {
_refund(ibcPacket.sourceChannelId, path, order);
}
function timeoutTokenOrderV2(
IBCPacket calldata ibcPacket,
uint256 path,
TokenOrderV2 calldata order
) public {
_refundV2(ibcPacket.sourceChannelId, path, order);
}
function _refund(
uint32 sourceChannelId,
uint256 path,
TokenOrderV1 calldata order
) internal {
address sender = address(bytes20(order.sender));
address baseToken = address(bytes20(order.baseToken));
if (order.baseTokenPath != 0) {
IZkgmERC20(address(baseToken)).mint(sender, order.baseAmount);
} else {
_decreaseOutstandingV2(
sourceChannelId,
path,
baseToken,
order.quoteToken,
order.baseAmount
);
if (baseToken == ZkgmLib.NATIVE_TOKEN_ERC_7528_ADDRESS) {
WETH.withdraw(order.baseAmount);
payable(sender).sendValue(order.baseAmount);
} else {
IERC20(baseToken).safeTransfer(sender, order.baseAmount);
}
}
}
function _refundV2(
uint32 sourceChannelId,
uint256 path,
TokenOrderV2 calldata order
) internal {
address sender = address(bytes20(order.sender));
address baseToken = address(bytes20(order.baseToken));
if (order.kind == ZkgmLib.TOKEN_ORDER_KIND_UNESCROW) {
IZkgmERC20(address(baseToken)).mint(sender, order.baseAmount);
} else {
_decreaseOutstandingV2(
sourceChannelId,
path,
baseToken,
order.quoteToken,
order.baseAmount
);
if (baseToken == ZkgmLib.NATIVE_TOKEN_ERC_7528_ADDRESS) {
WETH.withdraw(order.baseAmount);
payable(sender).sendValue(order.baseAmount);
} else {
IERC20(baseToken).safeTransfer(sender, order.baseAmount);
}
}
}
}
"
},
"contracts/apps/ucs/03-zkgm/Store.sol": {
"content": "pragma solidity ^0.8.27;
import "@openzeppelin-upgradeable/contracts/proxy/utils/Initializable.sol";
import "@openzeppelin-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol";
import
"@openzeppelin-upgradeable/contracts/access/manager/AccessManagedUpgradeable.sol";
import "@openzeppelin-upgradeable/contracts/utils/PausableUpgradeable.sol";
import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "solady/utils/CREATE3.sol";
import "solady/utils/LibBit.sol";
import "solady/utils/LibString.sol";
import "solady/utils/LibBytes.sol";
import "solady/utils/LibCall.sol";
import "solady/utils/EfficientHashLib.sol";
import "solady/utils/SafeTransferLib.sol";
import "solady/utils/LibTransient.sol";
import "../../Base.sol";
import "../../../core/04-channel/IBCPacket.sol";
import "../../../core/05-port/IIBCModule.sol";
import "../../../core/24-host/IBCCommitment.sol";
import "../../../internal/Versioned.sol";
import "./TokenBucket.sol";
import "./IWETH.sol";
import "./IZkgmable.sol";
import "./IZkgmERC20.sol";
import "./ZkgmERC20.sol";
import "./ZkgmERC721.sol";
import "./IZkgm.sol";
import "./Lib.sol";
abstract contract UCS03ZkgmStore is AccessManagedUpgradeable, IZkgmStore {
using ZkgmLib for *;
using LibString for *;
using LibBytes for *;
using SafeERC20 for *;
using Address for *;
using LibCall for *;
bytes32 internal constant STAKE_NFT_MANAGER_SALT =
keccak256("union.salt.zkgm.stakeNFTManager");
string internal constant STAKE_NFT_NAME = "Zkgm Staking Position";
string internal constant STAKE_NFT_SYMBOL = "ZKGMSP";
IIBCModulePacket private _deprecated_ibcHandler;
mapping(bytes32 => IBCPacket) public inFlightPacket;
mapping(address => uint256) public tokenOrigin;
mapping(uint32 => mapping(uint256 => mapping(address => uint256))) public
_deprecated_channelBalanceV1;
uint256 public _deprecated_channelGovernanceToken;
uint256 public _deprecated_stakes;
mapping(address => bytes32) public metadataImageOf;
mapping(
uint32
=> mapping(uint256 => mapping(address => mapping(bytes => uint256)))
) public channelBalanceV2;
function decodeZkgmERC20InitializeCall(
bytes calldata call
)
external
pure
returns (address, address, string memory, string memory, uint8)
{
bytes4 selector = bytes4(call.slice(0, 4));
bytes4 expectedSelector = ZkgmERC20.initialize.selector;
require(selector == expectedSelector);
return
abi.decode(call.slice(4), (address, address, string, string, uint8));
}
function decodeRelayerMessage(
bytes calldata relayerMsg
) external pure returns (bool, bytes memory) {
return abi.decode(relayerMsg, (bool, bytes));
}
function _increaseOutstandingV2(
uint32 sourceChannelId,
uint256 path,
address baseToken,
bytes calldata quoteToken,
uint256 amount
) internal {
channelBalanceV2[sourceChannelId][path][baseToken][quoteToken] += amount;
}
function _decreaseOutstandingV2(
uint32 sourceChannelId,
uint256 path,
address baseToken,
bytes calldata quoteToken,
uint256 amount
) internal {
channelBalanceV2[sourceChannelId][path][baseToken][quoteToken] -= amount;
}
// Predict a wrapped token address given the path/channel and counterparty
// address of the token. The computed address is fully deterministic w.r.t
// to (ucs03Address, path, channel, token).
function _predictWrappedToken(
uint256 path,
uint32 channel,
bytes calldata token
) internal view returns (address, bytes32) {
bytes32 wrappedTokenSalt =
EfficientHashLib.hash(abi.encode(path, channel, token));
address wrappedToken =
CREATE3.predictDeterministicAddress(wrappedTokenSalt);
return (wrappedToken, wrappedTokenSalt);
}
function _predictWrappedTokenFromMetadataImageV2(
uint256 path,
uint32 channel,
bytes memory token,
bytes32 metadataImage
) internal view returns (address, bytes32) {
bytes32 wrappedTokenSalt = EfficientHashLib.hash(
abi.encode(path, channel, token, metadataImage)
);
address wrappedToken =
CREATE3.predictDeterministicAddress(wrappedTokenSalt);
return (wrappedToken, wrappedTokenSalt);
}
function _predictWrappedTokenV2(
uint256 path,
uint32 channel,
bytes calldata token,
TokenMetadata memory metadata
) internal returns (address, bytes32) {
bytes32 metadataImage =
EfficientHashLib.hash(ZkgmLib.encodeTokenMetadata(metadata));
return _predictWrappedTokenFromMetadataImageV2(
path, channel, token, metadataImage
);
}
function _predictProxyAccount(
uint256 path,
uint32 channelId,
bytes calldata sender
) internal returns (bytes32, address) {
bytes32 proxySalt =
EfficientHashLib.hash(abi.encode(path, channelId, sender));
return (proxySalt, CREATE3.predictDeterministicAddress(proxySalt));
}
}
"
},
"libs/@openzeppelin-upgradeable/contracts/proxy/utils/Initializable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}
"
},
"libs/@openzeppelin-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.22;
import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*/
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable
address private immutable __self = address(this);
/**
* @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
* and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
* while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
* If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
* be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
* during an upgrade.
*/
string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
/**
* @dev The call is from an unauthorized context.
*/
error UUPSUnauthorizedCallContext();
/**
* @dev The storage `slot` is unsupported as a UUID.
*/
error UUPSUnsupportedProxiableUUID(bytes32 slot);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
_checkProxy();
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
_checkNotDelegated();
_;
}
function __UUPSUpgradeable_init() internal onlyInitializing {
}
function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
}
/**
* @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual notDelegated returns (bytes32) {
return ERC1967Utils.IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data);
}
/**
* @dev Reverts if the execution is not performed via delegatecall or the execution
* context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
* See {_onlyProxy}.
*/
function _checkProxy() internal view virtual {
if (
address(this) == __self || // Must be called through delegatecall
ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
) {
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Reverts if the execution is performed via delegatecall.
* See {notDelegated}.
*/
function _checkNotDelegated() internal view virtual {
if (address(this) != __self) {
// Must not be called through delegatecall
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
*
* As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
* is expected to be the implementation slot in ERC-1967.
*
* Emits an {IERC1967-Upgraded} event.
*/
function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
revert UUPSUnsupportedProxiableUUID(slot);
}
ERC1967Utils.upgradeToAndCall(newImplementation, data);
} catch {
// The implementation is not UUPS
revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
}
}
}
"
},
"libs/@openzeppelin-upgradeable/contracts/access/manager/AccessManagedUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/manager/AccessManaged.sol)
pragma solidity ^0.8.20;
import {IAuthority} from "@openzeppelin/contracts/access/manager/IAuthority.sol";
import {AuthorityUtils} from "@openzeppelin/contracts/access/manager/AuthorityUtils.sol";
import {IAccessManager} from "@openzeppelin/contracts/access/manager/IAccessManager.sol";
import {IAccessManaged} from "@openzeppelin/contracts/access/manager/IAccessManaged.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
* permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
* implementing a policy that allows certain callers to access certain functions.
*
* IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
* functions, and ideally only used in `external` functions. See {restricted}.
*/
abstract contract AccessManagedUpgradeable is Initializable, ContextUpgradeable, IAccessManaged {
/// @custom:storage-location erc7201:openzeppelin.storage.AccessManaged
struct AccessManagedStorage {
address _authority;
bool _consumingSchedule;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessManaged")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant AccessManagedStorageLocation = 0xf3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00;
function _getAccessManagedStorage() private pure returns (AccessManagedStorage storage $) {
assembly {
$.slot := AccessManagedStorageLocation
}
}
/**
* @dev Initializes the contract connected to an initial authority.
*/
function __AccessManaged_init(address initialAuthority) internal onlyInitializing {
__AccessManaged_init_unchained(initialAuthority);
}
function __AccessManaged_init_unchained(address initialAuthority) internal onlyInitializing {
_setAuthority(initialAuthority);
}
/**
* @dev Restricts access to a function as defined by the connected Authority for this contract and the
* caller and selector of the function that entered the contract.
*
* [IMPORTANT]
* ====
* In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
* functions that are used as external entry points and are not called internally. Unless you know what you're
* doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
* implications! This is because the permissions are determined by the function that entered the contract, i.e. the
* function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
* ====
*
* [WARNING]
* ====
* Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
* function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
* functions are the only execution paths where a function selector cannot be unambiguously determined from the calldata
* since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
* if no calldata is provided. (See {_checkCanCall}).
*
* The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
* ====
*/
modifier restricted() {
_checkCanCall(_msgSender(), _msgData());
_;
}
/// @inheritdoc IAccessManaged
function authority() public view virtual returns (address) {
AccessManagedStorage storage $ = _getAccessManagedStorage();
return $._authority;
}
/// @inheritdoc IAccessManaged
function setAuthority(address newAuthority) public virtual {
address caller = _msgSender();
if (caller != authority()) {
revert AccessManagedUnauthorized(caller);
}
if (newAuthority.code.length == 0) {
revert AccessManagedInvalidAuthority(newAuthority);
}
_setAuthority(newAuthority);
}
/// @inheritdoc IAccessManaged
function isConsumingScheduledOp() public view returns (bytes4) {
AccessManagedStorage storage $ = _getAccessManagedStorage();
return $._consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
}
/**
* @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
* permissions set by the current authority.
*/
function _setAuthority(address newAuthority) internal virtual {
AccessManagedStorage storage $ = _getAccessManagedStorage();
$._authority = newAuthority;
emit AuthorityUpdated(newAuthority);
}
/**
* @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
* is less than 4 bytes long.
*/
function _checkCanCall(address caller, bytes calldata data) internal virtual {
AccessManagedStorage storage $ = _getAccessManagedStorage();
(bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
authority(),
caller,
address(this),
bytes4(data[0:4])
);
if (!immediate) {
if (delay > 0) {
$._consumingSchedule = true;
IAccessManager(authority()).consumeScheduledOp(caller, data);
$._consumingSchedule = false;
} else {
revert AccessManagedUnauthorized(caller);
}
}
}
}
"
},
"libs/@openzeppelin-upgradeable/contracts/utils/PausableUpgradeable.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Pausable
struct PausableStorage {
bool _paused;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;
function _getPausableStorage() private pure returns (PausableStorage storage $) {
assembly {
$.slot := PausableStorageLocation
}
}
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Initializes the contract in unpaused state.
*/
function __Pausable_init() internal onlyInitializing {
__Pausable_init_unchained();
}
function __Pausable_init_unchained() internal onlyInitializing {
PausableStorage storage $ = _getPausableStorage();
$._paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
PausableStorage storage $ = _getPausableStorage();
return $._paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
PausableStorage storage $ = _getPausableStorage();
$._paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
PausableStorage storage $ = _getPausableStorage();
$._paused = false;
emit Unpaused(_msgSender());
}
}
"
},
"libs/@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Proxy.sol)
pragma solidity ^0.8.22;
import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "./ERC1967Utils.sol";
/**
* @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
* implementation address that can be changed. This address is stored in storage in the location specified by
* https://eips.ethereum.org/EIPS/eip-1967[ERC-1967], so that it doesn't conflict with the storage layout of the
* implementation behind the proxy.
*/
contract ERC1967Proxy is Proxy {
/**
* @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
*
* If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
* encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
*
* Requirements:
*
* - If `data` is empty, `msg.value` must be zero.
*/
constructor(address implementation, bytes memory _data) payable {
ERC1967Utils.upgradeToAndCall(implementation, _data);
}
/**
* @dev Returns the current implementation address.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
* the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
*/
function _implementation() internal view virtual override returns (address) {
return ERC1967Utils.getImplementation();
}
}
"
},
"libs/@openzeppelin/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
"
},
"libs/@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0-rc.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the sa
Submitted on: 2025-09-17 17:06:29
Comments
Log in to comment.
No comments yet.